

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample: SPT Date of Testing: 20.05.2013

Location : BH-8(Yamuna River-Ambala) Sampled by : Binayak Swain

Depth : 30.0m Tested by : D.Mohanty

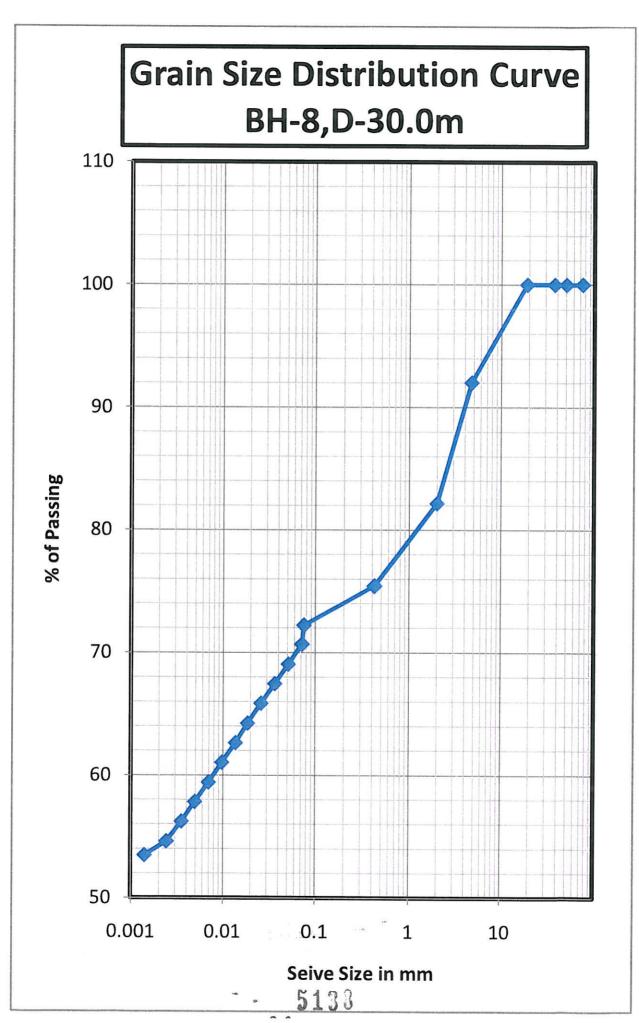
Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

27.79

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	7.98	7.98	7.98	92.02
2.00	9.84	9.84	17.82	82.18
0.425	6.75	6.75	24.57	75.43
0.075	3.22	3.22	27.79	72.21
Total	100.00			


Gravel Content (%)= 7.98

Sand Content (%) = 19.81 Silt and clay % 72.21

Remarks :-

- 513?

0

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P- 4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample: SPT Date of Testing: 20.05.2013

Location : BH-8(Yamuna River-Ambala) Sampled by : Binayak Swain

Depth : 36.0m Tested by : D.Mohanty

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

90.36

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	13.22	13.22	13.22	86.78
2.00	32.84	32.84	46.06	53.94
0.425	27.45	27.45	73.51	26.49
0.075	16.85	16.85	90.36	9.64
Total	100.00			

Gravel Content (%)=

13.22

Sand Content (%) =

77.14

Silt and clay %

9.64

Remarks :-

- - 5139

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date of Testing:

20.05.2013

Location

BH-8(Yamuna River-Ambala)

Sampled by

Binayak Swain

Depth

: 42.0m

Tested by

D.Mohanty

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

83.39

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	1.66	1.66	1.66	98.34
2.00	32.98	32.98	34.64	65.36
0.425	28.46	28.46	63.10	36.90
0.075	20.29	20.29	83.39	16.61
Total	100.00			

Gravel Content (%)=

1.66

Sand Content (%) =

81.73

Silt and clay %

16.61

Remarks :-

5140

				Calibration of Hydrometer			*	*	*	*	***************************************				v = -0.334x + 18.27			K	10 20 30 40		Rc2 = Rh + Factor C (3) + N N	(5) (12) x (13)	12 13 14 15	3 22 00 4 448 97 86 70 67
T LTD		ТНОБ	25.00		20.00	8		15.00	Ξ	a	10.00			6	2.00			0.00	o		Particle 'C' (cm) (8) x	(10)	11	0.00719968
DIA) PV	var	ETER ME		30.0m	21.05.2013	D.Mohanty		ETER	He (cm)	8.25	9.95	11.55	13.25	14.95	16.65	18.25	19.95				Factor M		10	0.012314796
ARKI TECHNO CONSULTANTS (INDIA) PVT LTD	IRC Village, Bhubaneswar	GRAIN SIZE ANALYSIS OF SOIL - HYDROMETER METHOD		Depth :	Date of Testing:	Tested by :		CALIBRATION OF HYDROMETER	H (cm)	0.7	2.4	4.0	5.7	7.4	9.1	10.7	12.4	ding	ding to Rh	He = Effective height = H + 0.5*(h -V/A)	Viscosity (gm/cm2)		6	0.000008341
ISUL	S Villag	OF SC						CALIBR/	(Rh)	30	25	20	15	10	2	0	-5	hydrometer Reading	correspon	ive height	Sqrt (h/t)	NJ	8	0.585
0000	N 3/91, IR	ALYSIS						72.21	50	13.9	36.1	2.65	2.0	2.5	0.5			Rh = hydro	H = height corresponding to Rh	He = Effect	Rc1 = Rh + Cm		7	24.50
CHN	Z	IZE AN														7	50	16.5		35.714	Effective depth h	(CIII)	9	10.25
ARKI TE		GRAIN S		Bridges		bala)		eve analysis)	(gm)	e (gm)	н)		_	stem							Composite Correction) -/+	5	-2.0
				G.I For 3 Nos. Important Bridges		BH-8(Yamuna River- Ambala)	ain	assing (from sie	nm sieve taken	75micron siev	micron Wh (gr	is, Gs	ydrometer sten	n hydrometer s	(IN) - (IIN)] + =		(cm3)			A) in cm2	Temperature (o C)		4	29
			: DFCC	: G.I For 3 No	: SPT	: BH-8(Yamu	: Binayak Swain	Percentage of 75 micron passing (from sieve analysis)	Mass of dry soil passing 2mm sieve taken (gm)	Mass of dry soil retained on 75micron sieve (gm)	Mass of dry soil passing 75 micron Wh (gm)	Specific gravity of soil grains, Gs	Top Meniscus reading on hydrometer stem	Bottom meniscus reading on hydrometer stem	Meniscuss correction, Cm = + [(VII) - (VI)]	er No	Volume of Hydrometer V (cm3)	Height of bulb (h) in cm	Sedimentation Jar No	Cross sectional area of jar (A) in cm2	Hydrometer Reading (Rh)		8	24.00
2	ARKITECHNO COMMUNICATION OF LTD			Name	Type of Sample	_	id by	Percentag	Mass of d	Mass of d	Mass of d	Specific g	Top Menis	Bottom m	Meniscus	Hydrometer No	Volume of	Height of	Sediment	Cross sec	Elapsed Time	(111111)	2	0.5
D	ARKIT		Client	Project Name	Type of	Location	Sampled by	(<u>(</u>	(E)	<u> </u>	3	<u>S</u>		3	Ø			q		Time		-	10.30

			_									_	_		_
40	% Finner w.r.t total mass (14) x (1)/100	15	70.67	90.69	67.45	65.85	64.24	62.64	61.03	59.42	57.82	56.21	54.61	53.46	
30	% Finner w.r.t Wd F (12) x (13)	14	97.86	95.64	93.41	91.19	88.97	86.74	84.52	82.29	80.07	77.85	75.62	74.03	
20	Factor	13	4.448	4.448	4.448	4.448	4.448	4.448	4.448	4.448	4.448	4.448	4.448	4.448	
10	Rc2 = Rh + C (3) + (5)	12	22.00	21.50	21.00	20.50	20.00	19.50	19.00	18.50	18.00	17.50	17.00	16.64	
0	Particle 'C' (cm) (8) x (10)	11	0.00719968	0.00513223	0.00365800	0.00260691	0.00185762	0.00136695	0.00097383	0.00069369	0.00049409	0.00035188	0.00024264	0.000140787	
	Factor M	10	0.012314796	0.012314796	0.012314796	0.012314796	0.012314796 0.00185762	0.012314796	0.012314796	0.012314796	0.012314796	0.012314796	0.011924722 0.00024264	0.011924722 0.000140787	
H = height corresponding to Kh He = Effective height = H + 0.5*(h -V/A)	Viscosity (gm/cm2)	6	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000007821	0.000007821	
correspond ve height	Sqrt (h/t)	8	0.585	0.417	0.297	0.212	0.151	0.111	0.079	0.056	0.040	0.029	0.020	0.012	
H = height corresponding to Kh He = Effective height = H + 0.5*	Rc1 = Rh + Cm	7	24.50	24.00	23.50	23.00	22.50	22.00	21.50	21.00	20.50	20.00	19.50	19.14	
1 35.714	Effective depth h (cm)	9	10.25	10.42	10.59	10.76	10.92	11.09	11.26	11.42	11.59	11.76	11.92	12.04	
	Composite Correction +/- C	5	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	
A) in cm2	Temperature (o C)	4	29	29	29	29	29	29	29	29	29	29	32	32	
Sedimentation Jar No Cross sectional area of jar (A) in cm2	Hydrometer Reading (Rh)	3	24.00	23.50	23.00	22.50	22.00	21.50	21.00	20.50	20.00	19.50	19.00	18.64	
Cross sec	Elapsed Time (min)	2	0.5	-	2	4	80	15	30	09 *	120	240	480	1440	
Ω	Time	-	10.30					•	5	Total Control		d .			

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

BH-8(Yamuna River-Ambala)

Type of Sample

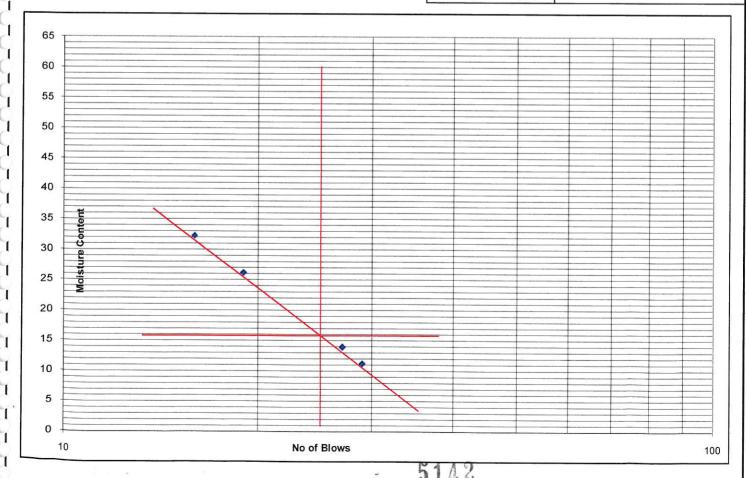
Date Of Testing

: 20.05.2013

Sampled by

: Binayak Swain

Location Depth


1.5m

Tested by

: D.Mohanty

Number of Blows	29	27	16	19	Plastic Limit
Container No.	R1	R2	R3	R4	
Container Weight (gm) (W1)	35.41	36.62	34.15	33.52	
Container + Wt. of wet soil (gm) (W2)	82.59	96.20	102.65	101.32	
(Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.76	7.29	16.71	14.07	
Wt. of oven dry soil (gm) (W3-W1)	42.43	52.30	51.79	53.73	
[Moisture Content (%)= ,[(W2-W1)-(W3-W1)]/(W3-W1) X 100	11.21	13.93	32.26	26.18	

Result Summary Liquid Limit (WL) % Plastic Limit (Wp) NP Plasticity Index (Ip)

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

BH-8(Yamuna River-Ambala)

Type of Sample

SPT

Date Of Testing

: 20.05.2013

Location

SFI

Sampled by

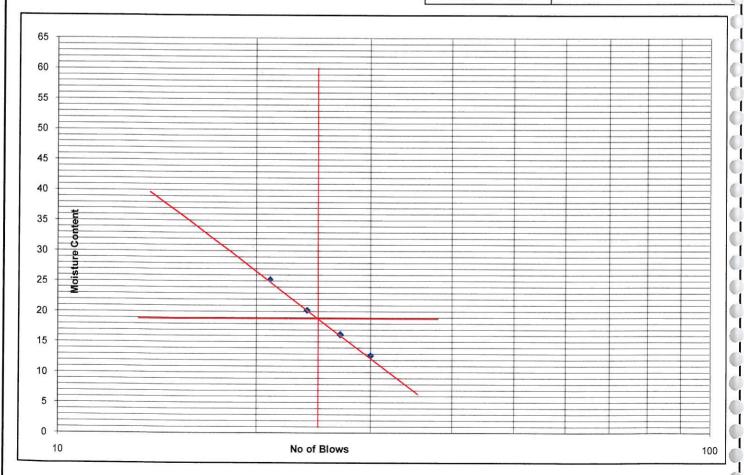
Binayak Swain

Depth

3.0m

Tested by

: D.Mohanty


Number of Blows	30	27	24	21	Plastic Limit
Container No.	W1	W2	W3	W4	
Container Weight (gm) (W1)	32.52	34.15	33.63	35.58	
Container + Wt. of wet soil (gm) (W2)	83.62	97.79	96.52	100.32	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	5.78	8.88	10.57	13.07	
Wt. of oven dry soil (gm) (W3-W1)	45.32	54.77	52.31	51.67	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	12.75	16.21	20.21	25.29	

 Result Summary

 Liquid Limit (WL)
 19
 %

 Plastic Limit (Wp)
 NP

 Plasticity Index (Ip)
 _

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client **DFCC**

Project Name G.I For 3 Nos. Important Bridges

4.5m

Type of Sample

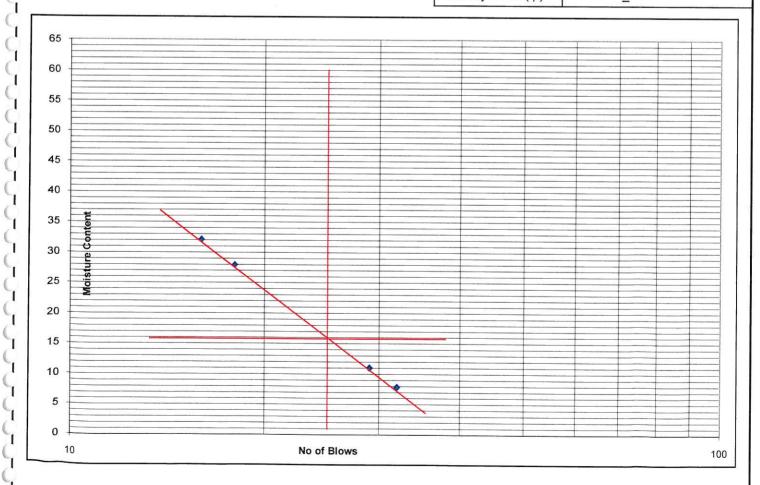
Location

Depth

BH-8(Yamuna River-Ambala)

Sampled by

Date Of Testing


: 20.05.2013

: Binayak Swain

Tested by : D.Mohanty

Number of Blows	32	29	18	16	Plastic Limit
Container No.	D1	D2	D3	D4	
Container Weight (gm) (W1)	31.25	32.42	33.65	34.47	
Container + Wt. of wet soil (gm) (W2)	81.50	95.15	100.57	104.19	
IWt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
IWt. Of water (gm) (W2-W1)-(W3-W1)	3.66	6.23	14.63	16.94	
Wt. of oven dry soil (gm) (W3-W1)	46.59	56.50	52.29	52.78	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	7.85	11.03	27.98	32.09	

Result Summary Liquid Limit (WL) 16 % Plastic Limit (Wp) NP Plasticity Index (Ip)

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

Date Of Testing

: 20.05.2013

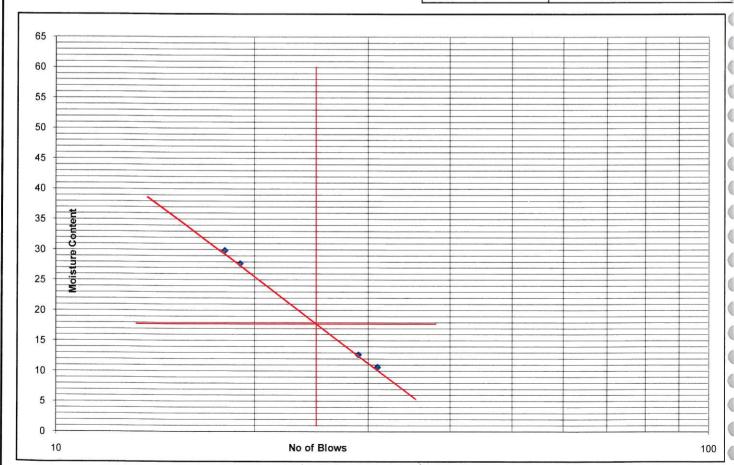
BH-8(Yamuna River-Ambala)

Sampled by

Binayak Swain

Location Depth

10.5m


Tested by

: D.Mohanty

Number of Blows	31	29	19	18	Plastic Limit
Container No.	C7	C8	C9	C10	
Container Weight (gm) (W1)	32.58	37.21	33.14	35.42	
Container + Wt. of wet soil (gm) (W2)	82.64	95.49	100.57	102.71	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.81	6.57	14.63	15.45	
Wt. of oven dry soil (gm) (W3-W1)	45.26	51.71	52.80	51.83	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	10.62	12.71	27.71	29.81	

Result Summary

Liquid Limit (WL)	18	%
Plastic Limit (Wp)	NP	
Plasticity Index (Ip)	-	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5) #

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SP1

Date Of Testing

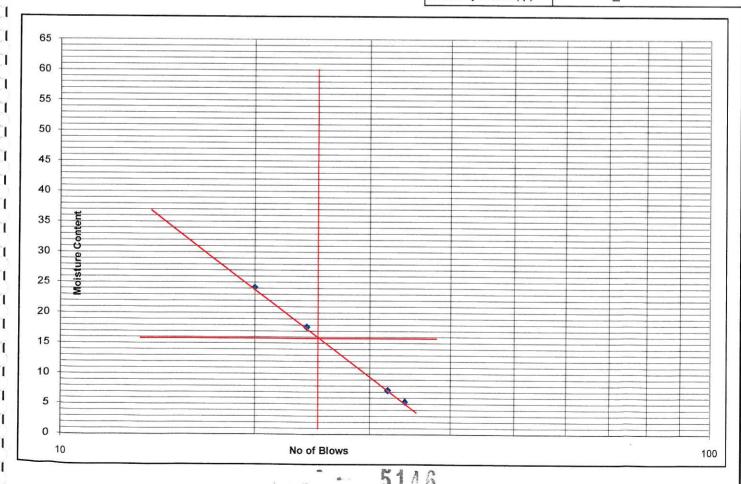
: 20.05.2013

Location

BH-8(Yamuna River-Ambala)

Sampled by

: Binayak Swain


Depth

12.0m

Tested by

: D.Mohanty

Number of Blows	34	32	24	20	Plastic Limit
Container No.	F1	F2	F3	F4	
Container Weight (gm) (W1)	30.25	33.24	34.18	32.74	
Container + Wt. of wet soil (gm) (W2)	80.40	92.98	95.08	100.44	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	2.57	4.06	9.14	13.18	
Wt. of oven dry soil (gm) (W3-W1)	47.59	55.68	51.76	54.51	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	5.39	7.29	17.65	24.18	

Location

Arki Techno Consultants (India) Pvt.Ltd

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Date Of Testing

Sampled by

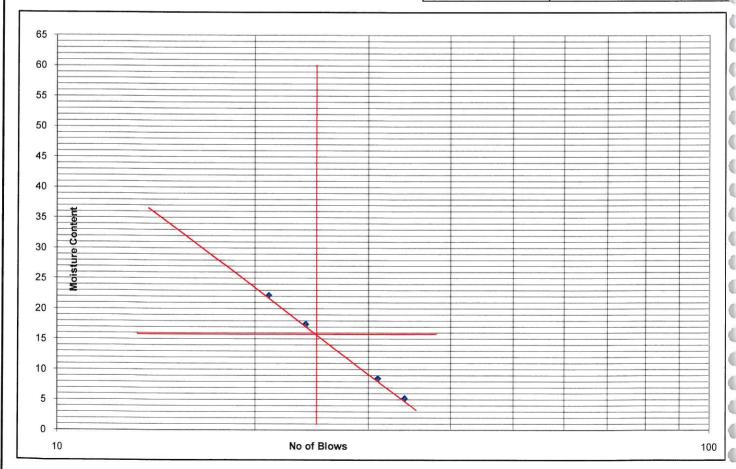
Client : DFCC

[(W2-W1)-(W3-W1)]/(W3-W1) X 100

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT

BH-8(Yamuna River-Ambala)


Depth : 18.0m Tested by : D.Mohanty

Number of Blows 34 31 24 21 **Plastic Limit** Container No. E1 E2 E3 E4 Container Weight (gm) (W1) 32.26 3.41 34.58 33.29 Container + Wt. of wet soil (gm) (W2) 80.21 96.20 94.89 99.24 Wt of Container + Wt. of oven dry soil (gm) (W3) 77.84 88.92 85.94 87.25 Wt. Of water (gm) (W2-W1)-(W3-W1) 8.95 2.37 7.29 11.99 Wt. of oven dry soil (gm) (W3-W1) 51.36 45.58 85.51 53.96 Moisture Content (%)= 5.21 17.42 8.52 22.21

	Result Summa	ıry
Liquid Limit (WL)	16	%
Plastic Limit (Wp)	NP	
Plasticity Index (Ip)	_	2002-200

: 20.05.2013

: Binayak Swain

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

Date Of Testing

: 20.05.2013

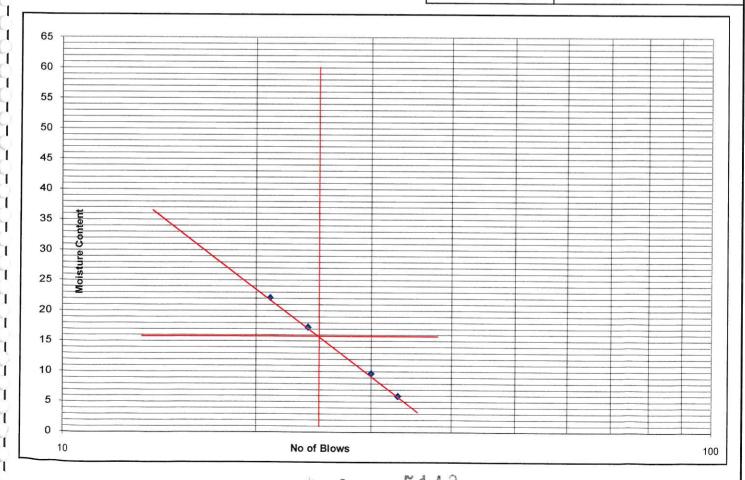
Sampled by

Location

BH-8(Yamuna River-Ambala)

Binayak Swain

[Depth


21.0m

Tested by

: D.Mohanty

Number of Blows	33	30	24	21	Plastic Limit
Container No.	T1	T2	T3	T4	
Container Weight (gm) (W1)	36.63	35.12	34.18	32.95	
Container + Wt. of wet soil (gm) (W2)	80.29	94.11	94.89	99.24	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	2.46	5.19	8.95	11.99	
Wt. of oven dry soil (gm) (W3-W1)	41.21	53.80	51.76	54.30	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	5.96	9.65	17.29	22.07	i

Result Summary Liquid Limit (WL) % Plastic Limit (Wp) NP Plasticity Index (Ip)

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

: 20.05.2013

Location

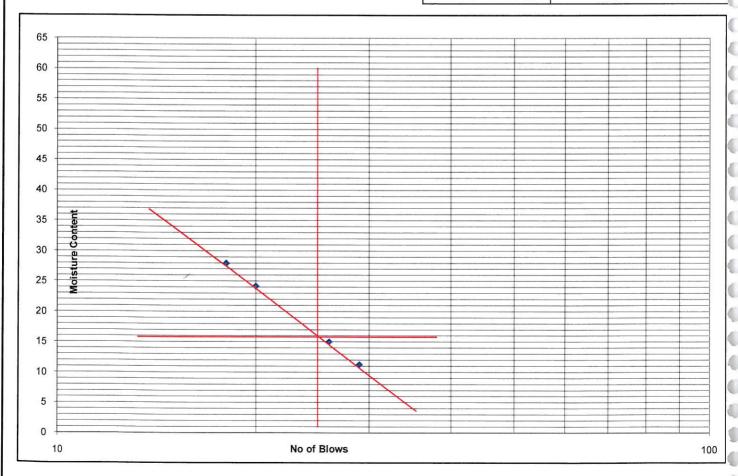
BH-8(Yamuna River-Ambala)

Sampled by

Date Of Testing

: Binayak Swain

Depth


24.0m

Tested by

: D.Mohanty

Number of Blows	26	29	18	20	Plastic Limit
Container No.	H1	H2	НЗ	H4	
Container Weight (gm) (W1)	31.45	32.28	35.85	33.65	
Container + Wt. of wet soil (gm) (W2)	84.81	95.31	99.92	100.20	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	6.97	6.39	13.98	12.95	
Wt. of oven dry soil (gm) (W3-W1)	46.39	56.64	50.09	53.60	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	15.02	11.28	27.91	24.15	

Result Summary Liquid Limit (WL) 16 % NP Plastic Limit (Wp) Plasticity Index (Ip)

Location

Depth

Arki Techno Consultants (India) Pvt.Ltd

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

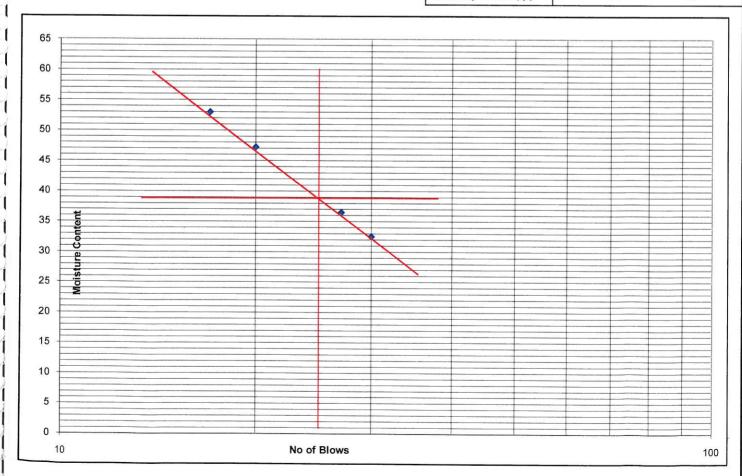
IS: 2720 (Part -5)

DFCC Client

Project Name G.I For 3 Nos. Important Bridges

Type of Sample

BH-8(Yamuna River-Ambala) Sampled by


30.0m Tested by

Date Of Testing : 20.05.2013

: Binayak Swain : D.Mohanty

Number of Blows	30	27	20	17	Plasti	c Limit
Container No.	A1	A2	A3	A4	A5	A6
Container Weight (gm) (W1)	31.25	32.36	34.74	35.59	30.17	33.33
Container + Wt. of wet soil (gm) (W2)	92.98	109.53	110.12	114.61	86.54	99.11
(Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	77.84	88.92
(Wt. Of water (gm) (W2-W1)-(W3-W1)	15.15	20.62	24.17	27.36	8.70	10.19
Wt. of oven dry soil (gm) (W3-W1)	46.59	56.56	51.20	51.66	47.67	55.59
[Moisture Content (%)= _[(W2-W1)-(W3-W1)]/(W3-W1) X 100	32.51	36.45	47.21	52.95	18.25	18.34

F	Result Summa	ary
Liquid Limit (WL)	39	%
Plastic Limit (Wp)	18	%
Plasticity Index (Ip)	21	%

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date Of Testing

: 20.05.2013

Location

. 011

Sampled by

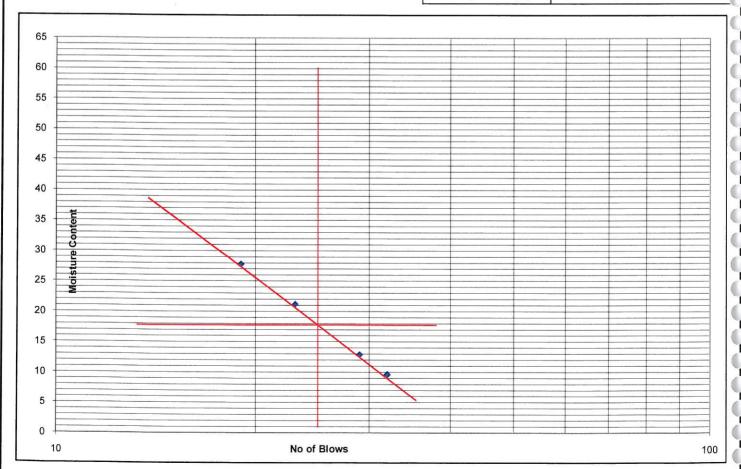
: Binayak Swain

Depth

BH-8(Yamuna River-Ambala)36.0m

Tested by

: D.Mohanty


Number of Blows	32	29	23	19	Plastic Limit
Container No.	Y1	Y2	Y3	Y4	
Container Weight (gm) (W1)	33.36	32.45	31.85	30.27	
Container + Wt. of wet soil (gm) (W2)	82.11	96.20	97.42	103.10	S. COMP.
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.27	7.29	11.47	15.85	
Wt. of oven dry soil (gm) (W3-W1)	44.48	56.47	54.09	56.98	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	9.61	12.90	21.21	27.81	

 Result Summary

 Liquid Limit (WL)
 18
 %

 Plastic Limit (Wp)
 NP

 Plasticity Index (Ip)
 _

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

Location

Depth

DFCC

Project Name

G.I For 3 Nos. Important Bridges

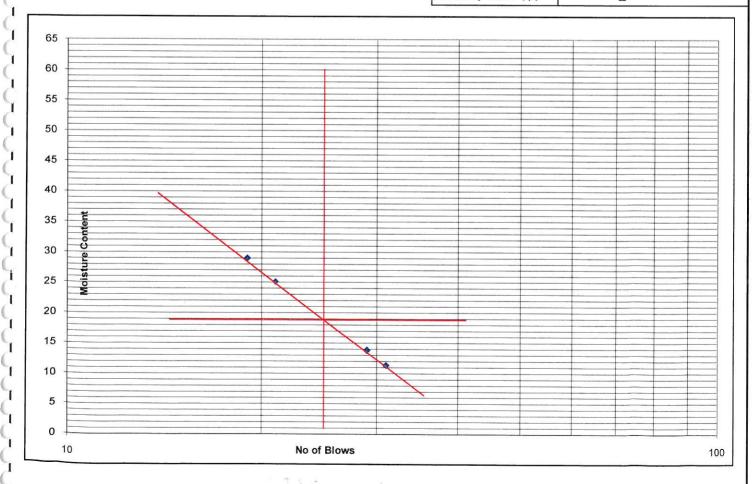
Type of Sample

BH-8(Yamuna River-Ambala) 42.0m

Date Of Testing

: 20.05.2013

Sampled by


: Binayak Swain

Tested by

: D.Mohanty

Number of Blows	29	31	21	19	Plastic Limit
Container No.	X1	X2	ХЗ	X4	
Container Weight (gm) (W1)	36.63	37.52	35.26	34.51	
Container + Wt. of wet soil (gm) (W2)	83.55	94.76	98.67	102.54	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	5.71	5.84	12.73	15.29	
Wt. of oven dry soil (gm) (W3-W1)	41.21	51.40	50.68	52.74	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	13.85	11.37	25.12	28.98	

	Result Summa	ary	
Liquid Limit (WL)	19	%	
Plastic Limit (Wp)	NP		
Plasticity Index (Ip)			

N 3/91, IRC Village, Bhubaneswar

DIFFERENTIAL FREE SWELL INDEX OF SOIL (D.F.S.)

AS PER IS: 2720 (PART - 40)

Client

: DFCC

Project Name

: G.I For 3 Nos. Important Bridges

Date Of Testing

20.05.2013

Type of Sample: SPT

Tested by

D.Mohanty

Location

: BH-8(Yamuna River-Ambala)

Sampled by

Binayak Swain

Depth

: 30.0m

Weight of Sample:

10gm

·SAMPLE NO.	VOLUME IN KEROSIN OIL Vk	VOLUME IN WATER Vd	SWELL (Vd-Vk)	SWELL INDEX = (Vd-Vk)/ (Vk)*100 (%)	AVERAGE SWELL %	SPECIFIC LIMIT
1	10	12.0	2.00	20		
2	10	11.5	1.50	15	15	50%
3	10	11.0	1.00	10		

Remarks:

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

DFCC

Project Name

: G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date Of Testing

: 20.05.2013

Binayak Swain

Location Depth

: BH-8(Yamuna River-Ambala)

Sampled by

Depth	: 1.5m	Tested by :	D.Mohanty
Sl. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	36.31	
3	Weight of bottle with soil and water W3 in gm	135.52	
4	Weight of bottle full of water W4 in gm	133.82	
5	Weight of dry soil (W2-W1)in gm	4.79	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	3.09	
7	Specific Gravity G = (5) / (6)	1.55	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date Of Testing

20.05.2013

Location

BH-8(Yamuna River-Ambala)

Sampled by

Binayak Swain

Depth

6 0m

Tested by

D.Mohanty

Берит	. 6.0111	rested by :	D.Ivionanty
SI. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	35.26	,
3	Weight of bottle with soil and water W3 in gm	134.10	
4	Weight of bottle full of water W4 in gm	132.76	
5	Weight of dry soil (W2-W1)in gm	3.74	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	2.40	
7	Specific Gravity G = (5) / (6)	1.56	

0

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date Of Testing

: 20.05.2013

Location

: BH-8(Yamuna River-Ambala)

Sampled by

: Binayak Swain

Depth

12.0m

Tested by

		Tested by .	D. Worlanty
SI. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	36.42	
3	Weight of bottle with soil and water W3 in gm	135.22	
4	Weight of bottle full of water W4 in gm	133.36	
5	Weight of dry soil (W2-W1)in gm	4.90	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	3.05	
7	Specific Gravity G = (5) / (6)	1.61	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date Of Testing

20.05.2013

Location

BH-8(Yamuna River-Ambala)

Sampled by

Binayak Swain

Depth

18 0m

Tested by

Depth	: 18.0m	Tested by :	D.Mohanty
SI. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	35.41	
3	Weight of bottle with soil and water W3 in gm	134.26	
4	Weight of bottle full of water W4 in gm	132.79	
5	Weight of dry soil (W2-W1)in gm	3.89	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	2.42	
7	Specific Gravity G = (5) / (6)	1.61	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample:

SPT

Date Of Testing : 20.05.2013

Location

: BH-8(Yamuna River-Ambala)

Sampled by

: Binayak Swain

Depth

27.0m

Tested by

			Billionanty
SI. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	36.24	
3	Weight of bottle with soil and water W3 in gm	135.42	
4	Weight of bottle full of water W4 in gm	133.69	
5	Weight of dry soil (W2-W1)in gm	4.72	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	2.99	
7	Specific Gravity G = (5) / (6)	1.58	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF SPECIFIC GRAVITY BY DENSITY BOTTLE METHOD AS PER IS: 2386 (Part -2)

Client

: DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample: SPT

Date Of Testing : 20.05.2013

Location

: BH-8(Yamuna River-Ambala)

Sampled by : Binayak Swain

Depth	: 42.0m	Tested by :	D.Mohanty
SI. No.	Observations	1	Remarks
1	Weight of density bottle W1 in gm	31.52	
2	Weight of bottle with dry soil in W2 gm	35.41	
3	Weight of bottle with soil and water W3 in gm	135.29	
4	Weight of bottle full of water W4 in gm	133.90	
5	Weight of dry soil (W2-W1)in gm	3.89	
6	Weight of equal volume of water(W2 - W1) - (W3 - W4) in gm	2.50	
7	Specific Gravity G = (5) / (6)	1.56	

S					ARKI TE	TECHN	ECHNO CONSULTANTS (I) PVT. LTD.	JLTANTS	(I) PVT.	LTD.					
ARMITECHNO	6					N 3/91	N 3/91, IRC Village, Bhubaneswar	le, Bhuban	eswar						
				DETERM	DETERMINATION OF		BULK DENSITY & MOISTURE CONTENT OF SOIL SAMPLE	MOISTURE	CONTENT	OF SOIL S	AMPLE				
Client		DFCC													
Project Name	••	G.I For 3 Nos.	G.I For 3 Nos. Important Bridges	səf											
Location		BH-8(Yamuna	BH-8(Yamuna River-Ambala)				Control of the Contro								
SI No.	BH No.	Depth in m	Type of Sample	Date of Testing	Weight of Container in gm	Diameter of Sample in cm	Length of Sample in cm	Volume of Sample in cc	Weight of Container + Wet Soil in gm	Weight of Container + Dry soil in gm	Weight of Dry soil in gm	Weight of water in gm	Moisture Content in %	Bulk Density in Dry Density in gm/cc	Dry Density in gm/cc
-		1,5	SPT	20.05.2013	62.34	3.8	2	79,39	212.39	201.94	139.60	10.44	7.48	1.89	1.76
е	(4.5	SPT	20.05.2013	60.71	3.8	2	79.39	204.41	192.64	131.93	11.77	8.92	1.81	1.66
5	eledn	10.5	SPT	20.05.2013	60.77	3.8	7	79.39	208.44	199.53	138.76	8.91	6.42	1.86	1.75
9	1Α-19≀	12.0	SPT	20.05.2013	64.84	3.8	2	79.39	214.89	204,59	139.75	10.30	7.37	1.89	1.76
7	riA sn	15.0	SPT	20,05.2013	65.31	3.8	2	79,39	215.36	204.23	138,92	11.13	8.01	1.89	1.75
∞ -	րաբչ	21.0	SPT	20.05.2013	60.5	3.8	2	79.39	216.10	205.69	145,19	10.41	7.17	1.96	1.83
6)8-H8	27.0	SPT	20.05.2013	61.31	3.8	7	79.39	218.50	208.37	147.06	10.13	68'9	1.98	1.85
10		30.0	SPT	20.05.2013	62.29	3.8	7	79.39	219,48	194.47	132.18	25.01	18,92	1.98	1.66
.e.*;		42.0	SPT	20.05.2013	62.29	3.8	7	79.39	219.48	206.73	144.44	12.75	8.83	1.98	1.82

Appendix -IV

(Test Results of Dr.Ghuman and Gupta Geotech Consultants)

ARKI TECHNOCONSULTANTS (INDIA) PVT.LTD.

ARKITECHNO

- 5161

DEDICATED FREIGHT CORRIDOR CORPORATION OF INDIA LIMITED

(A Govt. Of India Enterprise)

Old Railway Colony (Near Anand Market), Ambala Cantt-133001.

Telefax: 0171-2612412

No: UMB/EN/Tender/GI

Date: 27.12.2013

M/S Arkitechno Consultants (India) Pvt. Ltd. Plot No. N-3/91, IRC Village, Nayapalli, Bhubanswar-751015

SUB: Conducting Geotechnical Investigation; preparation of GAD(General Arrangement Drawings), preparation of bill of quantities for 3 Nos. important bridges (Namely on Yamuna River, Markanda River and Tangri River) between Talheri Buzurg- Sanewal section in c/w construction of Eastern Dedicated Freight Corridor.

Ref: This Office letter no. UMB/EN/Tender/GI Dated: 13.11.2013.

In reference to above meeting between representative of DFCCIL and Arkitechno Consultants (India) Pvt. Ltd was held on dated 28.11.2013 in Chamber of Dy.CPM/Engg/DFCCIL, Ambala. It was decided jointly that sample from two new bore holes would be taken by Arkitechno Consultants (India) Pvt. Ltd. and these will be get tested from independent laboratory for verification of silt factor for all three rivers. The expenditure for the above testing will be born by Arkitechno Consultants (India) Pvt. Ltd.

Now samples have been taken by Arkitechno Consultants (India) Pvt. Ltd. These sample have been sent to Dr Ghuman & Gupta Geotech consultants Chandigarh for testing. The details of sample is given as below:-

1.	Yamuna River-	Pier-3	5 nos
		Pier-5	5 Nos
2.	Markanda River-	Pier-1	5 Nos
		Pier-3	5 Nos
3.	Tangri River-	Pier-1	4 Nos
		Pier-2	4 Nos

The correspondence address of Dr Ghuman & Gupta Geotech Consultants, SCO-64-65, Basement, Sector-17A, Chandigarh (0172-2707211). So that testing can done early in the interest of work.

This information is being sent to you for further necessary action please.

(Nehaluddin)

Asst. Project Manager DFCCIL, Ambala Cantt.

A TEAM IN PURSUIT OF EXCELLENCE

gggc

Dr. GHUMAN AND GUPTA GEOTECH CONSULTANTS

Test House Headed By Dr. M. S. Ghuman
Ph.D. (Geotechnical Engg.) Roorkee
Ex. Prof. & Head of Civil Engg., Pb. Engineering College, Chd. cum
Director, Technical Education (U.T.) Chandigarh

Experts for :

CHD 2707211 (O) CHD 2706465 (O) Telefax 4653641 (O) MOHALI 4666081 (O)

E-mail: gggc_laboratory@yahoo.co.in
Office cum Laboratory
S.C.O. 64 - 65 (Basement)
Sector 17-A, Chandigarh

& F-81, Phase VII,

Industrial Focal Point, Mohali (Pb.)

Dated: 06.02.2014

* Test House Approved by PUDA, PWSSB.

* PPHC, HPHC, MES, C-DOT, CPWD, LIC, AIRFORCE Airport Authority of India.

- * Soil investigations for Buildings, Bridges, OHRs, Earth Dams, Irrigations Structures, Towers, Roads, Industrial Buildings etc.
- * Evaluation of Dynamic Elastic Properties and Analysis of Machine Foundations and Soil Stabilization Problems.
- * Plain Table Surveying, Levelling, Contouring and Demarcation.
- Physical and Chemical Testing of Cement, Chemical Analysis of Mortar and Concrete, Cube, Mix Design of Cement Concrete, Coarse and Fine Aggregates, Bricks, Marble, Kota Stone, Glazed Tiles, Terrazo Tiles, Water, Particle Board, Flush Door Shutters, G.I. Pipes, Barbed Wire, Coatings, Steel Sections, CBR, MDD and DBD of Compacted Earth, Non Destructive Concrete hammer test, Roof Deflection test, Highway Bitumionous Mix Design and Cement Concrete Pavernents etc.

Ref.No.GGGC/D-5172/2013-2014

Assistant Project Manager/Engg-II. DFCCIL. Ambala Cantt.

SUBJECT: DETERMINATION OF THE SILT FACTORS OF SOIL SAMPLES SUPPLIED IN LAB. FOR

THREE RIVER NAMELY YAMUNA, MARKANDA AND TANGRI.

Sample Particular: Twenty seven soil samples for the bridges of Yamuna, Markanda and Tangri

were supplied in the laboratory for calculation of silt factors.

TEST RESULTS

Sr. No.	Description of Samples	Depth	Silt Factors	
1.	Tangri, Pier-1, Type Clay Silt	2.0 m	0.82	
2.	Tangri, Pier-1, Type Silty Sand	4.0 m	0.89	
3	Tangri, Pier-1, Type Silty Sand	6.0 m	0.71	
4.	Tangri, Pier-1, Type Fine Sand	7.0 m	0.79	
5.	Tangri, Pier-2	2.0 m	1.14	
6.	Tangri, Pier-2	2.0 m	0.73	
7	Tangri, Pier-2	4.0 m	0.92	
8.	Tangri, Pier-2	8.0 m	0.80	
9.	Tangri, Pier-2	10.0 m	0.84	
10.	Markanda Pier-1. Type Fine Sand	1.0 m	0.72	
11.	Markanda Pier-1, Type Fine Sand	3.0 m	0.86	
12.	Markanda Pier-1, Type Fine Sand	5.0 m	0.96	
13.	Markanda Pier-1. Type Fine Sand	7.0 m	1.13	
14.	Markanda Pier-3, Type Silty Clay	1.0 m	1.12	

Contd.2/p..

A TEAM IN PURSUIT OF EXCELLENCE

gggc

Dr. GHUMAN AND GUPTA GEOTECH CONSULTANTS

Test House Headed By Dr. M. S. Ghuman Ph.D. (Geotechnical Engg.) Roorkee Ex. Prof. & Head of Civil Engg., Pb. Engineering College, Chd. cum Director, Technical Education (U.T.) Chandigarh

Experts for :

CHD 2707211 (O) CHD 2706465 (O) Telefax 4653641 (O) MOHALI 4666081 (O)

E-mail: gggc_laboratory@yahoo.co.in
Office cum Laboratory
S.C.O. 64 - 65 (Basement)
Sector 17-A, Chandigarh

F-81, Phase VII,

Industrial Focal Point, Mohali (Pb.)

Test House Approved by PUDA, PWSSB, * PPHC, HPHC, MES, C-DOT, CPWD, LIC, AIRFORCE Airport Authority of India.

- $\bigstar \ \, \text{Soil investigations for Buildings, Bridges, OHRs, Earth Dams, Irrigations Structures, Towers, Roads, Industrial Buildings etc.}$
- * Evaluation of Dynamic Elastic Properties and Analysis of Machine Foundations and Soil Stabilization Problems.
- * Plain Table Surveying, Levelling, Contouring and Demarcation.
- Physical and Chemical Testing of Cement, Chemical Analysis of Mortar and Concrete, Cube, Mix Design of Cement Concrete, Coarse and Fine Aggregates, Bricks, Marble, Kota Stone, Glazed Tiles, Terrazo Tiles, Water, Particle Board, Flush Door Shutters, G.I. Pipes, Barbed Wire, Coatings, Steel Sections, CBR, MDD and DBD of Compacted Earth, Non Destructive Concrete hammer test, Roof Deflection test, Highway Bitumionous Mix Design and Cement Concrete Pavements etc.

..2..

TEST RESULTS

Sr. No.	Description of Samples	Depth	Silt Factors	
15.	Markanda Pier-3, Type Silty Clay	3.0 m	0.64	
16.	Markanda Pier-3, Type Fine Sand	5.0 m	0.04	
17.	Markanda Pier-3, Type Fine Sand	7.0 m	0.95	
18.	Yamuna Pier-3, Type Fine Sand	2.0 m	0.92	
19.	Yamuna Pier-3, Type Fine Sand	4.0 m	0.92	
20.	Yamuna Pier-3, Type Fine Sand	6.0 m	0.73	
21.	Yamuna Pier-3, Type Fine Sand	8.0 m	0.86	
22.	Yamuna Pier-3, Type Fine Sand	10.0 m	0.92	
23.	Yamuna Pier-5, Type Fine Sand	2.0 m	0.71	
24.	Yamuna Pier-5, Type Fine Sand	4.0 m	0.85	
25.	Yamuna Pier-5, Type Fine Sand	6.0 m	0.75	
26.	Yamuna Pier-5, Type Fine Sand	8.0 m	0.80	
27.	Yamuna Pier-5, Type Fine Sand	10.0 m	1.28	

Er. RAJIV K. GUPTA
B.E. (CIML) (HONS.) (LMIGS), MIE
DIRECTOR CUM
CONSULTING ENGINEER (GGGC)

Table: 1 Tangri, Pier-1, Depth = 2.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	1.6	1.42
0.600-0.300	0.450	26.0	11.70
0.300-0.150	0.225	17.6	3.96
0.150-0.075	0.1125	35.8	4.03
0.075 and below	0.0375	19.0	0.71
		100	21.82

$$d_{m} = \begin{array}{c} 21.82 \\ ----- \\ 100 \end{array} = 0.2182$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2182}$ = 0.82

Table: 2 Tangri, Pier-1, Depth = 4.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.4	1.42
2.36-1.18	1.770	0.6	1.06
1.18-0.600	0.890	4.0	3.56
0.600-0.300	0.450	12.4	5.58
0.300-0.150	0.225	49.4	11.12
0.150-0.075	0.1125	20.8	2.34
0.075 and below	0.0375	12.4	0.47
		100	25.55

$$d_m = \frac{25.55}{100} = 0.2555$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2555}$ = 0.89

Table: 3 Tangri, Pier-1, Depth = 6.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	3.2	1.44
0.300-0.150	0.225	42.2	9.50
0.150-0.075	0.1125	42.0	4.73
0.075 and below	0.0375	12.6	0.47
		100	16.14

$$d_m = \frac{16.14}{100} = 0.1614$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.1614}$ = 0.71

Table: 4 Tangri, Pier-1, Depth = 7.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.2	0.35
1.18-0.600	0.890	0.4	0.36
0.600-0.300	0.450	2.6	1.17
0.300-0.150	0.225	67.6	15.21
0.150-0.075	0.1125	25.2	2.84
0.075 and below	0.0375	4.0	0.15
		100	20.08

$$d_{m} = \frac{20.08}{100} = 0.2008$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2008}$ = 0.79

Table: 5 Tangri, Pier-2, Depth = 2.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	32.6	29.01
0.600-0.300	0.450	15.6	7.02
0.300-0.150	0.225	12.8	2.88
0.150-0.075	0.1125	23.6	2.66
0.075 and below	0.0375	15.4	0.58
		100	42.15

$$d_m = \frac{42.15}{100} = 0.4215$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.4215}$ = 1.14

Table: 6 Tangri, Pier-2, Depth = 2.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	0.4	0.18
0.300-0.150	0.225	52.8	11.88
0.150-0.075	0.1125	42.0	4.73
0.075 and below	0.0375	4.8	0.18
		100	16.97

$$d_m = \frac{16.97}{100} = 0.1697$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.1697}$ = 0.73

Table: 7 Tangri, Pier-2, Depth = 4.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
20-16	18.0	0.0	0.00
16-12.5	14.25	0.0	0.00
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.8	5.90
4.75-2.36	3.555	2.0	7.11
2.36-1.18	1.770	1.0	1.77
1.18-0.600	0.890	3.4	3.03
0.600-0.300	0.450	1.6	0.72
0.300-0.150	0.225	12.0	2.70
0.150-0.075	0.1125	37.8	4.25
0.075 and below	0.0375	41.4	1.55
		100	27.03

$$d_m = \frac{27.03}{100} = 0.2703$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2703}$ = 0.92

Table : 8 Tangri, Pier-2, Depth = 8.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	6.2	2.79
0.300-0.150	0.225	67.4	15.17
0.150-0.075	0.1125	25.0	2.81
0.075 and below	0.0375	1.4	0.05
		100	20.82

$$d_{m} = \frac{20.82}{100} = 0.2082$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2082}$ = 0.80

Table: 9 Tangri, Pier-2, Depth = 10.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	1.0	0.89
0.600-0.300	0.450	6.6	2.97
0.300-0.150	0.225	75.0	16.88
0.150-0.075	0.1125	15.4	1.73
0.075 and below	0.0375	2.0	0.08
		100	22.55

$$d_m = \begin{array}{c} 22.55 \\ ----- = 0.84 \\ 100 \end{array}$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2255}$ = 0.84

Table: 10 Markanda Pier-1, Depth = 1.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	7.2	3.24
0.300-0.150	0.225	31.0	6.98
0.150-0.075	0.1125	57.8	6.50
0.075 and below	0.0375	4.0	0.15
		100	16.87

$$d_m = \frac{16.87}{100} = 0.1687$$

Silt Factor =
$$f = 1.76 \sqrt{d_m} = 1.76 \sqrt{0.1687} = 0.72$$

Table: 11 Markanda Pier-1, Depth = 3.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	14.4	6.48
0.300-0.150	0.225	71.4	16.07
0.150-0.075	0.1125	12.0	1.35
0.075 and below	0.0375	2.2	0.08
		100	23.98

$$d_m = \frac{23.98}{100} = 0.2398$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.2398}$ = 0.86

Table : 12 Markanda Pier-1, Depth = 5.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	2.6	4.60
1.18-0.600	0.890	2.0	1.78
0.600-0.300	0.450	16.0	7.20
0.300-0.150	0.225	64.8	14.58
).150-0.075	0.1125	12.8	1.44
0.075 and below	0.0375	1.8	0.07
		100	29.67

$$d_m = \frac{29.67}{100}$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2967}$ = 0.96

Table: 13 Markanda Pier-1, Depth = 7.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	1.6	5.69
2.36-1.18	1.770	7.8	13.81
1.18-0.600	0.890	3.0	2.67
0.600-0.300	0.450	9.6	4.32
0.300-0.150	0.225	56.6	12.74
0.150-0.075	0.1125	15.6	1.76
0.075 and below	0.0375	5.8	0.22
		100	41.21

$$d_m = \frac{41.21}{100} = 0.4121$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.4121}$ = 1.13

Table: 14 Markanda Pier-3, Depth = 1.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
 1.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	14.0	24.78
.18-0.600	0.890	5.8	5.16
0.600-0.300	0.450	7.2	3.24
.300-0.150	0.225	12.4	2.79
.150-0.075	0.1125	30.6	3.44
0.075 and below	0.0375	30.0	1.13
	***************************************	100	40.54

$$d_m = \frac{40.54}{100} = 0.4054$$

Silt Factor =
$$f = 1.76 \sqrt{d_m} = 1.76 \sqrt{0.4054} = 1.12$$

Table: 15 Markanda Pier-3, Depth = 3.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	1.0	0.45
0.300-0.150	0.225	23.6	5.31
0.150-0.075	0.1125	59.4	6.68
0.075 and below	0.0375	16.0	0.60
		100	13.04

$$d_m = \frac{13.04}{100} = 0.1304$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.1304}$ = 0.64

Table : 16 Markanda Pier-3, Depth = 5.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36 2.36-1.18 1.18-0.600 0.600-0.300 0.300-0.150 0.150-0.075 0.075 and below	3.555 1.770 0.890 0.450 0.225 0.1125 0.0375	0.0 2.4 4.6 17.2 55.4 16.6 3.8	0.00 4.25 4.09 7.74 12.47 1.87 0.14
		100	30.56

$$d_{m} = \frac{30.56}{100} = 0.3056$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.3056}$ = 0.97

Table: 17 Markanda Pier-3, Depth = 7.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	2.6	4.60
1.18-0.600	0.890	1.6	1.42
0.600-0.300	0.450	19.0	8.55
0.300-0.150	0.225	54.0	12.15
0.150-0.075	0.1125	16.8	1.89
0.075 and below	0.0375	6.0	0.23
		100	28.84

$$d_m = \frac{28.84}{100} = 0.2884$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2884}$ = 0.95

Table: 18 Yamuna Pier-3, Depth = 2.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10 10-4.75 4.75-2.36 2.36-1.18 1.18-0.600 0.600-0.300 0.300-0.150 0.150-0.075	11.25 7.375 3.555 1.770 0.890 0.450 0.225 0.1125	0.0 0.0 0.0 0.0 0.1 24.0 68.4 6.1	0.00 0.00 0.00 0.00 0.09 10.80 15.39 0.69
0.075 and below	0.0375	1.4 100	0.05 27.02

$$d_m = \frac{27.02}{100} = 0.2702$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2702}$ = 0.92

Table: 19 Yamuna Pier-3, Depth = 4.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.2	1.18
0.600-0.300	0.450	28.4	12.78
0.300-0.150	0.225	59.0	13.28
0.150-0.075	0.1125	9.4	1.06
0.075 and below	0.0375	3.0	0.11
		100	27.41

$$d_m = \begin{array}{c} 27.41 \\ ---- = 0.2741 \\ 100 \end{array}$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2741}$ = 0.92

Table : 20 Yamuna Pier-3, Depth = 6.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.8	0.71
0.600-0.300	0.450	12.8	5.76
0.300-0.150	0.225	30.8	6.93
0.150-0.075	0.1125	25.0	2.81
0.075 and below	0.0375	30.6	1.15
		100	17.36

$$d_{m} = \frac{17.36}{100}$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.1736}$ = 0.73

Table: 21 Yamuna Pier-3, Depth = 8.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
 12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.0	0.00
0.600-0.300	0.450	18.4	8.28
0.300-0.150	0.225	61.4	13.82
0.150-0.075	0.1125	15.2	1.71
0.075 and below	0.0375	5.0	0.19
		100	24.00

$$d_m = \frac{24.00}{100} = 0.2400$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2400}$ = 0.86

Table: 22 Yamuna Pier-3, Depth = 10.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.6	0.53
0.600-0.300	0.450	27.2	12.24
0.300-0.150	0.225	58.6	13.19
0.150-0.075	0.1125	12.2	1.37
0.075 and below	0.0375	1.4	0.05
		100	27.38

$$d_m = \frac{27.38}{100} = 0.2738$$

Silt Factor =
$$f = 1.76 \sqrt{d_m} = 1.76 \sqrt{0.2738} = 0.92$$

Table : 23 Yamuna Pier-5, Depth = 2.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	0.2	0.18
0.600-0.300	0.450	8.4	3.78
0.300-0.150	0.225	35.6	8.01
0.150-0.075	0.1125	31.8	3.58
0.075 and below	0.0375	24.0	0.90
		100	16.45

$$d_{m} = \frac{16.45}{100}$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.1645}$ = 0.71

Table: 24 Yamuna Pier-5, Depth = 4.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	5.6	4.98
0.600-0.300	0.450	14.8	6.66
0.300-0.150	0.225	30.4	6.84
0.150-0.075	0.1125	38.0	4.28
0.075 and below	0.0375	11.2	0.42
		100	23.18

$$d_{m} = \frac{23.18}{100} = 0.2318$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2318}$ = 0.85

Table: 25 Yamuna Pier-5, Depth = 6.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.00
10-4.75	7.375	0.0	0.00
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.1	0.18
1.18-0.600	0.890	3.0	2.67
0.600-0.300	0.450	4.4	1.98
0.300-0.150	0.225	38.6	8.69
0.150-0.075	0.1125	35.0	3.94
0.075 and below	0.0375	18.9	0.71
		100	18.17

$$d_m = \frac{18.17}{100} = 0.1817$$

Silt Factor = f = 1.76
$$\sqrt{dm}$$
 = 1.76 $\sqrt{0.1817}$ = 0.75

Table: 26 Yamuna Pier-5, Depth = 8.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	11.25	0.0	0.0
10-4.75	7.375	0.0	0.0
4.75-2.36	3.555	0.0	0.0
2.36-1.18	1.770	0.0	0.0
1.18-0.600	0.890	1.0	0.89
0.600-0.300	0.450	13.8	6.21
0.300-0.150	0.225	41.2	9.27
0.150-0.075	0.1125	34.0	3.83
0.075 and below	0.0375	10.0	0.38
		100	20.58

$$d_m = \frac{20.58}{100} = 0.2058$$

Silt Factor = f = 1.76
$$\sqrt{d_m}$$
 = 1.76 $\sqrt{0.2058}$ = 0.80

Table: 27 Yamuna Pier-5, Depth = 10.0 m

Size size (mm) (1)	Avge. Sieve Size (mm) (2)	%age Weight retained on lower sieve size (3)	Product of columns (2 & 3)
12.5-10	 11.25	0.0	0.00
10-4.75	7.375	3.6	26.55
4.75-2.36	3.555	0.0	0.00
2.36-1.18	1.770	0.0	0.00
1.18-0.600	0.890	3.6	3.20
0.600-0.300	0.450	24.2	10.89
0.300-0.150	0.225	46.0	10.35
0.150-0.075	0.1125	18.6	2.09
0.075 and below	0.0375	4.0	0.15
		100	53.23

$$d_m = \frac{53.23}{100} = 0.5323$$

Silt Factor = f = 1.76 $\sqrt{d_m}$ = 1.76 $\sqrt{0.5323}$ = 1.28

EI, RAJIV K. GUPTA
B.E. (CIVIL) (HONS.) (LIMIGS), MIE
DIRECTOR CUM
CORSULTING ENGINEER (GGGC)

	Appendix-A			
YAMUNA RIVER				
Bore Hole No	Depth (m)	Silt Factor		
	1.5	2.26		
	3.0	2.39		
BH-1(A2)	4.5	2.35		
	6.0	2.33		
	10.5	2.33		
	1.5	2.15		
	3.0	2.15		
211 2/24)	4.5	2.16		
BH-2(P4)	6.0	2.19		
	7.5	2.18		
	12.0	2.34		
	1.5	2.24		
	3.0	2.24		
	4.5	2.28		
BH-3(P5)	6.0	2.25		
	9.0	2.35		
	10.5	2.38		

	1.5	2.28
	3.0	2.32
BH-4(A1)	4.5	2.28
BH-4(A1)	6.0	2.29
	7.5	2.39
	10.5	2.36
	1.5	2.19
	3.0	2.22
BH-5(P6)	4.5	2.2
	6.0	2.22
	9.0	2.18
	1.5	2.19
	3.0	2.19
BH-6(P3)	4.5	2.22
	6.0	2.2
	1.5	2.22
	3.0	2.2
DU 7/00)	4.5	2.21
BH-7(P2)	6.0	2.17
	9.0	2.17
	12.0	2.32
	1.5	2.22
	3.0	2.17
BH-8(P1)	4.5	2.21
	6.0	2.18
	10.5	2.29

APPENDIX-B		
	YAMUNA RIVER	
Bore Hole No	Depth (m)	Silt Factor
BH-1(A2)	1.5	2.26
BH-2(P4)	1.5	2.15
BH-3(P5)	1,5	2.24
BH-4(A1)	1.5	2.28
BH-5(P6)	1.5	2.19
BH-6(P3)	1.5	2.19
BH-7(P2)	1.5	2.22
BH-8(P1)	1.5	2.22

(

0

0

00000000000000