(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

1.606 Hr

96.388 Mins

(a) $t_o h Ratio = 0.43$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

1 h Ratio

1.254

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

= 10.24 cm

102.36 mm

(iv) Rainfall Intensity, I = R₅₀ (t_c)

63.72 mm / Hr

(iv) Design Flood Discharge :

 Q_{50} = 0.278 x C x I x A

Q₅₀ = 3.890 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.549	Sq. Km	54.90 Hectares
Length of path from Toposheet,	L	= .	1.703	Km	
Difference in Levels from Toposheet,	н	=	1.25	m	
Maximum Rainfall, F				=	240.00 mm
Duration of Storm, T				-	
One Hour Rainfall,		l _o =(F/T)x(T	+1\//1+1\		24 Hrs
Time of Concentration (IRC - SP : 13 - 1998	Clause : 4.73		•	= 0.005	125.00 mm / Hr
	, Clause : 4.7)		$t_c = (0.87 \times L^3 /$	H) 0.383	1.61 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1 +$	t _o)}	=	95.84 mm/Hr
Discharge, Q	= 0.028 x P x f	' × A × I _c			
P = Coefficient of Runoff (For clayey soils, light	ghtly cultivated (or covered)		0.4	
f = Fraction of maximum point intensity at cer	ntre of storm, de	pends on area		0.95	
A = Catchment Area in Hectares				54.90 Hectares	•
I _c = Critical Intensity of Rainfall				9.584 cm / Hr	•
Q = Maximum Discharge		*		5.598 Cumecs	

3 <u>Discharge by Dicken's Formula:</u>

		Q	≈	C x M ^{3/4}
	where,	Q	m	the peak run-off in Curnecs
	•	М	=	the catchment area in Sq Km
		C	. =	11 - 14, where the annual rainfall is 60 - 120 cm
		-		14 - 19 in Madhya Pradesh
				22 in Western Ghats
		С		16 (adopted in present case)
		М	=	0.549 Sq Km
Непсе,		Q	. = .	10.205 Cumecs

Design Discharge:

(As per IRC - SP: 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted			
The difference is beyond 50% of the next max	ximum discharg	je ·	
Next Maximum Discharge			5.598 Cumecs
Maximum Discharge			10.205 Cumecs
Discharge by Dicken's Formula			10.205 Cumecs
Discharge by Rational Formula (IRC approar	ch)		5.598 Cumecs
Discharge by Rational Formula (RBF - 16 Re			3.890 Cumecs

5.598 Curnecs

Linear Waterway:

Average Bed Level 266.45 m HFL as per site condition & local inquiry 268.20 m So, Total Depth of Water, 1.75 m

Provided Two RCC BOX of 3 x 2 m span at proposed bridge site location.

Clear Waterway (provided), 6.00 m Total Area, 10.500 m2 Velocity, Q/A 0.800 m/sec

Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

10.916 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause: 703.2,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

D_b = Design discharge per metre width

1.82 Cumecs / m

K_{sf} = Silt factor

1.00

d_{sm}= 2.00 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.) (For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.996 m

Maximum Scour Level:

Maximum Scour Level

HFL - Maximum Scour Depth

265.21 m

Existing Bridge No - 343 Location - KM 303/25-27

Proposed Bridge No - 078 Location - CH: 112930

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

343

Name of Nallah / Stream / River:

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No :

53 B / 6

Scale : Location :

1:50,000

Location :

303/25-27

Latitude :

30⁰33'47"

Longitude :

76⁰28'44"

Catchment Area,

Δ

0.658 Sq Km

Length of Longest Stream course from source to the bridge site ,

L

1.669 Km

Height of Farthest Point ,

H1

267.47 m

Height of Point of Interest,

H2

266.37 m

Height of the Farthest Point above Point of Interest along the river ,

Н

1.10 m

Average Bed Level

266.37 m

1 Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where,

 $Q_{50} = 50$ years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

0369

0.4

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

1.644 Hr

98.654 Mins

(a) $t_c h Ratio = 0.43$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

1 h Ratio

1.263

(d)

(1) $R_{50}(24)$ = 24.00 cm

(ii) $R_{50}(1)$ = 0.34 x $R_{50}(24)$ [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_0)$ = $K \times R_{50}(1)$

10.31 cm

103.09 mm

(iv) Rainfall Intensity, I = $R_{50}(t_c)$

= 62.70 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 4.586 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	= '	0.658 Sc	ı. Km	65.78 Hectares
Length of path from Toposheet,	L	=	1.669 Kr	N	
Difference in Levels from Toposheet,	н	= .	1.10 m		
Maximum Rainfall, F	•			=	240.00 mm
Duration of Storm, T	-			<u></u>	24 Hrs
One Hour Rainfall,		l _o =(F/T)x(T+1)/	//1+1)		
Time of Concentration (IRC - SP : 13 - 19	98. Clause : 4.7 \		0.87 x L ³ /H)		125.00 mm/Hr
Critical Rainfall Intensity.	,, ,	ι _c = ι _c x [2/(1+t _c)]	U.07 X L 7 H)		1.65 Hrs
		10-10 X[2)(1+1 ₀)]		2	94.31 mm/Hr
Discharge,	Q = 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils,	lightly cultivated of	or covered)		0.4	
f = Fraction of maximum point intensity at o		•		0.95	
A = Catchment Area in Hectares				65.78 Hectares	
I _c = Critical Intensity of Rainfall				9.431 cm / Hr	
Q = Maximum Discharge				6.600 Cumecs	

3 Discharge by Dicken's Formula:

		Q	112	C x M ^{3/4}
	where,	Q	<u></u>	the peak run-off in Cumecs
		M	=	the catchment area in Sq Km
		С	· =	11 - 14, where the annual rainfall is 60 - 120 cm
				14 - 19 in Madhya Pradesh
				22 in Western Ghats
	+ - t	c .	<u>-</u>	16 (adopted in present case)
		М	= ·	0.658 Sq Km
Нелсе,		Q	. =	11.686 Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted Q =	9.901 Cumecs
The difference is beyond 50% of the next maximum discharge	
Next Maximum Discharge	6.600 Cumecs
Maximum Discharge	11.686 Cumecs
	•
Discharge by Dicken's Formula	11.686 Cumecs
Discharge by Rational Formula (IRC approach)	6.600 Cumecs
Discharge by Rational Formula (RBF - 16 Report)	4.586 Cumecs

5 <u>Linear Waterway:</u>

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

12.871 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

 $D_b = Design discharge per metre width$

2.15 Cumecs / m

 K_{sf} = Silt factor

1.00

d_{am} =

2.23 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{am}

So, Maximum Scour Depth

3.343 m

7 Maximum Scour Level:

Maximum Scour Level = HFL - Maximum Scour Depth

265.43 m

Existing Bridge No – 344 Location – KM 304/1-3

Proposed Bridge No – 079 Location – CH: 113176

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge :

344

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale :

1:50,000

Location:

304/1-3

Latitude :

30°33'51"

Longitude :

76⁰28'37"

Catchment Area,

A

15.543 Sq Km

Length of Longest Stream course from source to the bridge site ,

ı

7.382 Km

Height of Farthest Point,

H1

273.44 m

Height of Point of Interest.

H2

267.44 m

Height of the Farthest Point above Point of Interest along the river ,

н

6.00 m

Average Bed Level

267.44 m

1 Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where,

 Q_{50} = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0,6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $= [L^3/H]^{0.345}$

4.267 Hr

256.005 Mins

(a) $t_o h Ratio = 0.54$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

1 h Ratio

= 1.574

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

= 12.84 cm

128.40 mm

(iv) Rainfall Intensity, I = R_{50} (t_e)

30.09 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 52.013 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	<u></u>	15.543 S	g. Km	1554.31 Hectares
Length of path from Toposheet,	L	· ••••	7.382 K	m	
Difference in Levels from Toposheet,	Н	=	6.00 m		
Maximum Rainfall, F				=	240.00 mm
Duration of Storm, T			·	<u>~</u>	24 Hrs
One Hour Rainfall,		l _o =(F/T)x(T+1)/	(1+1)		125.00 mm / Hr
Time of Concentration (IRC - SP: 13 - 1998	B, Clause : 4.7)	t _e = (0.87 x L ³ /H	0.385	4.78 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1+t_c)]$, '=	43.22 mm / Hr
Discharge,	Q = 0.028 x P x f	×A×I _c			
P = Coefficient of Runoff (For clayey soils, I	ightly cultivated (or covered)		0.400	
f = Fraction of maximum point intensity at ce	ntre of storm, de	pends on area		0.98	•
A = Catchment Area in Hectares				1554.31 Hectares	
I _c = Critical Intensity of Rainfall				4.322 cm / Hr	

73.728 Cumecs

3 Discharge by Dicken's Formula:

Q = Maximum Discharge

		Q	=	C x M 3/4	
	where,	Q	- . =	the peak rur	n-off in Cumecs
		M ·	=	the catchme	ent area in Sq Km
		C	. =	11 - 14, whe	ere the annual rainfall is 60 - 120 cm
•			-	14 - 19 in M	adhya Pradesh
				22 in Weste	rn Ghats
	4.3				. *
-		С	=	16	(adopted in present case)
		M	. =	15.	543 Sq Km
•				,	
Hence,		Q	· =	125.	249 Cumecs

4 Design Discharge:

(As per IRC - SP: 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Discharge by Rational Formula (RBF - 16 Re	eport)		52.013 Cumecs
Discharge by Rational Formula (IRC approach	th)		73.728 Cumecs
Discharge by Dicken's Formula			125.249 Curnecs
Maximum Discharge	•		125.249 Cumecs
Next Maximum Discharge			73.728 Cumecs
The difference is beyond 50% of the next max	imum discharg	e -	
Hence, Design Discharge adopted	Q	#	110.592 Cumecs

5 Linear Waterway:

Average Bed Level = 287.44 m

HFL as per site condition & local inquiry = 268.64 m

So, Total Depth of Water, H = 1.20 m

Provide 8 spans of 6.1 m at bridge site location.

 Clear Waterway (provided),
 L
 =
 48.80 m

 Total Area,
 A
 =
 58.658 m2

 Velocity ,
 V
 =
 Q / A

= 1.885 m/sec

6 Vertical Clearance:

Design Discharge Q = 110.592 Cumecs

(i) Vertical Clearance as per IRC 5 - 1998 Cl. 106.2.1 = 0.900 m

(ii) Vertical Clearance as per Railway Code for sub-structure Cl. 4.8 = 0.778 m

So, Vertical Clearance adopted = 0.900 m

Minimum Soffit Level = HFL + Vertical Clearance = 269.542 m

7 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

143.769 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2/K_{sf})^{1/3}$

D_b = Design discharge per metre width

2.95 Cumecs / m

 K_{sf} = Silt factor

1.00

d.__=

2.75 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

= 1.5 x d_{sm}

So, Maximum Scour Depth

4.131 m

8 Maximum Scour Level:

Maximum Scour Level = HFL - Maximum Scour Depth

264.51 m

PROPOSED BRIDGE NO. BR.079(PRL_344)

Rly Km. 304/2-4, DFCC Chainage 113176

(Upstream at 500m)

(Upstream at 1020m)

CROSS SECTION

CROSS SECTION

Existing Bridge No – 345 Location – KM 304/10-12

Proposed Bridge No – 081 Location – CH: 113413

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

345

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No :

53 B / 6

Scale:

1:50,000

Location: Latitude:

304/10-12

Longitude:

30⁰33'57"

76⁰28'29"

Catchment Area,

0.376 Sq Km

Length of Longest Stream course from source to the

bridge site,

1.121 Km

Height of Farthest Point,

H1

267.98 m

Height of Point of Interest,

266.83 m

Height of the Farthest Point above Point of Interest along the river,

1.15 m

Average Bed Level

266.83 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) Q50 = 0.278 x C x I x A

Q₅₀ = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0,3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

t_o = [L³/H] ^{0.345}
= 1.073 Hr

64.351 Mins

(a) $t_c h Ratio = 0.35$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio 1 h Ratio

1.033

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_0)$ = $K \times R_{50}(1)$

= 8.43 cm

= 84.28 mm

(iv) Rainfall Intensity, I = R₅₀ (t_c)

= 78.58 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 3.284 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.376 S	a Km	27 50 110-1
Length of path from Toposheet,	L	=		•	37.59 Hectares
Difference in Levels from Toposheet,	_		1.121 K		
omerence in Levels from Toposneet,	H	=	1.15 m		
Maximum Rainfall, F					
•				±	240.00 mm
Duration of Storm, T				=	24 Hrs
One Hour Rainfall,		$I_0 = (F/T) \times (T$	+1)/(1+1)	=	125.00 mm / Hr
Time of Concentration (IRC - SP: 13 - 1998	$t_o = (0.87 \times L^3 / H)^{0.385}$		1.02 Hrs		
Critical Rainfall Intensity,		$I_0 = I_0 \times [2/(1 +$	-t _c)]	=	123.47 mm/Hr
Discharge,	Q = 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils, I	ightly cultivated	or covered)		0.400	
f = Fraction of maximum point intensity at ce	ntre of storm, de	pends on area		0.98	
A = Catchment Area in Hectares				37.59 Hectares	
I _c = Critical Intensity of Rainfall				12.347 cm / Hr	
Q = Maximum Discharge				5.094 Cumecs	

3 Discharge by Dicken's Formula:

		Q	=	C x M ^{3/4}
	where,	Q	= ′	the peak run-off in Cumecs
		М		the catchment area in Sq Km
		C	=	11 - 14, where the annual rainfall is 60 - 120 cm 14 - 19 in Madhya Pradesh
				22 in Western Ghats
	-	c .	=	16 (adopted in present case)
		M	3	0.376 Sq Km
Hence,		Q .	=	7.680 Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q	. 200	7.640 Cumecs
The difference is beyond 50% of the next ma	ximum discharge	9	
Next Maximum Discharge			5.094 Cumecs
Maximum Discharge			7.680 Cumecs
Discharge by Dicken's Formula			7.680 Curnecs
Discharge by Rational Formula (IRC approa	ich)		5.094 Cumecs
Discrizige by Rational Formula (RBF - 16 R	,		3.284 Cumecs

5 Linear Waterway:

Average Bed Level = 266.83 m

HFL as per site condition & local inquiry = 268.73 m

So, Total Depth of Water, H = 1.90 m

Provided Two RCC BOX of 4 x 3 m span at proposed bridge site location.

Clear Waterway (provided), L = 8.00 m

Total Area, A = 15.200 m2

Velocity, V = Q/A

= 0.503 m/sec

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

9.932 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC ~ 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

D_b = Design discharge per metre width

1.24 Curnecs / m

K_{sf} = Silt factor

1.00

d_{sm}=

1.55 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.322 m

7 Maximum Scour Level:

Maximum Scour Level

HFL - Maximum Scour Depth

=

266.41 m

Existing Bridge No - 346 Location - KM 304/18-20

Proposed Bridge No – 082 Location – CH: 113741

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

346

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No :

53 B / 6

Scale:

1:50,000

Location:

304/18-20

Latitude:

_

Longitude:

30⁰34'5' 76⁰28'12"

Catchment Area,

A

0.243 Sq Km

Length of Longest Stream course from source to the bridge site ,

to the

0.574 Km

Height of Farthest Point .

H1

267.47 m

Height of Point of Interest,

H2

266.87 m

Height of the Farthest Point above Point of Interest along the river ,

Н

0.60 m

Average Bed Level

266.87 m

1 <u>Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16) :</u>

(i) $Q_{50} = 0.278 \times C \times I \times A$

where

 Q_{50} = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5:1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6 .	Loam, Lightly cultivated or covered	0.4
. 7	Loam, largely cultivated	0.3
8	Sandy Soll, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

0388

(iii) Calculation of Intensity of Rainfall, I :

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

0.671 Hr

40.287 Mins

(a) t_c h Ratio =

0.27 (from Fig. 4 of RBF - 16)

(b) 1 h Ratio

0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K

t_c h Ratio 1 h Ratio

0.792

(d)

(1) R₅₀ (24)

24.00 cm

(ii) R₅₀(1)

 $0.34 \times R_{50}$ (24) $\,$ [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

8.16 cm

(iii) R₅₀ (t_o)

K x R₅₀ (1)

6.46 cm

64.63 mm

(iv) Rainfall Intensity,

R₅₀ (t_e)

96.25 mm/Hr

(iv) Design Flood Discharge:

Q₅₀

0.278 x C x I x A

 Q_{50}

2.604 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.243 Sc	ą. Km	24.32 Hectares
Length of path from Toposheet,	L	=	0.574 Kr	n	
Difference in Levels from Toposheet,	н	≠ .	0.60 m		
Maximum Rainfall, F				=	0.45.00
Duration of Storm, T					240.00 mm
				=	24 Hrs
One Hour Rainfail,		$I_0 = (F/T) \times (T +$	1)/(1+1)	=	125.00 mm / Hr
Time of Concentration (IRC - SP: 13 - 199	8, Clause : 4.7)	t	$_{5} = (0.87 \times L^{3}/H)$	0.385	0.61 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1 + t_c)]$)]	Ξ	155.50 mm / Hr
Discharge,	Q = 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils,	ightly cultivated	or covered)		0.4	
f = Fraction of maximum point intensity at centre of storm, depends on area				0.95	
A = Catchment Area in Hectares				24,32 Hectares	
I _c = Critical Intensity of Rainfall				15.550 cm / Hr	
Q = Maximum Discharge				4.025 Cumecs	

3 Discharge by Dicken's Formula:

	Q	=	C x M ^{3/4}
where,	Q M C	=	the peak run-off in Cumecs the catchment area in Sq Km 11 - 14, where the annual rainfall is 60 - 120 cm 14 - 19 in Madhya Pradesh
	C M	- - - -	22 in Western Ghats 16 (adopted in present case) 0.243 Sq Km
Hence,	Q	· =	5.542 Cumecs

4 <u>Design Discharge</u>:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q	=	5.542 Cumecs
The difference is within 50% of the next max	rimum discharge		
Next Maximum Discharge			4.025 Curnecs
Maximum Discharge			5.542 Cumecs
Discharge by Dicken's Formula			5,542 Cumecs
	,		
Discharge by Rational Formula (IRC appro-	ach)		4.025 Curnecs
Discharge by Rational Formula (RBF - 16 F	Report)		2.604 Cumecs

Linear Waterway:

Average Bed Level 266.87 m HFL as per site condition & local inquiry 268.67 m So, Total Depth of Water, 1.80 m Provided One RCC BOX of 3 x 3m span at proposed bridge site location. Clear Waterway (provided), 3.00 m

Total Area, 5.394 m2

Velocity, Q/A 1.027 m/sec

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS

Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

7.204 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause: 703.2,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

D_b = Design discharge per metre width

2.40 Cumecs / m

K_{sf} = Silt factor

1.00

 $d_{sm} =$

2.40 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

3.605 m

Maximum Scour Level:

Maximum Scour Level HFL - Maximum Scour Depth

265.07 m

Existing Bridge No – 347 Location – KM 305/8-10

Proposed Bridge No – 083 Location – CH: 114341

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge :

347

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No :

53 B / 6

Scale:

1:50,000

Location:

305/8-10

Latitude :

30°34'15"

Longitude:

76⁰28'1"

Catchment Area,

0.146 Sq Km

Length of Longest Stream course from source to the bridge site,

0.611 Km

Height of Farthest Point,

H1

267.03 m

Height of Point of Interest,

H2

266.73 m

Height of the Farthest Point above Point of Interest along

0.30 m

Average Bed Level

266.73 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) Q₅₀ = 0.278 x C x I x A

where.

 $Q_{50}\,$ = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm./ Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient , C :

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0,9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	. 0.7
4	Clavey soils, Stiff & bare	0.6
. 5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7 .	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

0.910 Hr

= 54.588 Mins

(a) $t_c h Ratio = 0.32$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio 1 h Ratio

= 0.942

(d)

(1) $R_{50}(24)$ = 24.00 cm

(ii) $R_{50}(1)$ = 0.34 x $R_{50}(24)$ [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

7.69 cm

76.88 mm

(iv) Rainfall Intensity, I = R₅₀ (t_e)

84.51 mm / Hr

(iv) Design Flood Discharge :

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 1.372 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area, A	=	0.146	Sq. Km	14.60 Hectares
Length of path from Toposheet,	=	0.611	Km	
Difference in Levels from Toposheet,	=	0.30	m	
Maximum Rainfall, F	*		=	240.00 mm
Duration of Storm, T			=	24 Hrs
One Hour Rainfall,	=(F/T)x(T+	1)/(1+1)	=	125.00 mm/Hr
Time of Concentration (IRC - SP: 13 - 1998, Clause: 4.7)	t,	= (0.87 x L ³ /	H) 0.385	0.85 Hrs
Critical Rainfall Intensity,	= l _o x [2 / (1 + t _c)]	=	134.92 mm / Hr
Discharge, $Q = 0.028 \times P \times f \times A$	x l _a			
P = Coefficient of Runoff (For clayey soils, lightly cultivated or co	overed)		0.4	
f = Fraction of maximum point intensity at centre of storm, depen	ds on area		0.95	
A = Catchment Area in Hectares			14.60 Hectares	i
I _c = Critical Intensity of Rainfall			13.492 cm / Hr	
Q = Maximum Discharge	٠		2.096 Cumecs	

3 <u>Discharge by Dicken's Formula:</u>

	Q	= (2 x M ^{3/4}	•
where	e, Q	= tl	ne peak run-off	in Cumecs
	M	= ti	ne catchment a	rea in Sq Km
	C	= 1	1 - 14, where t	he annual rainfall is 60 - 120 cm
		1	4 - 19 in Madh	ya Pradesh
		. 2	2 in Western G	ihats
	c	≡ ,	16	(adopted in present case)
	М	=	0.146	Sq Km
Hence,	Q	= ,	3.779	Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q.	= :	3.144 Cumecs
The difference is beyond 50% of the next maximum	m discharge		
Next Maximum Discharge			2.096 Cumecs
Maximum Discharge	•		3.779 Cumecs
Discharge by Dicken's Formula			3.779 Cumecs
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			2.096 Cumecs
Discharge by Rational Formula (IRC approach)			
Discharge by Rational Formula (RBF - 16 Report)		1.372 Cumecs

Average Bed Level = 266.73 m

HFL as per site condition & local inquiry = 268.72 m

So, Total Depth of Water, H = 2.00 m

Provided One RCC BOX of 3 x 3m span at proposed bridge site location.

Clear Waterway (provided), L = 3,00 m

Total Area, A = 5.988 m2

Velocity, V = Q/A

= 0.525 m/sec

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS

Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

4.087 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{st})^{1/3}$

D_b = Design discharge per metre width

1.36 Cumecs / m

K_{sf} = Silt factor

1.00

d_{am} =

1.65 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.470 m

7 Maximum Scour Level:

Maximum Scour Level = HFL - Maximum Scour Depth

266.25 m

Existing Bridge No – 348 Location – KM 305/15-17

Proposed Bridge No – 084 Location – CH: 114637

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

348

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale:

1:50,000

Location:

305/15-17

Latitude:

30⁰34'20"

Longitude:

76⁰27'53"

Catchment Area,

1.380 Sq Km

Length of Longest Stream course from source to the

bridge site,

1.381 Km

Height of Farthest Point.

H1

267.59 m

Height of Point of Interest,

H2

266,39 m

Height of the Farthest Point above Point of Interest along

1.20 m

Average Bed Level

266.39 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where .

Q₅₀ = 50 years Design Flood Discharge (Curnecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0,9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0,5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 t_c = [L³/H] ^{0.345}

1.312 Hr

78.693 Mins

(a) $t_c h Ratio = 0.39$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

1 h Ratio

= 1.136

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) R₅₀ (1) = 0.34 x R₅₀ (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

= 9.27 cm

= 92.68 mm

(iv) Rainfall Intensity, I = R₅₀ (t_c)

70.66 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A^{-}$

Q₅₀ = 10.844 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	1.380	Sq. Km	138,00 Hectares
Length of path from Toposheet,	L	=	1.381	· Km	
Difference in Levels from Toposheet,	Н	=	1.20 ו	n	
Maximum Rainfall, F				=	240.00 mm
Duration of Storm, T				=	24 Hrs
One Hour Rainfall,		$I_o = (F/T) \times (T$	+1)/(1+1)	=	125.00 mm/Hr
Time of Concentration (IRC - SP: 13 - 1998	3, Clause : 4.7)		$t_c = (0.87 \times L^3 / F)$	f) ^{0.385}	1.28 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1 +$	t _c)]	=	109.52 mm / Hr,
Discharge,	Q = 0.028 x P x 1	fx A x I _c			
P = Coefficient of Runoff (For clayey soils, I	ightly cultivated	or covered)		0.400	
f = Fraction of maximum point intensity at ce	ntre of storm, de	epends on area		0.98	
A = Catchment Area in Hectares				138.00 Hectares	
I _c = Critical Intensity of Rainfall				10.952 cm / Hr	
Q = Maximum Discharge				16.588 Cumecs	

3 Discharge by Dicken's Formula:

	Q		C x M ^{3/4}
where,	Q Q	, =	the peak run-off in Cumecs
	М		the catchment area in Sq Km
	C	· =	11 - 14, where the annual rainfall is 60 - 120 cm
	*		14 - 19 in Madhya Pradesh
			22 in Western Ghats
	C,	=	16 (adopted in present case)
	M	=	1.380 Sq Km
Hence,	Q .		20.372 Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q :	=	20.372 Cumecs	
The difference is within 50% of the next max	kimum discharge			
Next Maximum Discharge			16.588 Cumecs	
Maximum Discharge			20.372 Cumecs	
Discharge by Dicken's Formula			20.372 Cumecs	
Discharge by Rational Formula (IRC appro-	ach)		16.588 Cumecs	
Discharge by Rational Formula (RBF - 16 F	Report)		10.844 Cumecs	

 Average Bed Level
 =
 266.39 m

 HFL as per site condition & local inquiry
 =
 268.15 m

HFL as per site condition & local inquiry = 268.15 m

So, Total Depth of Water, H = 1.76 m

Provide 2 spans of 9.15 m at proposed site location.

Clear Waterway (provided), L = 18.30 m

Total Area, A = 32.299 m2

Velocity, V = Q/A

= 0.631 m/sec

6 Vertical Clearance:

Design Discharge Q = 20.372 Cumecs

(i) Vertical Clearance as per IRC 5 - 1998 Cl. 106.2.1 = 0.600 m

(ii) Vertical Clearance as per Railway Code for sub-structure Cl. 4.8 = 0.600 m

So, Vertical Clearance adopted = 0.600 m

Minimum Soffit Level = HFL + Vertical Clearance

268.752 m

7 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

26.483 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78: 2000, Clause: 703.2;

Mean Depth of Scour,

 $d_{sin} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

D_b = Design discharge per metre width

1.45 Cumecs / m

K_{sf} = Silt factor

1.00

d_{sm} =

1.71 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.572 m

8 Maximum Scour Level:

Maximum Scour Level = HFL - Maximum Scour Depth

265.58 m

Existing Bridge No – 349 Location – KM 305/21-23

Proposed Bridge No – 085 Location – CH: 114840

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

349

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale:

1:50,000

Location:

305/21-23

Latitude :

30°34'24"

Longitude:

76°27'47"

Catchment Area,

0.313 Sq Km

Length of Longest Stream course from source to the

bridge site,

0.970 Km

Height of Farthest Point,

H1

267.05 m

Height of Point of Interest,

H2

266.35 m

Height of the Farthest Point above Point of Interest along the river,

0.70 m

Average Bed Level

266.35 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

Q₅₀ = 0.278 x C x I x A (I)

 Q_{50} = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, 1:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

1.096 Hr

65.751 Mins

(a) $t_c h Ratio = 0.35$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_o h Ratio

= 1.042

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause: 2.1.3, RBF - 16, for River Sub - Zone: 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

8.51 cm

85.06 mm

(iv) Rainfall Intensity, $I = R_{50}(t_c)$

77.62 mm / Hr

(iv) Design Flood Discharge :

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 2.702 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.313	Sq. Km	31.30 Hectares
Length of path from Toposheet,	L	ing.	0.970	· Cm	2 See Freduite
Difference in Levels from Toposheet,	Н	**	0.70 i		
Maximum Rainfall, F				=	240.00 mm
Duration of Storm, T					24 Hrs
One Hour Rainfall,		I _o =(F/T)x(T+	+1)/(1+1)		125,00 mm / Hr
Time of Concentration (IRC - SP : 13 - 1998, 0	Clause : 4,7)		t _c = (0.87 x L ³ / F		·
Critical Rainfall Intensity,	,	$l_c = l_o \times [2/(1+t)]$		= .	1.05 Hrs 121.97 mm/Hr
Discharge, Q =	· 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils, ligh	itly cultivated (or covered)		0.4	
f = Fraction of maximum point intensity at centr				0.95	
A = Catchment Area in Hectares				31.30 Hectares	
I _e = Critical Intensity of Rainfall				12.197 cm / Hr	

4.062 Cumecs

3 Discharge by Dicken's Formula:

Q = Maximum Discharge

	Q	***	C x M ^{3,4}
where,	Q	<u>****</u>	the peak run-off in Cumecs
	M		the catchment area in Sq Km
	С	=	11 - 14, where the annual rainfall is 60 - 120 cm
	•		14 - 19 in Madhya Pradesh
			22 in Western Ghats
	c	=	16 (adopted in present case)
	M	=	0.313 Sq Km
Hence,	Q	=	6.695 Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Discharge by Rational Formula (RBF - 16 R	eport)		2.702 Curnecs
Discharge by Rational Formula (IRC approa	ich)		4.062 Cumecs
Discharge by Dicken's Formula			6.695 Cumecs
Maximum Discharge			6.695 Cumeos
Next Maximum Discharge			4.062 Cumecs
The difference is beyond 50% of the next ma	ximum discharge	•	
Hence, Design Discharge adopted	Q	=	6.093 Cumecs

Average Bed Level = 266.35 m

HFL as per site condition & local inquiry = 268.55 m

So, Total Depth of Water, H = 2.20 m

Provided Two RCC BOX of 3 \times 3m span at proposed bridge site location.

 Clear Waterway (provided),
 L
 =
 6.00 m

 Total Area,
 A
 =
 13.200 m2

 Velocity ,
 V
 =
 Q / A

 =
 0.462 m/sec

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

7.921 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (|D_b|^2 / |K_{st}|)^{1/3}$

D_b = Design discharge per metre width

1.32 Cumecs / m

K_{sf} = Silt factor

1.00

d. =

1.61 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.419·m

7 Maximum Scour Level:

Maximum Scour Level

HFL - Maximum Scour Depth

266.13 m

- 0407

Existing Bridge No – 350 Location – KM 306/3-5

Proposed Bridge No – 086 Location – CH: 115254

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

350

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale :

1 : 50,000

Location:

306/3-5

Latitude :

30⁰34'33"

Longitude:

76⁰27'34"

Catchment Area,

1

0.364 Sq Km

Length of Longest Stream course from source to the bridge site ,

L

0.953 Km

Height of Farthest Point,

H1

267.17 m

Height of Point of Interest,

H2

266.57 m

Height of the Farthest Point above Point of Interest along the river ,

Н

0.60 m

Average Bed Level

266.57 m

1 Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where,

 $Q_{50} = 50$ years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	8,0
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

0410

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration ($\ensuremath{\text{tc}}$) as per Bhatnagar's formula :

 $t_c = [L^3/H]^{0.345}$

1.135 Hr

68.085 Mins

(a) $t_c h Ratio = 0.36$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

1 h Ratio

1.054

(d)

(i) R_{50} (24) = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_0)$ = $K \times R_{50}(1)$

8.60 cm

86.03 mm

(iv) Rainfall Intensity, I = $R_{50}(t_c)$

75.82 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 3.069 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.364 Sq.	. Km	36.40 Hectares
Length of path from Toposheet,	· L		0.953 Km	ì	out to trooming
Difference in Levels from Toposheet,	Н	=	0.60 m		
Maximum Rainfall, F				<u></u>	240.00 mm
Duration of Storm, T	4			=	24 Hrs
One Hour Rainfall,		$I_0 = (F/T) \times (T+1)/$	(1+1)	=	125.00 mm / Hr
Time of Concentration (IRC - SP: 13 - 199	8, Clause : 4.7)).87 x L ³ /H)	0.385	1.09 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1+t_o)]$	· · · · · · · · · · · · · · · · · · ·	=	119.54 mm / Hr
Discharge,	Q = 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils,	ightly cultivated of	or covered)		0.4	•
f = Fraction of maximum point intensity at ca				0.95	
A = Catchment Area in Hectares				36.40 Hectares	
I _c = Critical Intensity of Rainfall				11.954 cm / Hr	
Q = Maximum Discharge				4.630 Cumecs	

3 Discharge by Dicken's Formula:

:	Q	=	C x 間 ^{3/4}
where,	Q	<u></u>	the peak run-off in Cumecs
	M	=	the catchment area in Sq Km
	С	. =	11 - 14, where the annual rainfall is 60 - 120 cm
			14 - 19 in Madhya Pradesh
			22 in Western Ghats
		•	
	С	· =	16 (adopted in present case)
	M	· =	0.364 Sq Km
Hence,	Q	_ = .	7.498 Cumecs

4 <u>Design Discharge</u>:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q	=	6.944 Cumecs
The difference is beyond 50% of the next ma	aximum discharg	e	
Next Maximum Discharge		•	4.630 Cumecs
Maximum Discharge			7.498 Cumecs
· · · · · · · · · · · · · · · · · · ·			
Discharge by Dicken's Formula			7.498 Curnecs
Discharge by Rational Formula (IRC approx	ach)		4.630 Cumecs
Discharge by Rational Formula (RBF - 16 R	•		3.069 Cumecs

Average Bed Level 266.57 m HFL as per site condition & local inquiry 268.57 m So, Total Depth of Water, 2.00 m

Provided Two RCC BOX of 3 x 3m span at proposed bridge site location.

Clear Waterway (provided), 6.00 m

Total Area, 12.000 m2

Velocity, Q/A

0.579 m/sec

Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30% 9.028 Cumecs

Increased Design Discharge

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000,

Clause: 703.2,

Mean Depth of Scour, $d_{sm} = 1.34 \times (|D_b|^2 / K_{st})^{1/3}$

D_b = Design discharge per metre width

1.50 Cumecs / m

K_{sf} = Silt factor

1.00

 $d_{sm} =$

1.76 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

2.639 m

Maximum Scour Level:

Maximum Scour Level HFL - Maximum Scour Depth

265.93 m

Existing Bridge No – 351 Location – KM 306/11-13

Proposed Bridge No – 087 Location – CH: 115550

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

351

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No :

53 B / 6

Scale:

1:50,000

Location:

306/11-13

Latitude:

30⁰34'37"

Longitude :

76⁰27'26"

Catchment Area,

A

4.042 Sq Km

Length of Longest Stream course from source to the bridge site,

ŧ

3.539 Km

Height of Farthest Point .

H1

269.95 m

Height of Point of Interest,

H2

266.95 m

Height of the Farthest Point above Point of Interest along the river ,

Н

3.00 m

Average Bed Level

266.95 m

1 Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where .

Q₅₀ = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 $t_e = [L^3/H]^{0.345}$

2.532 Hr

151.927 Mins

(a) $t_o h Ratio = 0.51$ (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

= 1.495

(d)

(i) $R_{50}(24)$ = 24.00 cm

(ii) $R_{50}(1)$ = 0.34 x $R_{50}(24)$ [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

 $(iii) R_{50}(t_c) = K \times R_{50}(1)$

= 12.20 cm

= 121.99 mm

(iv) Rainfall Intensity, I = R₅₀ (t_c)

48.18 mm/Hr

(iv) Design Flood Discharge :

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 21.654 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	4.042 Sq. Km	404.20 Hectares
Length of path from Toposheet,	L	=	3.539 Km	volume / roduings
Difference in Levels from Toposheet,	Н	=	3.00 m	
Maximum Rainfall, F				240.00 mm
Duration of Storm, T			-	24 Hrs
One Hour Rainfall,		$I_0 = (F/T) \times (T+1)$	/(1+1) =	125.00 mm / Hr
Time of Concentration (IRC - SP: 13 - 19	t _c = (2,67 Hrs		
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1 + t_c)]$	=	68.07 mm / Hr
Discharge,	Q = 0.028 x P x f	T×A×I _c		
P = Coefficient of Runoff (For clayey soils	s, lightly cultivated	or covered)	0.400	

• ,	- CIOLDIA, ATARAIC	
P = Coefficient of Runoff	(For clayey soils, lightly cultivated or covered)	0.400
f = Fraction of maximum	point intensity at centre of storm, depends on area	0.98
A = Catchment Area in H	ectares	404.20 Hectares
I _c = Critical Intensity of R	ainfail	6.807 cm / Hr
Q = Maximum Discharge		30.198 Cumecs

3 Discharge by Dicken's Formula:

		Q	=	C x M ^{3/4}
,	where,	Q	=	the peak run-off in Cumecs
		М	=	the catchment area in Sq Km
		C		11 - 14, where the annual rainfall is 60 - 120 cm
			•	14 - 19 in Madhya Pradesh
			ŧ	22 in Western Ghats
:		С	· ·	16 (adopted in present case)
		M	· =	4.042 Sq Km
Hence,		Q	=	45.611 Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of

The difference is beyond 50% of the next maximum discharge	
Next Maximum Discharge	30.198 Cumecs
Maximum Discharge	45.611 Cumecs
Discharge by Dicken's Formula	45.611 Cumecs
Discharge by Rational Formula (IRC approach)	30.198 Cumecs
Discharge by Rational Formula (RBF - 16 Report)	21.654 Cumecs

Average Bed Level 266.95 m HFL as per site condition & local inquiry 268.50 So, Total Depth of Water, 1.55 m Provide 5 spans of 6.1 m at proposed bridge site location. Clear Waterway (provided), 30.50 m Total Area, 47.275 m2 Velocity, Q/A 0.958 m/sec Vertical Clearance: Design Discharge Q 45.296 Cumecs (i) Vertical Clearance as per IRC 5 - 1998 Ct. 106,2,1 0.900 m (ii) Vertical Clearance as per Railway Code for sub-structure Cl. 4.8 0.632 m So, Vertical Clearance adopted 0.900 m Minimum Soffit Level HFL + Vertical Clearance 269.402 m Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS 30%

7 Scour Depth:

Code of Practices for Design of Substructure & Foundation of Bridges) Increased Design Discharge 58.885 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC -78 : 2000, Clause: 703.2,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{st})^{1/3}$

D_b = Design discharge per metre width

1.93 Cumecs / m

K_{sf} = Silt factor

1.00

2.08 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

So, Maximum Scour Depth

3.117 m

Maximum Scour Level:

Maximum Scour Level HFL - Maximum Scour Depth 265.39 m

- 0419

- 0420

Existing Bridge No – 352 Location – KM 307/5-7

Proposed Bridge No – 088 Location – CH: 116215

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

352

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale: Location:

1:50,000

Latitude:

307/5-7

30⁵34'52"

Longitude:

76°27'5"

Catchment Area,

0.235 Sq Km

Length of Longest Stream course from source to the

bridge site,

0.675 Km

Height of Farthest Point,

H1

267.00 m

Height of Point of Interest,

266.50 m

Height of the Farthest Point above Point of Interest along

0.50 m

Average Bed Level

266.50 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(I) $Q_{50} = 0.278 \times C \times I \times A$

 $Q_{50} = 50$ years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 t_c = [L³/H] ^{0.345}

0.846 Hr

50.735 Mins

(a) t_o h Ratio = 0.31 (from Fig. 4 of RBF - 16)

(b) 1 h Ratio = 0.34 (from Fig. 4 of RBF - 16)

(c) Coefficient, K = t_c h Ratio

0.909

(d)

(i) $R_{60}(24)$ = 24.00 cm

(ii) R_{50} (1) = 0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1 (e)]

= 8.16 cm

(iii) $R_{50}(t_c)$ = $K \times R_{50}(1)$

7.41 cm

74.15 mm

(iv) Rainfall Intensity, I = R_{50} (t_c)

87.69 mm / Hr

(iv) Design Flood Discharge:

 $Q_{50} = 0.278 \times C \times I \times A$

Q₅₀ = 2.293 Cumecs

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	=	0.235 Sq. Km	23.51 Hectares
Length of path from Toposheet,	L	=	0.675 Km	
Difference in Levels from Toposheet,	Н	=	0.50 m	
Maximum Rainfall, F				
Duration of Storm, T		•		240.00 mm
• •			=	24 Hrs
One Hour Rainfall,		$l_0 = (F/T) \times (T+1) /$	(1+1) =	125.00 mm / Hr
Time of Concentration (IRC - SP : 13 - 1998,	Clause : 4.7)	t _c = (0.87 x L ³ /H) ^{0.385}	0.79 Hrs
Critical Rainfall Intensity,		$I_c = I_o \times [2/(1+t_c)]$	=	139.98 mm / Hr
Discharge, Q:	= 0.028 x P x f	x A x I _c		
P = Coefficient of Runoff (For clayey soils, light		=	0.4	•
f = Fraction of maximum point intensity at cent		· ·	0.95	
A = Catchment Area in Hectares		•	23.51 He	ectaree
I _c = Critical Intensity of Rainfall			13.998 cn	
Q = Maximum Discharge			3.502 Ct	

3 Discharge by Dicken's Formula:

	Q	= c	х М ^{3/4}	
where	e, Q	= . th	e peak run-off	fin Cumecs
	M	= the	e catchment a	rea in Sq Km
	C	. = 11	- 14, where t	he annual rainfall is 60 - 120 cm
	-	14	- 19 in Madh	ya Pradesh
		22	in Western G	ihats
	С	. <u>.</u> .	-16	(adopted in present case)
	M	MA.	0.235	Sq Km
Hence,	Q	=	5.403	Cumecs

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

Hence, Design Discharge adopted	Q	= ,	5.253 Cumecs
The difference is beyond 50% of the next maximum	m discharge		
Next Maximum Discharge			3.502 Cumecs
Maximum Discharge			5.403 Cumecs
N.			
Discharge by Dicken's Formula			5.403 Cumecs
Discharge by Rational Formula (IRC approach)			3.502 Cumecs
Discharge by Rational Formula (RBF - 16 Report	t)		2.293 Cumecs

Average Bed Level = 266.50 m

HFL as per site condition & local inquiry = 268.00 m

So, Total Depth of Water, H = 1.50 m

Provided One RCC BOX of 3 x 3m span at proposed bridge site location.

Clear Waterway (provided), L = 3.00 m

Total Area, A = 9.000 m2

Velocity , V = Q / A

6 Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

30%

Increased Design Discharge

6.829 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause : 703.2 ,

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

D_b = Design discharge per metre width

2.28 Cumecs/m

K_{st} = Silt factor

1.00

d_{sm} =

2.32 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.)

(For moderate bend)

1.5 x d_{sm}

0.584 m/sec

So, Maximum Scour Depth

3.478 m

7 Maximum Scour Level:

Maximum Scour Level = HFL - Maxil

HFL - Maximum Scour Depth

264.52 m

Existing Bridge No – 353 Location – KM 307/24-26

Proposed Bridge No – 089 Location – CH: 116770

(Hydrology Details)

Hydrological Calculations for Bridge of Dedicated Freight Corridor - Kesri to Sanehwal

Name / No. of Proposed Bridge:

353

Name of Nallah / Stream / River :

Local Stream

River Sub - Zone :

Upper Indo- Ganga Plains 1 (e)

G.T Sheet No:

53 B / 6

Scale: Location:

1:50,000

Latitude :

307/24-26

30°35'3"

Longitude:

76⁰26'48"

Catchment Area,

0.240 Sq Km

Length of Longest Stream course from source to the

bridge site,

0.556 Km

Height of Farthest Point,

H1

267.05 m

Height of Point of Interest,

H2

266,65 m

Height of the Farthest Point above Point of Interest along

0.40 m

Average Bed Level

266.65 m

Discharge by Rational Formula (Bridges & Flood Wing Report No. RBF - 16):

(i) $Q_{50} = 0.278 \times C \times I \times A$

where.

Q₅₀ = 50 years Design Flood Discharge (Cumecs)

C = Runoff Coefficient

I = 50 Years Rainfall Intensity (mm / Hr) lasting for to hour duration where to is the time of concentration

A = Catchment Area (Sq Km)

(ii) Runoff Coefficient, C:

According to Report of the Committee of Engineers (Khosla), Annexure - 5.1.1 (a), Bridges & Floods Wing Report No. RBF - 16, March - 1990

S. No.	Description	" C " Value
1	Steep, bare rock, city pavements	0.9
2	Rock, Steep but wooded	0.8
3	Plateaus , Lightly covered	0.7
4	Clavey soils, Stiff & bare	0.6
5	Clavey soils, Lightly covered	0.5
6	Loam, Lightly cultivated or covered	0.4
7	Loam, largely cultivated	0.3
8	Sandy Soil, Light growth	0.2
9 ·	Sandy Soil, covered, heavy brush	0.1

(iii) Calculation of Intensity of Rainfall, I:

For estimating the time of concentration (tc) as per Bhatnagar's formula :

 t_c = [L³/H] ^{0.345} = 0.747 Hr

44.833 Mins

(a) t_c h Ratio

0.29

(from Fig. 4 of RBF - 16)

(b) 1 h Ratio

0.34

(from Fig. 4 of RBF - 16)

(c) Coefficient, K

t_c h Ratio

0.850

(d)

(1) R₅₀(24)

24.00 cm

(II) R₅₀(1)

0.34 x R_{50} (24) [as per Clause : 2.1.3, RBF - 16, for River Sub - Zone : 1-(e)]

8.16 cm

(iii) R₅₀ (t_c)

KxR₅₀(1)

=

6.94 cm

=

69.40 mm

(iv) Rainfall Intensity,

R₅₀ (t_c

c

92.88 mm / Hr

(iv) Design Flood Discharge:

Q₅₀

•

0.278 x C x I x A

Qm

=

2.476 Cumecs

0428

2 Discharge by Rational Formula (IRC approach):

Catchment Area,	Α	· =	0.240 Sq	. Km	23.97 Hectares
Length of path from Toposheet,	L	=	0.556 Km		
Difference in Levels from Toposheet,	н	=	0.40 m		
Maximum Rainfall, F				æ	240.00 mm
Duration of Storm, T				=	24 Hrs
One Hour Rainfall,		$I_0 = (F/T) \times (T+1)$	/(1+1)	<u></u>	125.00 mm/Hr
Time of Concentration (IRC - SP: 13 - 1998	3, Clause : 4.7)		(0.87 x L ³ /H)	0.385	0.68 Hrs
Critical Rainfall Intensity,	,	$l_c = l_o \times [2/(1 + t_c)]$	(0,0,7 % %, 7,11)	=	
		0 0 1(- 6)1		_	148,40 mm / Hr
Discharge,) = 0.028 x P x f	x A x I _c			
P = Coefficient of Runoff (For clayey soils, I	ghtly cultivated o	or covered)		0.400	
f = Fraction of maximum point intensity at ce	0.98				
A = Catchment Area in Hectares					
I _c = Critical Intensity of Rainfall				23.97 Hectares	•
Q = Maximum Discharge				14.840 cm / Hr	
a modification bioordige				3.905 Cumecs	

3 <u>Discharge by Dicken's Formula:</u>

	Q	. ##	C x M ^{3/4}	
where	Q			
*****	,	_	the peak run-off in Curnecs	
	М		the catchment area in Sq Km	
	C	. =	11 - 14, where the annual rainfall is 60 - 120 cm	
			14 - 19 in Madhya Pradesh	
			22 in Western Ghats	
		•		
	С	. = .	16 (adopted in present case)	
	М	=	0.240 Sq Km	
Honon		•		
Hence,	· Q	=	5.482 Cumecs	

4 Design Discharge:

(As per IRC - SP : 13 - 1998, Clause - 7.1 & Clause - 4.2 and 4.3 of I.R.S. Code of Practices for the Design of Substructure & Foundation of Bridges)

The difference is within 50% of the next maximum discharge	***
Next Maximum Discharge	3.905 Cumecs
Maximum Discharge	5.482 Curnecs
Discharge by Dicken's Formula	5.482 Cumecs
Discharge by Rational Formula (IRC approach)	3,905 Cumecs
Discharge by Rational Formula (RBF - 16 Report)	2.476 Cumecs

Average Bed Level 266.65 m HFL as per site condition & local inquiry 267.45 m So, Total Depth of Water, 0.80 m Provide 2 spans of 3.66 m at bridge site location. Clear Waterway (provided), 7.32 m

Total Area, 5.856 m2

Velocity,

0.936 m/sec

6 Vertical Clearance:

Design Discharge 5.482 Cumecs (i) Vertical Clearance as per IRC 5 - 1998 Ct. 106,2.1 0.600 m (ii) Vertical Clearance as per Railway Code for sub-structure Cl. 4.8 0.600 m So, Vertical Clearance adopted 0.600 m

Minimum Soffit Level HFL + Vertical Clearance 268.052 m

Scour Depth:

Increase in Design Discharge (as per IRC : 78 - 2000, Clause : 703.1.1 & Clause : 4.4, IRS Code of Practices for Design of Substructure & Foundation of Bridges)

Increased Design Discharge

7.126 Cumecs

Depth of Scour in accordance with Clause 4.6 of I.R.S. Code of Practices for Design of Substructure & Foundation of Bridges & IRC - 78 : 2000, Clause: 703.2

Mean Depth of Scour,

 $d_{sm} = 1.34 \times (D_b^2 / K_{sf})^{1/3}$

 D_b = Design discharge per metre width

0.97 Cumecs / m

K_{sf} = Silt factor

d_{sm} =

1.00 1.32 m

Maximum Scour Depth (as per Clause 4.6.6, IRS Code of Practices for Design of Substructure & Foundation of Bridges.) (For moderate bend)

1.5 x d....

So, Maximum Scour Depth

1.974 m

Maximum Scour Level:

Maximum Scour Level HFL - Maximum Scour Depth

265.48 m

