
Deploying Web Applications in

Enterprise Scenarios

 Note: This PDF was created from a

series of web-based tutorials, the first

of which is located at the following

URL:

http://www.asp.net/web-

forms/tutorials/deployment/deployin

g-web-applications-in-enterprise-

scenarios/deploying-web-

applications-in-enterprise-scenarios

Each tutorial includes hyperlinks to

others in the series, and those links

still go to the web page tutorials, not

to pages in this PDF. To go quickly to

specific sections of this PDF, use the

links in the Table of Contents.

http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios

Table of Contents

Introduction .. 1

About the Authors .. 1

Target Audience .. 1

Requirements .. 2

Series Contents ... 2

Where to Start .. 3

Scenario Overview .. 3

Deployment Tasks ... 6

Application Lifecycle Management: From Development to Production .. 9

Web Deployment in the Enterprise .. 20

Enterprise Deployment Challenges ... 20

Overview of Approach .. 20

Content Map ... 21

Key Technologies .. 22

The Contact Manager Solution ... 22

Setting Up the Contact Manager Solution .. 25

Understanding the Project File ... 31

Understanding the Build Process .. 41

Building and Packaging Web Application Projects .. 50

Configuring Parameters for Web Package Deployment ... 55

Deploying Web Packages .. 61

Deploying Database Projects .. 69

Creating and Running a Deployment Command File .. 76

Manually Installing Web Packages .. 79

Configuring Server Environments for Web Deployment .. 88

How to Use This Tutorial ... 88

Key Technologies .. 88

Choosing the Right Approach to Web Deployment .. 89

Scenario: Configuring a Test Environment for Web Deployment .. 93

Scenario: Configuring a Staging Environment for Web Deployment ... 96

Scenario: Configuring a Production Environment for Web Deployment ... 98

Configuring a Web Server for Web Deploy Publishing (Remote Agent) ... 100

Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler) 110

Configuring a Web Server for Web Deploy Publishing (Offline Deployment) 126

Configuring a Database Server for Web Deploy Publishing .. 136

Creating a Server Farm with the Web Farm Framework .. 150

Configuring Deployment Properties for a Target Environment .. 165

Configuring Team Foundation Server for Web Deployment .. 171

Before You Begin ... 171

Scenario Overview .. 171

How to Use This Tutorial ... 171

Key Technologies .. 172

Creating a Team Project in TFS ... 172

Adding Content to Source Control .. 184

Configuring a TFS Build Server for Web Deployment ... 194

Creating a Build Definition That Supports Deployment .. 198

Deploying a Specific Build ... 207

Configuring Permissions for Team Build Deployment .. 214

Advanced Enterprise Web Deployment ... 217

Scenario Overview .. 217

How to Use This Tutorial ... 217

Key Technologies .. 218

Performing a "What If" Deployment .. 219

Customizing Database Deployments for Multiple Environments ... 223

Deploying Database Role Memberships to Test Environments ... 229

Deploying Membership Databases to Enterprise Environments .. 234

Excluding Files and Folders from Deployment .. 236

Excluding Files and Folders from Deployment .. 242

Taking Web Applications Offline with Web Deploy .. 248

Running Windows PowerShell Scripts from MSBuild Project Files ... 256

Troubleshooting the Packaging Process ... 262

1

Introduction

This set of tutorials describes tools and techniques you can use to deploy web applications in various

enterprise scenarios. It explains how to make best use of technologies like Visual Studio 2010, the

Microsoft Build Engine (MSBuild), Internet Information Services (IIS) 7.5, the IIS Web Deployment Tool

(Web Deploy), the Web Farm Framework (WFF), and utilities like VSDBCMD.exe to simplify and manage

the deployment process. It includes conceptual overviews and task-oriented guidance that will help you

to:

 Review and establish the deployment requirements for an enterprise-scale web application.

 Configure test, staging, and production web server environments to support web deployment.

 Configure Team Foundation Server (TFS) continuous integration (CI) processes to support

automated web deployment.

 Deploy enterprise-scale web applications to different server environments with varying

requirements and restrictions.

 Deploy changes to web applications that are running in different server environments.

Note: While these tutorials describe the use of TFS as a CI server, the guidance is easily adapted to any

CI server. You don't need a detailed knowledge of TFS to understand and leverage the tutorials.

About the Authors

Jason Lee is a principal technologist with Content Master where he has been working with Microsoft

products and technologies, especially SharePoint and ASP.NET, for several years. Jason holds a PhD in

computing and is currently MCPD and MCTS certified. You can read Jason's technical blog at

www.jrjlee.com.

Benjamin Curry is a principal technologist with Content Master who has written whitepapers, SDK

documentation, PowerPoint presentations, and instructor-led and online training courses during his

career. An original member of the ASP.NET documentation team, he has worked with Microsoft’s web

technologies for over a decade.

Target Audience

This set of tutorials is for ASP.NET web application developers and solution architects who use Visual

Studio 2010 to create enterprise-scale web applications. To get the most value from the content, you

should be comfortable using Visual Studio 2010 and have a basic familiarity with TFS, together with an

awareness of Microsoft web platform technologies like ASP.NET MVC 3, Windows Communication

Foundation (WCF), IIS, SQL Server, and Visual Studio database projects. However, you do not need to be

familiar with deployment tools and technologies or need to know how to set up CI systems.

http://www.contentmaster.com/
http://www.jrjlee.com/
http://www.contentmaster.com/

2

Requirements

To follow the walkthroughs and perform the tasks that these tutorials describe, you'll need to install this

software on your development computer:

 Visual Studio 2010 Premium or Ultimate Edition with Service Pack 1

 .NET Framework 4.0

 .NET Framework 3.5 with Service Pack 1

 ASP.NET MVC 3.0

 IIS 7.5 Express

 SQL Server Express 2008 R2

To perform the deployment steps described throughout these walkthroughs, you'll need to have access

to sample Web application deployment environments. For best results, these environments should

reflect your organization’s enterprise deployment pattern. You can then modify the walkthroughs

provided in this documentation to reflect the deployment environments and requirements of your own

organization.

Series Contents

This introductory section consists of two further topics. These are designed to provide some broader

context for the tutorials that follow:

 Enterprise Web Deployment: Scenario Overview. This topic describes the scenario that

underpins each of the tutorials in this series. The scenario focuses on the Application Lifecycle

Management (ALM) requirements of a fictional company named Fabrikam, Inc. as it develops an

enterprise-scale web application.

 Application Lifecycle Management: From Development to Production. This topic provides a

high-level, end-to-end overview of a deployment process. It illustrates how Fabrikam,Inc. moves

an enterprise-scale ASP.NET web application through test, staging, and production

environments as part of a continuous development process.

The series includes four tutorial sets besides these introductory tutorials. Each focuses on different

aspects of web deployment:

 Web Deployment in the Enterprise. This tutorial provides a conceptual introduction to MSBuild

project files, the Web Publishing Pipeline, Web Deploy, and other related technologies. It

explains how you can use these tools together to manage complex deployment processes.

 Configuring Server Environments for Web Deployment. This tutorial describes how to configure

Windows servers to support various deployment scenarios, including remote web package

deployment using the Web Deployment Agent Service (the "remote agent") or the Web Deploy

3

Handler and remote database deployment. It provides guidance on choosing the appropriate

deployment method for your own environment, and it describes how to use the WFF to

replicate deployed web applications across all the web servers in a server farm.

 Configuring Team Foundation Server for Web Deployment. This tutorial describes how to

configure TFS to support various deployment scenarios, including automated deployment as

part of a CI process and manually triggered deployments of specific builds.

 Advanced Enterprise Web Deployment. This tutorial describes how to accomplish various more

advanced deployment tasks, like customizing database deployments for multiple environments,

excluding files and folders from deployment, and taking web applications offline during the

deployment process.

Where to Start

This set of tutorials uses a sample solution with a realistic level of complexity, together with a fictional

enterprise deployment scenario, to provide a reference implementation and to give the tasks and

walkthroughs a common context. The next section introduces the scenario and the sample solution.

From there you can work through the tutorials and topics that most closely match your needs.

Scenario Overview

This set of tutorials uses a sample solution with a realistic level of complexity, together with a fictional

enterprise deployment scenario, to provide a reference implementation and to give the tasks and

walkthroughs a common context. This topic describes the tutorial scenario and introduces the sample

solution.

Fabrikam, Inc., a fictitious company, is creating a solution that lets remote sales teams store and retrieve

contact information from a web interface.

The Application Lifecycle Management (ALM) processes at Fabrikam, Inc. require the solution to be

deployed to three server environments at various stages of the software development process:

 A developer test or "sandbox" environment.

 An intranet-based staging environment.

 An Internet-facing production environment.

Each of these environments has different configuration and security requirements, and each poses

unique deployment challenges.

The Fabrikam, Inc. Server Infrastructure

This is the high-level development and deployment infrastructure at Fabrikam, Inc.

4

The developer workstations, the source control infrastructure, the developer test environment, and the

staging environment all reside on the intranet network within the Fabrikam.net domain. The production

environment resides on a perimeter network (also known as DMZ, demilitarized zone, and screened

subnet), which is isolated from the intranet network by a firewall. This is a common deployment

scenario: you typically isolate your Internet-facing web servers from your internal server infrastructure

through the use of firewalls or gateway servers.

In this example:

 A Team Foundation Server (TFS) 2010 server with a separate build server provides source

control and continuous integration (CI) functionality.

 The developer test environment includes an Internet Information Services (IIS) 7.5 web server

and a SQL Server 2008 R2 database server.

 The production environment includes multiple IIS 7.5 web servers synchronized by a Web Farm

Framework (WFF) controller server, together with a SQL Server 2008 R2 database server. In

practice, the database server may use clustering or mirroring to improve scalability and

availability.

5

 The staging environment is designed to replicate the configuration of the production

environment as closely as possible.

 The firewall and network isolation policies do not permit direct, automated deployment from

the intranet to the perimeter network.

The configuration of each of these environments is described in more detail in the second tutorial,

Configuring Server Environments for Web Deployment.

Team Roles for ALM

These users are involved in creating, managing, building, and publishing the Contact Manager solution:

 Matt Hink is a web application developer at Fabrikam, Inc. He is part of the team who

developed the Contact Manager solution by using Visual Studio 2010. Matt has full

administrator rights on the servers in the developer test environment, which lets him configure

the environment to meet his needs. He also has user access to the Visual Studio 2010 TFS

instance where he stores the source code for the Contact Manager solution.

 Rob Walters is a server administrator for the Fabrikam, Inc. development team. Rob has

administrative access on the TFS server so that he can configure all aspects of TFS and Team

Build. Rob also has administrative access to the test and staging web servers and acts as the

database administrator (DBA) for the database servers in the test and staging environments.

Rob has configured Team Build on the TFS server to carry out these tasks:

◦ Build and run unit tests on the application whenever a user checks in a file to TFS. This is

called CI.

◦ Deploy the Contact Manager application to the test environment automatically once the

application passes unit tests. This includes publishing the database to the test servers on

initial deployment and any updates to the database after initial deployment.

◦ Deploy the Contact Manager application to the staging environment in a single-step

process.

◦ Create a Web package that a Web server administrator and a DBA can use to publish the

application to the production environment.

 Lisa Andrews is a server administrator responsible for deploying applications to the Fabrikam,

Inc. production servers. She has read access to the share where the TFS Team Build stores the

web deployment package once it builds the Contact Manager application. She also has

administrative access to the production web servers so that she can deploy the application to

production. Additionally, she acts as the DBA who deploys databases and database updates to

the database server in the production environment.

6

The Contact Manager Solution

The Contact Manager solution is designed to let registered, logged-in users add and edit contact

information through a web interface. The Contact Manager solution consists of four individual projects:

 ContactManager.Mvc. This is an ASP.NET MVC3 web application project that represents the

entry point for the solution. It offers some basic web application functionality, like providing

users with the ability to create and view contact details. The application relies on a Windows

Communication Foundation (WCF) service to manage contacts and an ASP.NET application

services database to manage authentication and authorization.

 ContactManager.Database. This is a Visual Studio 2010 database project. The project defines

the schema for a database that stores contact details.

 ContactManager.Service. This is a WCF web service project. The WCF exposes an endpoint that

allows callers to perform create, retrieve, update, and delete (CRUD) operations on the Contact

Manager database. The service relies on the Contact Manager database and the

ContactManager.Common.dll assembly.

 ContactManager.Common. This is a class library project. The WCF service relies on types

defined in this assembly.

A complete review of the solution and its deployment requirements is provided in the first tutorial in

this series, Web Deployment in the Enterprise.

Deployment Tasks

There are several distinct tasks involved in deploying applications to different environments in a large

organization. These are the key tasks that the tutorials cover:

7

Here is a list of each step in the deployment process from the perspective of the users described earlier

in this document:

1. All members of the team review the Contact Manager solution in Visual Studio 2010 to

determine key deployment requirements and issues.

2. Matt Hink may deploy the Contact Manager solution directly from the developer workstation to

the developer test environment, to conduct an initial test of the deployment logic.

3. Matt Hink adds the application to source control in TFS.

4. Rob Walters creates various build definitions for the Contact Manager solution in Team Build.

One build definition uses CI to deploy the solution to the developer test environment whenever

a user checks in new code. Another build definition lets users trigger deployments to the staging

environment as required.

5. Every time a user checks in new code, Team Build automatically builds the solution

components, runs unit tests, and deploys the solution to the developer test environment if the

build was successful and the unit tests pass.

8

6. When a user triggers a deployment to the staging environment, the solution is packaged and

deployed in a single-step process. This process also generates a package for manual deployment

to the production environment.

7. Lisa Andrews deploys the application to the production environment by manually importing the

web package created in step 6.

Key Deployment Issues

The Contact Manager solution and the Fabrikam, Inc. scenario highlight various common issues and

challenges that you may encounter when you deploy complex, enterprise-scale solutions. For example:

 You need to be able to deploy projects to multiple environments, like developer or test

environments, staging platforms, and production servers. The solution needs to be deployed

with different configuration settings for each environment.

 You need to deploy multiple dependent projects simultaneously as part of a single-step or

automated build and deployment process.

 You need to be able to drive deployment from an automated process. For example, you want to

use a CI process to deploy web applications to a staging environment when new code is checked

in.

 You need to be able to control the deployment process and set deployment variables from

outside Visual Studio, as developers are unlikely to have the correct configuration settings or

the necessary credentials for every target environment.

 You need to deploy schema-based database projects and preserve existing data on subsequent

deployments.

 You need to deploy membership databases on an ad hoc basis without deploying user account

data. You may also need to update the schema of deployed membership databases without

losing existing user account data.

 You need to exclude certain files or folders when you deploy content to various target

environments.

In addition, managing deployment when updates are frequent and incremental throws up some

additional challenges. For example:

 You run unit tests every time a developer checks in new code. You only want to deploy the

solution if the code passes the unit tests.

 When you deploy a web application to a staging or production environment, you want to

redirect users to an app_offline.htm file for the duration of the deployment process.

 You want to log deployment activities. The deployment process should send email notifications

of successful or failed deployments to designated recipients.

9

 If an automated deployment fails, the deployment process should retry the current deployment

or deploy the previous web package instead.

The next section provides a more detailed look at how Fabrikam, Inc. manages the deployment of the

Contact Manager solution to various representative target environments.

Application Lifecycle Management: From Development to Production

This topic illustrates how a fictional company manages the deployment of an ASP.NET web application

through test, staging, and production environments as part of a continuous development process.

Throughout the topic, links are provided to further information and walkthroughs on how to perform

specific tasks.

The topic is designed to provide a high-level overview for a series of tutorials on web deployment in the

enterprise. Don't worry if you're not familiar with some of the concepts described here—the tutorials

that follow provide detailed information on all of these tasks and techniques.

Note: For the sake of simplicity, this topic doesn't discuss updating databases as part of the

deployment process. However, making incremental updates to databases features is a requirement of

many enterprise deployment scenarios, and you can find guidance on how to accomplish this later in

this tutorial series. For more information, see Deploying Database Projects.

Overview

The deployment process illustrated here is based on the Fabrikam, Inc. deployment scenario described

in Enterprise Web Deployment: Scenario Overview. You should read the scenario overview before you

study this topic. Essentially, the scenario examines how an organization manages the deployment of a

reasonably complex web application, the Contact Manager solution, through various phases in a typical

enterprise environment.

At a high level, the Contact Manager solution goes through these stages as part of the development and

deployment process:

1. A developer checks some code into Team Foundation Server (TFS) 2010.

2. TFS builds the code and runs any unit tests associated with the team project.

3. TFS deploys the solution to the test environment.

4. The developer team verifies and validates the solution in the test environment.

5. The staging environment administrator performs a "what if" deployment to the staging

environment, to establish whether the deployment will cause any problems.

6. The staging environment administrator performs a live deployment to the staging environment.

7. The solution undergoes user acceptance testing in the staging environment.

8. The web deployment packages are manually imported into the production environment.

10

These stages form part of a continuous development cycle.

In practice, the process is slightly more complicated than this, as you'll see when we look at each stage

in more detail. Fabrikam, Inc. uses a different approach to deployment for each target environment.

11

The rest of this topic examines these key stages of this deployment lifecycle:

 Prerequisites: How you need to configure your server infrastructure before you put your

deployment logic in place.

 Initial development and deployment: What you need to do before you deploy your solution for

the first time.

 Deployment to test: How to package and deploy content to a test environment automatically

when a developer checks in new code.

 Deployment to staging: How to deploy specific builds to a staging environment and how to

perform "what if" deployments to ensure that a deployment won't cause any problems.

 Deployment to production: How to import web packages into a production environment when

network infrastructure prevents remote deployment.

Prerequisites

The first task in any deployment scenario is to ensure that your server infrastructure meets the

requirements of your deployment tools and techniques. In this case, Fabrikam, Inc. has configured its

server infrastructure like this:

 TFS is configured to include a team project collection, build controllers, and build agents. See

Configuring Team Foundation Server for Automated Web Deployment for more information.

12

 The test environment is configured to accept remote deployments using the Web Deployment

Agent Service (the "remote agent"), as described in Scenario: Configuring a Test Environment

for Web Deployment and Configure a Web Server for Web Deploy Publishing (Remote Agent).

 The staging environment is configured to accept remote deployments using the Web Deploy

Handler endpoint, as described in Scenario: Configuring a Staging Environment for Web

Deployment and Configure a Web Server for Web Deploy Publishing (Web Deploy Handler).

 The production environment is configured to allow an administrator to manually import web

deployment packages into Internet Information Services (IIS), as described in Scenario:

Configuring a Production Environment for Web Deployment and Configure a Web Server for

Web Deploy Publishing (Offline Deployment).

Initial Development and Deployment

Before the Fabrikam, Inc. development team can deploy the Contact Manager solution for the first time,

it needs to perform these tasks:

 Create a new team project in TFS.

 Create the Microsoft Build Engine (MSBuild) project files that contain the deployment logic.

 Create the TFS build definitions that trigger the deployment processes.

Create a New Team Project

The TFS administrator, Rob Walters, creates a new team project for the application, as described in

Creating a Team Project in TFS. Next, the lead developer, Matt Hink, creates a skeleton solution. He

checks his files into the new team project in TFS, as described in Adding Content to Source Control.

Create the Deployment Logic

Matt Hink creates various custom MSBuild project files, using the split project file approach described in

Understanding the Project File. Matt creates:

 A project file named Publish.proj that runs the deployment process. This file contains MSBuild

targets that build the projects in the solution, create web packages, and deploy the packages to

a destination server environment.

 Environment-specific project files named Env-Dev.proj and Env-Stage.proj. These contain

settings that are specific to the test environment and the staging environment respectively, like

connection strings, service endpoints, and the details of the remote service that will receive the

web package. For guidance on choosing the right settings for specific destination environments,

see Configure Deployment Properties for a Target Environment.

To run the deployment, a user executes the Publish.proj file using MSBuild or Team Build and specifies

the location of the relevant environment-specific project file (Env-Dev.proj or Env-Stage.proj) as a

13

command-line argument. The Publish.proj file then imports the environment-specific project file to

create a complete set of publishing instructions for each target environment.

Note: The way these custom project files work is independent of the mechanism you use to invoke

MSBuild. For example, you can use the MSBuild command line directly, as described in Understanding

the Project File. You can run the project files from a command file, as described in Create and Run a

Deployment Command File. Alternatively, you can run the project files from a build definition in TFS, as

described in Creating a Build Definition that Supports Deployment.

In each case the end result is the same—MSBuild executes the merged project file and deploys your

solution to the target environment. This provides you with a great deal of flexibility in how you trigger

your publishing process.

Once he has created the custom project files, Matt adds them to a solution folder and checks them into

source control.

Create Build Definitions

As a final preparation task, Matt and Rob work together to create three build definitions for the new

team project:

 DeployToTest. This builds the Contact Manager solution and deploys it to the test environment

every time a check-in occurs.

 DeployToStaging. This deploys resources from a specified previous build to the staging

environment when a developer queues the build.

 DeployToStaging-WhatIf. This performs a "what if" deployment to the staging environment

when a developer queues the build.

The sections that follow provide more detail on each of these build definitions.

Deployment to Test

The development team at Fabrikam, Inc. maintains test environments to conduct a variety of software

testing activities, like verification and validation, usability testing, compatibility testing, and ad hoc or

exploratory testing.

The development team has created a build definition in TFS named DeployToTest. This build definition

uses a continuous integration trigger, which means the build process runs every time a member of the

Fabrikam, Inc. development team performs a check-in. When a build is triggered, the build definition

will:

 Build the ContactManager.sln solution. This in turn builds every project within the solution.

 Run any unit tests in the solution folder structure (if the solution builds successfully).

 Run the custom project files that control the deployment process (if the solution builds

successfully and passes any unit tests).

14

The end result is that if the solution builds successfully and passes unit tests, the web packages and any

other deployment resources are deployed to the test environment.

How Does the Deployment Process Work?

The DeployToTest build definition supplies these arguments to MSBuild:

/p:DeployOnBuild=true;DeployTarget=package;TargetEnvPropsFile=[path]\Env-Dev.proj

The DeployOnBuild=true and DeployTarget=package properties are used when Team Build builds the

projects within the solution. When the project is a web application project, these properties instruct

MSBuild to create a web deployment package for the project. The TargetEnvPropsFile property tells the

Publish.proj file where to find the environment-specific project file to import.

Note: For a detailed walkthrough on how to create a build definition like this, see Creating a Build

Definition that Supports Deployment.

The Publish.proj file contains targets that build each project in the solution. However, it also includes

conditional logic that skips these build targets if you're executing the file in Team Build. This lets you

take advantage of the additional build functionality that Team Build offers, like the ability to run unit

15

tests. If the solution build or the unit tests fail, the Publish.proj file will not be executed and the

application will not be deployed.

The conditional logic is accomplished by evaluating the BuildingInTeamBuild property. This is an

MSBuild property that is automatically set to true when you use Team Build to build your projects.

Deployment to Staging

When a build meets all of the requirements of the developer team in the test environment, the team

may want to deploy the same build to a staging environment. Staging environments are typically

configured to match the characteristics of the production or "live" environment as closely as possible,

for example, in terms of server specifications, operating systems and software, and network

configuration. Staging environments are often used for load testing, user acceptance testing, and

broader internal reviews. Builds are deployed to the staging environment directly from the build server.

The build definitions used to deploy the solution to the staging environment, DeployToStaging-WhatIf

and DeployToStaging, share these characteristics:

 They don't actually build anything. When Rob deploys the solution to the staging environment,

he wants to deploy a specific, existing build that's already been verified and validated in the test

16

environment. The build definitions just need to run the custom project files that control the

deployment process.

 When Rob triggers a build, he uses the build parameters to specify which build contains the

resources he wants to deploy from the build server.

 The build definitions are not triggered automatically. Rob manually queues a build when he

wants to deploy the solution to the staging environment.

This is the high-level process for a deployment to the staging environment:

1. The staging environment administrator, Rob Walters, queues a build using the

DeployToStaging-WhatIf build definition. Rob uses the build definition parameters to specify

which build he wants to deploy.

2. The DeployToStaging-WhatIf build definition runs the custom project files in "what if" mode.

This generates log files as if Rob was performing a live deployment, but it doesn't actually make

any changes to the destination environment.

3. Rob reviews the log files to ascertain the effects of the deployment on the staging environment.

In particular, Rob wants to check what will be added, what will be updated, and what will be

deleted.

4. If Rob is satisfied that the deployment won't make any undesirable changes to existing

resources or data, he queues a build using the DeployToStaging build definition.

5. The DeployToStaging build definition runs the custom project files. These publish the

deployment resources to the primary web server in the staging environment.

6. The Web Farm Framework (WFF) controller synchronizes the web servers in the staging

environment. This makes the application available on all the web servers in the server farm.

How Does the Deployment Process Work?

The DeployToStaging build definition supplies these arguments to MSBuild:

/p:TargetEnvPropsFile=[path]\Env-Stage.proj;OutputRoot=[path to build folder]

The TargetEnvPropsFile property tells the Publish.proj file where to find the environment-specific

project file to import. The OutputRoot property overrides the built-in value and indicates the location of

the build folder that contains the resources you want to deploy. When Rob queues the build, he uses

the Parameters tab to provide an updated value for the OutputRoot property.

17

Note: For more information on how to create a build definition like this, see Deploy a Specific Build.

The DeployToStaging-WhatIf build definition contains the same deployment logic as the

DeployToStaging build definition. However, it includes the additional argument WhatIf=true:

/p:TargetEnvPropsFile=[path]\Env-Stage.proj;

 OutputRoot=[path to build folder];

 WhatIf=true

Within the Publish.proj file, the WhatIf property indicates that all deployment resources should be

published in "what if" mode. In other words, log files are generated as if the deployment had gone

ahead, but nothing is actually changed in the destination environment. This lets you evaluate the impact

of a proposed deployment—in particular, what will get added, what will get updated, and what will get

deleted—before you actually make any changes.

18

Note: For more information on how to configure "what if" deployments, see Performing a "What If"

Deployment.

Once you've deployed your application to the primary web server in the staging environment, the WFF

will automatically synchronize the application across all the servers in the server farm.

Note: For more information on configuring the WFF to synchronize web servers, see Create a Server

Farm with the Web Farm Framework.

Deployment to Production

When a build has been approved in the staging environment, the Fabrikam, Inc. team can publish the

application to the production environment. The production environment is where the application goes

"live" and reaches its target audience of end users.

The production environment is in an Internet-facing perimeter network. This is isolated from the

internal network that contains the build server. The production environment administrator, Lisa

Andrews, must manually copy the web deployment packages from the build server and import them

into IIS on the primary production web server.

This is the high-level process for a deployment to the production environment:

1. The developer team advises Lisa that a build is ready for deployment to production. The team

advises Lisa of the location of the web deployment packages within the drop folder on the build

server.

19

2. Lisa collects the web packages from the build server and copies them to the primary web server

in the production environment.

3. Lisa uses IIS Manager to import and publish the web packages on the primary web server.

4. The WFF controller synchronizes the web servers in the production environment. This makes

the application available on all the web servers in the server farm.

How Does the Deployment Process Work?

IIS Manager includes an Import Application Package Wizard that makes it easy to publish web packages

to an IIS website. For a walkthrough on how to perform this procedure, see Manually Installing Web

Packages.

Conclusion

This section provided an illustration of the deployment lifecycle for a typical enterprise-scale web

application. There are four chapters (each one is a set of tutorials) in the remainder of this book:

 Web Deployment in the Enterprise. This tutorial provides a conceptual introduction to

Microsoft Build Engine (MSBuild) project files, the Web Publishing Pipeline, Web Deploy, and

other related technologies. It explains how you can use these tools together to manage complex

deployment processes.

 Configuring Server Environments for Web Deployment. This tutorial describes how to configure

Windows servers to support various deployment scenarios, including remote web package

deployment using the Web Deployment Agent Service (the remote agent) or the Web Deploy

Handler and remote database deployment. It provides guidance on choosing the appropriate

deployment method for your own environment, and it describes how to use the Web Farm

Framework (WFF) to replicate deployed web applications across all the web servers in a server

farm.

 Configuring Team Foundation Server for Web Deployment. This tutorial describes how to

configure TFS to support various deployment scenarios, including automated deployment as

part of a CI process and manually triggered deployments of specific builds.

 Advanced Enterprise Web Deployment. This tutorial describes how to accomplish various more

advanced deployment tasks, like customizing database deployments for multiple environments,

excluding files and folders from deployment, and taking web applications offline during the

deployment process.

20

Web Deployment in the Enterprise

This tutorial describes how to meet lots of the challenges you'll encounter when you manage the

deployment of enterprise-scale web applications to development, test, staging, and production

environments. The tutorial includes a reference solution together with a mixture of conceptual and task-

oriented content to guide you through various common tasks and procedures.

Enterprise Deployment Challenges

Organizations often encounter these challenges when they look to manage the deployment of complex,

enterprise-scale solutions:

 You need to be able to deploy projects to multiple environments, like developer or test

environments, staging platforms, and production servers. The solution needs to be deployed

with different configuration settings for each environment.

 You need to deploy multiple dependent projects simultaneously as part of a single-step or

automated build and deployment process.

 You need to be able to drive deployment from an automated process. For example, you want to

use a continuous integration (CI) process to deploy web applications to a test environment

when new code is checked in.

 You need to be able to control the deployment process and set deployment variables from

outside Visual Studio, as developers are unlikely to have the correct configuration settings or

the necessary credentials for every target environment.

 You need to deploy schema-based database projects and preserve existing data on subsequent

deployments.

 You need to deploy membership databases on an ad hoc basis without deploying user account

data. You may also need to update the schema of deployed membership databases without

losing existing user account data.

 You need to exclude certain files or folders when you deploy content to various target

environments.

Overview of Approach

This tutorial, together with the other tutorials in this series, uses this high-level approach to meet the

challenges described above.

Use custom Microsoft Build Engine (MSBuild) project files to control the overall build and deployment

process.

 This lets you build and deploy every project in the solution as part of a single, scriptable

operation.

21

 Environment-specific settings are configured using simple environment-specific project files. In

contrast to the Visual Studio–centric approach of using solution configurations and publish

profiles to configure deployments for different environments, this approach lets you configure

and manage the deployment process from outside Visual Studio. This means that developers

don't need advance knowledge of connection strings, service endpoints, server credentials, and

other deployment variables for destination environments.

 The custom project files can be invoked by Team Build as part of a Team Foundation Server (TFS)

workflow. This lets you configure automated deployment for CI scenarios.

Use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) to package and

deploy web application projects.

 Web Deploy provides a framework that lets you package and deploy your web application

content to a destination IIS web server, together with dependencies, configuration settings,

security settings, and any other requirements.

 You can control the entire packaging and deployment process from within your custom MSBuild

project files. You can also manipulate the configuration settings that accompany your web

deployment package, like connection strings, service endpoints, and IIS destination details.

 Web Deploy, together with the Web Publishing Pipeline, offers lots of extensibility points that

let you customize your deployments. For example, it's easy to exclude unwanted files and

folders from your web deployment packages.

Use the VSDBCMD.exe utility to deploy and update database schemas.

 VSDBCMD allows you to deploy databases from a database schema file (.dbschema), which is

generated when you build a Visual Studio database project. In contrast, the database

deployment functionality included in Web Deploy is more suited to deploying existing databases

from a local SQL Server instance.

 Unlike Visual Studio's functionality for deploying database projects, VSDBCMD lets you deploy

differential updates to an existing target database. This allows you to preserve any existing data

while you upgrade the database schema.

 You can execute VSDBCMD commands from within your custom MSBuild project files.

Content Map

This tutorial includes topics that fall into four main areas.

These topics introduce the reference solution—the Contact Manager solution—and describe how to

download it and configure it on your local machine:

 The Contact Manager Solution

22

 Setting Up the Contact Manager Solution

These topics introduce MSBuild project files, describe how you can create and use custom project files,

and walk through the deployment process for the Contact Manager solution:

 Understanding the Project File

 Understanding the Build Process

These topics describe web application deployment, including how the build and packaging process

works, how the build process integrates with the Web Publishing Pipeline, how to modify deployment

parameters, and how to deploy web packages to destination environments:

 Building and Packaging Web Application Projects

 Configuring Parameters for Web Package Deployment

 Deploying Web Packages

Deploying Database Projects describes the different techniques you can use to deploy Visual Studio

database projects, together with the advantages and disadvantages of each approach. Creating and

Running a Deployment Command File describes how to create a simple command file that encapsulates

your deployment logic and lets you deploy complex solutions as a single-step process.

Finally, Manually Installing Web Packages concludes the tutorial by showing you to import web packages

into IIS.

Key Technologies

The topics in this tutorial primarily use these technologies to manage build and deployment:

 Visual Studio 2010

 MSBuild

 IIS 7.5

 Web Deploy 2.0

 The VSDBCMD.exe database deployment utility

The Contact Manager Solution

This series of tutorials uses a sample solution—the Contact Manager solution—to represent an

enterprise-scale application with a realistic level of complexity. This topic introduces the Contact

Manager solution, describes the key components of the solution, and identifies the challenges in

deploying this kind of application to various destination platforms in an enterprise environment.

23

As you work through the topics in these tutorials, you can use the Contact Manager solution as a

reference implementation that demonstrates how you can meet specific challenges in enterprise

deployment scenarios. The next topic, Setting Up the Contact Manager Solution, describes how to

download and run the solution on your developer workstation.

Solution Overview

The Contact Manager solution consists of four individual projects:

 ContactManager.Mvc. This is an ASP.NET MVC 3 web application project that represents the

entry point for the solution. It offers some basic web application functionality, like providing

users with the ability to create and view contact details. The application relies on a Windows

Communication Foundation (WCF) service to manage contacts and an ASP.NET application

services database to manage authentication and authorization.

 ContactManager.Database. This is a Visual Studio database project. The project defines the

schema for a database that stores contact details.

 ContactManager.Service. This is a WCF web service project. The WCF service exposes an

endpoint that allows callers to perform create, retrieve, update, and delete (CRUD) operations

on the ContactManager database. The service relies on the ContactManager database and the

ContactManager.Common.dll assembly.

 ContactManager.Common. This is a class library project. The WCF service relies on types

defined in this assembly.

The solution also includes a solution folder named Publish. This contains various custom project files and

command files that demonstrate how you can control and manipulate the build and deployment

process. These are covered in more detail later in this tutorial.

At a conceptual level, the components of the solution fit together like this:

24

Note: While the ASP.NET MVC 3 web application uses the ASP.NET membership provider, all the pages

within the web application allow anonymous access. This is clearly not a realistic configuration.

However, the solution is set up in this way to make it easier for you to deploy and test the solution

without configuring user accounts and roles.

Deployment Challenges

The Contact Manager solution illustrates several deployment challenges that are common to lots of

enterprise deployment scenarios:

 The solution consists of multiple dependent projects. You need to deploy these projects

simultaneously.

 Connection strings and service endpoints need to be updated for each environment, and in a lot

of cases this information will not be available to the developer.

 When you deploy the ContactManager database to staging and production environments, you

need to preserve existing data on subsequent deployments.

 When you deploy the ASP.NET application services database, you need to deploy some

configuration data but omit any user account data.

 The projects include some files and folders that should not be deployed. You need to exclude

these files and folders from the deployment process.

 The solution needs to support automated deployment from a Team Foundation Server (TFS)

build server.

25

Conclusion

This topic provided a high-level overview of the Contact Manager solution and identified some of the

inherent deployment challenges that are common to lots of enterprise deployment scenarios. The

remaining topics in this tutorial describe some of the techniques you can use to meet these challenges.

The next topic, Setting Up the Contact Manager Solution, describes how to download and run the

solution on your developer workstation.

Setting Up the Contact Manager Solution

This topic describes how to download and configure the Contact Manager solution to run locally on a

developer workstation.

This topic forms part of a tutorial on web deployment in enterprise scenarios.

System Requirements

To run the Contact Manager solution locally and to perform the other tasks described in this tutorial,

you'll need to install this software on your developer workstation:

 Visual Studio 2010 Service Pack 1, Premium or Ultimate Edition

 Internet Information Services (IIS) 7.5 Express

 SQL Server Express 2008 R2

 IIS Web Deployment Tool (Web Deploy) 2.1 or later

 ASP.NET 4.0

 ASP.NET MVC 3

 .NET Framework 4

 .NET Framework 3.5 SP1

With the exception of Visual Studio 2010, you can download and install the latest versions of all of these

products and components through the Web Platform Installer.

Download and Extract the Solution

You can download the Contact Manager sample application from the MSDN Code Gallery at the

following URL:

http://code.msdn.microsoft.com/Deploying-Web-Applications-9d9093c0

Configure and Run the Solution

To configure and run the Contact Manager solution on your local machine, you'll need to perform these

high-level steps:

http://go.microsoft.com/?linkid=9805118
http://code.msdn.microsoft.com/Deploying-Web-Applications-9d9093c0

26

1. If you don't have one already, create a local ASP.NET application services database with the

membership and role management features enabled.

2. Edit connection strings in the web.config files to point to your local SQL Server Express instance.

3. Run the solution from Visual Studio 2010.

The remainder of this section provides more guidance on how to complete each of these tasks.

To create the application services database

1. Open a Visual Studio 2010 command prompt. To do this, on the Start menu, point to All

Programs, click Microsoft Visual Studio 2010, click Visual Studio Tools, and then click Visual

Studio Command Prompt (2010).

2. At the command prompt, type this command, and then press Enter:

aspnet_regsql –C "Data Source=.\SQLEXPRESS;Integrated Security=true" –A mr –d

CMAppServices

a. Use the –C switch to specify the connection string for your database server.

b. Use the –A switch to specify the application services features you want to add to the

database. In this case, m indicates that you want to add support for the membership

provider and r indicates that you want to add support for the role manager.

c. Use the –d switch to specify a name for your application services database. If you omit

this switch, the utility will create a database with the default name of aspnetdb.

3. When the database has been created successfully, the command prompt will show a

confirmation.

Note: For more information on the aspnet_regsql utility, see ASP.NET SQL Server Registration Tool

(Aspnet_regsql.exe).

http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx

27

The next step is to make sure that the connection strings in the Contact Manager solution point to your

local instance of SQL Server Express.

To update the connection strings

1. Open the Contact Manager solution in Visual Studio 2010.

2. In the Solution Explorer window, expand the ContactManager.Mvc project, and then double-

click the Web.config node.

Note: The ContactManager.Mvc project includes two web.config files. You need to edit the

project-level file.

3. In the connectionStrings element, verify that the connection string named ApplicationServices

points to your local ASP.NET application services database.

XML

<connectionStrings>

 <add name="ApplicationServices"

 connectionString="Data Source=.\SQLEXPRESS;

 Integrated Security=true;

 Initial Catalog=CMAppServices"

 providerName="System.Data.SqlClient" />

</connectionStrings>

4. In the Solution Explorer window, expand the ContactManager.Service project, and then

double-click the Web.config node.

28

5. In the connectionStrings element, in the connection string named ContactManagerContext,

verify that the Data Source property is set to your local instance of SQL Server Express. You

don't need to change anything else in the connection string.

XML

<connectionStrings>

 <add name="ContactManagerContext"

 connectionString="Data Source=.\SQLExpress;

 Initial Catalog=ContactManager;

 Integrated Security=true;

 multipleactiveresultsets=true"

 providerName="System.Data.SqlClient" />

</connectionStrings>

6. Save all open files.

You should now be ready to run the Contact Manager solution on your local machine.

Note: If you follow these steps without first creating an application services database, ASP.NET will

create the database the first time you attempt to create a user. However, manually creating the

database gives you a lot more control over the application services feature set you want to support.

To run the Contact Manager solution

1. In Visual Studio 2010, press F5.

Internet Explorer starts up and requests the URL of the Contact Manager ASP.NET MVC 3

application. By default, the application displays the All Contacts page.

29

2. Add a few contacts, and then verify that the application works as expected.

3. Browse to http://localhost:50114/Account/Register (adjust the URL if you're hosting the

application on a different port). Add a user name, email address, and password, and verify that

you’re able to register an account successfully.

30

4. Browse to http://localhost:50114/Account/LogOn (adjust the URL if you're hosting the

application on a different port). Verify that you're able to log on using the account you just

created.

31

5. Close Internet Explorer to stop debugging.

Conclusion

At this point, the Contact Manager solution should be fully configured to run on your local machine. You

can use the solution as a reference when you work through the other topics in this tutorial.

The next topic, Understanding the Project File, explains how you can use the custom Microsoft Build

Engine (MSBuild) project files within the Contact Manager solution to control the deployment process.

Understanding the Project File

Microsoft Build Engine (MSBuild) project files lie at the heart of the build and deployment process. This

topic starts with a conceptual overview of MSBuild and the project file. It describes the key components

you'll come across when you work with project files, and it works through an example of how you can

use project files to deploy real-world applications.

What you'll learn:

 How MSBuild uses MSBuild project files to build projects.

32

 How MSBuild integrates with deployment technologies, like the Internet Information Services

(IIS) Web Deployment Tool (Web Deploy).

 How to understand the key components of a project file.

 How you can use project files to build and deploy complex applications.

This topic forms part of a tutorial on web deployment in the enterprise.

MSBuild and the Project File

When you create and build solutions in Visual Studio, Visual Studio uses MSBuild to build each project in

your solution. Every Visual Studio project includes an MSBuild project file, with a file extension that

reflects the type of project—for example, a C# project (.csproj), a Visual Basic.NET project (.vbproj), or a

database project (.dbproj). In order to build a project, MSBuild must process the project file associated

with the project. The project file is an XML document that contains all the information and instructions

that MSBuild needs in order to build your project, like the content to include, the platform

requirements, versioning information, web server or database server settings, and the tasks that must

be performed.

MSBuild project files are based on the MSBuild XML schema, and as a result the build process is entirely

open and transparent. In addition, you don't need to install Visual Studio in order to use the MSBuild

engine—the MSBuild.exe executable is part of the .NET Framework, and you can run it from a command

prompt. As a developer, you can craft your own MSBuild project files, using the MSBuild XML schema, to

impose sophisticated and fine-grained control over how your projects are built and deployed. These

custom project files work in exactly the same way as the project files that Visual Studio generates

automatically.

Note: You can also use MSBuild project files with the Team Build service in Team Foundation Server

(TFS). For example, you can use project files in continuous integration (CI) scenarios to automate

deployment to a test environment when new code is checked in. For more information, see

Configuring Team Foundation Server for Automated Web Deployment.

Project File Naming Conventions

When you create your own project files, you can use any file extension you like. However, to make your

solutions easier for others to understand, you should use these common conventions:

 Use the .proj extension when you create a project file that builds projects.

 Use the .targets extension when you create a reusable project file to import into other project

files. Files with a .targets extension typically don't build anything themselves, they simply

contain instructions that you can import into your .proj files.

http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx

33

Integration with Deployment Technologies

If you've worked with web application projects in Visual Studio 2010, like ASP.NET web applications and

ASP.NET MVC web applications, you'll know that these projects include built-in support for packaging

and deploying the web application to a target environment. The Properties pages for these projects

include Package/Publish Web and Package/Publish SQL tabs that you can use to configure how the

components of your application are packaged and deployed. This shows the Package/Publish Web tab:

The underlying technology behind these capabilities is known as the Web Publishing Pipeline (WPP). The

WPP essentially brings MSBuild and Web Deploy together to provide a complete build, package, and

deployment process for your web applications.

The good news is that you can take advantage of the integration points that the WPP provides when you

create custom project files for web projects. You can include deployment instructions in your project

file, which allows you to build your projects, create web deployment packages, and install these

packages on remote servers through a single project file and a single call to MSBuild. You can also call

any other executables as part of your build process. For example, you can run the VSDBCMD.exe

command-line tool to deploy a database from a schema file. Over the course of this topic, you'll see how

you can take advantage of these capabilities to meet the requirements of your enterprise deployment

scenarios.

http://go.microsoft.com/?linkid=9805122

34

Note: For more information on how the web application deployment process works, see ASP.NET Web

Application Project Deployment Overview.

The Anatomy of a Project File

Before you look at the build process in more detail, it’s worth taking a few moments to familiarize

yourself with the basic structure of an MSBuild project file. This section provides an overview of the

more common elements that you’ll encounter when you review, edit, or create a project file. In

particular, you'll learn:

 How to use properties to manage variables for the build process.

 How to use items to identify the inputs to the build process, like code files.

 How to use targets and tasks to provide execution instructions to MSBuild, using properties and

items defined elsewhere in the project file.

This shows the relationship between the key elements in an MSBuild project file:

http://msdn.microsoft.com/en-us/library/dd394698.aspx
http://msdn.microsoft.com/en-us/library/dd394698.aspx

35

The Project Element

The Project element is the root element of every project file. In addition to identifying the XML schema

for the project file, the Project element can include attributes to specify the entry points for the build

process. For example, in the Contact Manager sample solution, the Publish.proj file specifies that the

build should start by calling the target named FullPublish.

XML

<Project ToolsVersion="4.0" DefaultTargets="FullPublish"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

</Project>

Properties and Conditions

A project file typically needs to provide lots of different pieces of information in order to successfully

build and deploy your projects. These pieces of information could include server names, connection

strings, credentials, build configurations, source and destination file paths, and any other information

you want to include to support customization. In a project file, properties must be defined within a

PropertyGroup element. MSBuild properties consist of key-value pairs. Within the PropertyGroup

element, the element name defines the property key and the content of the element defines the

property value. For example, you could define properties named ServerName and ConnectionString to

store a static server name and connection string.

XML

<PropertyGroup>

 <ServerName>FABRIKAM\TEST1</ServerName>

 <ConnectionString>

 Data Source=FABRIKAM\TESTDB;InitialCatalog=ContactManager,...

 </ConnectionString>

</PropertyGroup>

To retrieve a property value, you use the format $(PropertyName). For example, to retrieve the value of

the ServerName property, you would type:

$(ServerName)

Note: You'll see examples of how and when to use property values later in this topic.

Embedding information as static properties in a project file is not always the ideal approach to managing

the build process. In a lot of scenarios, you’ll want to obtain the information from other sources or

empower the user to provide the information from the command prompt. MSBuild allows you to specify

any property value as a command-line parameter. For example, the user could provide a value for

ServerName when he or she runs MSBuild.exe from the command line.

msbuild.exe Publish.proj /p:ServerName=FABRIKAM\TESTWEB1

http://msdn.microsoft.com/en-us/library/bcxfsh87.aspx
http://msdn.microsoft.com/en-us/library/t4w159bs.aspx

36

Note: For more information on the arguments and switches you can use with MSBuild.exe, see

MSBuild Command Line Reference.

You can use the same property syntax to obtain the values of environment variables and built-in project

properties. Lots of commonly used properties are defined for you, and you can use them in your project

files by including the relevant parameter name. For example, to retrieve the current project platform—

for example, x86 or AnyCpu—you can include the $(Platform) property reference in your project file.

For more information, see Macros for Build Commands and Properties, Common MSBuild Project

Properties, and Reserved Properties.

Properties are often used in conjunction with conditions. Most MSBuild elements support the Condition

attribute, which lets you specify the criteria upon which MSBuild should evaluate the element. For

example, consider this property definition:

XML

<PropertyGroup>

 <OutputRoot Condition=" '$(OutputRoot)'=='' ">..\Publish\Out\</OutputRoot>

 ...

</PropertyGroup>

When MSBuild processes this property definition, it first checks to see whether an $(OutputRoot)

property value is available. If the property value is blank—in other words, the user hasn’t provided a

value for this property—the condition evaluates to true and the property value is set to ..\Publish\Out.

If the user has provided a value for this property, the condition evaluates to false and the static property

value is not used.

For more information on the different ways in which you can specify conditions, see MSBuild Conditions.

Items and Item Groups

One of the important roles of the project file is to define the inputs to the build process. Typically, these

inputs are files—code files, configuration files, command files, and any other files that you need to

process or copy as part of the build process. In the MSBuild project schema, these inputs are

represented by Item elements. In a project file, items must be defined within an ItemGroup element.

Just like Property elements, you can name an Item element however you like. However, you must

specify an Include attribute to identify the file or wildcard that the item represents.

XML

<ItemGroup>

 <ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>

</ItemGroup>

By specifying multiple Item elements with the same name, you’re effectively creating a named list of

resources. A good way to see this in action is to take a look inside one of the project files that Visual

Studio creates. For example, the ContactManager.Mvc.csproj file in the sample solution includes a lot of

item groups, each with several identically named Item elements.

http://msdn.microsoft.com/en-us/library/ms164311.aspx
http://msdn.microsoft.com/en-us/library/c02as0cs.aspx
http://msdn.microsoft.com/en-us/library/bb629394.aspx
http://msdn.microsoft.com/en-us/library/bb629394.aspx
http://msdn.microsoft.com/en-us/library/ms164309.aspx
http://msdn.microsoft.com/en-us/library/7szfhaft.aspx
http://msdn.microsoft.com/en-us/library/ms164283.aspx
http://msdn.microsoft.com/en-us/library/646dk05y.aspx

37

XML

<ItemGroup>

 <Reference Include="Microsoft.CSharp" />

 <Reference Include="System.Runtime.Serialization" />

 <Reference Include="System.ServiceModel" />

 ...

</ItemGroup>

<ItemGroup>

 <Compile Include="Controllers\AccountController.cs" />

 <Compile Include="Controllers\ContactsController.cs" />

 <Compile Include="Controllers\HomeController.cs" />

 ...

</ItemGroup>

<ItemGroup>

 <Content Include="Content\Custom.css" />

 <Content Include="CreateDatabase.sql" />

 <Content Include="DropDatabase.sql" />

 ...
</ItemGroup>

In this way, the project file is instructing MSBuild to construct lists of files that need to be processed in

the same way—the Reference list includes assemblies that must be in place for a successful build, the

Compile list includes code files that must be compiled, and the Content list includes resources that must

be copied unaltered. We'll look at how the build process references and uses these items later in this

topic.

Item elements can also include ItemMetadata child elements. These are user-defined key-value pairs

and essentially represent properties that are specific to that item. For example, a lot of the Compile

item elements in the project file include DependentUpon child elements.

XML

<Compile Include="Global.asax.cs">

 <DependentUpon>Global.asax</DependentUpon>

</Compile>

Note: In addition to user-created item metadata, all items are assigned various common metadata on

creation. For more information, see Well-known Item Metadata.

You can create ItemGroup elements within the root-level Project element or within specific Target

elements. ItemGroup elements also support Condition attributes, which lets you tailor the inputs to the

build process according to conditions like the project configuration or platform.

Targets and Tasks

In the MSBuild schema, a Task element represents an individual build instruction (or task). MSBuild

includes a multitude of predefined tasks. For example:

 The Copy task copies files to a new location.

http://msdn.microsoft.com/en-us/library/ms164284.aspx
http://msdn.microsoft.com/en-us/library/ms164313.aspx
http://msdn.microsoft.com/en-us/library/77f2hx1s.aspx

38

 The Csc task invokes the Visual C# compiler.

 The Vbc task invokes the Visual Basic compiler.

 The Exec task runs a specified program.

 The Message task writes a message to a logger.

Note: For full details of the tasks that are available out of the box, see MSBuild Task Reference. For

more information on tasks, including how to create your own custom tasks, see MSBuild Tasks.

Tasks must always be contained within Target elements. A Target element is a set of one or more tasks

that are executed sequentially, and a project file can contain multiple targets. When you want to run a

task, or a set of tasks, you invoke the target that contains them. For example, suppose you have a simple

project file that logs a message.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="LogMessage">

 <Message Text="Hello world!" />

 </Target>

</Project>

You can invoke the target from the command line, by using the /t switch to specify the target.

 msbuild.exe Publish.proj /t:LogMessage

Alternatively, you can add a DefaultTargets attribute to the Project element, to specify the targets that

you want to invoke.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"

 DefaultTargets="FullPublish">

 <Target Name="LogMessage">

 <Message Text="Hello world!" />

 </Target>

</Project>

In this case, you don't need to specify the target from the command line. You can simply specify the

project file, and MSBuild will invoke the FullPublish target for you.

msbuild.exe Publish.proj

Both targets and tasks can include Condition attributes. As such, you can choose to omit entire targets

or individual tasks if certain conditions are met.

Generally speaking, when you create useful tasks and targets, you'll need to refer to the properties and

items that you've defined elsewhere in the project file:

http://msdn.microsoft.com/en-us/library/7z253716.aspx
http://msdn.microsoft.com/en-us/library/ms171466.aspx
http://msdn.microsoft.com/en-us/library/t50z2hka.aspx

39

 To use a property value, type $(PropertyName), where PropertyName is the name of the

Property element or the name of the parameter.

 To use an item, type @(ItemName), where ItemName is the name of the Item element.

Note: Remember that if you create multiple items with the same name, you’re building a list. In

contrast, if you create multiple properties with the same name, the last property value you provide will

overwrite any previous properties with the same name—a property can only contain a single value.

For example, in the Publish.proj file in the sample solution, take a look at the BuildProjects target.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!='true' ">

 <MSBuild Projects="@(ProjectsToBuild)"

 Properties="OutDir=$(OutputRoot);

 Configuration=$(Configuration);

 DeployOnBuild=true;

 DeployTarget=Package"

 Targets="Build" />

</Target>

In this sample, you can observe these key points:

 If the BuildingInTeamBuild parameter is specified and has a value of true, none of the tasks

within this target will be executed.

 The target contains a single instance of the MSBuild task. This task lets you build other MSBuild

projects.

 The ProjectsToBuild item is passed to the task. This item could represent a list of project or

solution files, all defined by ProjectsToBuild item elements within an item group. In this case,

the ProjectsToBuild item refers to a single solution file.

XML

<ItemGroup>

 <ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>

</ItemGroup>

 The property values passed to the MSBuild task include parameters named OutputRoot and

Configuration. These are set to parameter values if they are provided, or static property values

if they are not.

XML

<PropertyGroup>

 ...

 <Configuration Condition=" '$(Configuration)'=='' ">Release

 </Configuration>

 <OutputRoot Condition=" '$(OutputRoot)'=='' ">..\Publish\Out\

 </OutputRoot>

http://msdn.microsoft.com/en-us/library/z7f65y0d.aspx

40

 ...

</PropertyGroup>

You can also see that the MSBuild task invokes a target named Build. This is one of several built-in

targets that are widely used in Visual Studio project files and are available to you in your custom project

files, like Build, Clean, Rebuild, and Publish. You'll learn more about using targets and tasks to control

the build process, and about the MSBuild task in particular, later in this topic.

Note: For more information on targets, see MSBuild Targets.

Splitting Project Files to Support Multiple Environments

Suppose you want to be able to deploy a solution to multiple environments, like test servers, staging

platforms, and production environments. The configuration may vary substantially between these

environments—not just in terms of server names, connection strings, and so on, but also potentially in

terms of credentials, security settings, and lots of other factors. If you need to do this regularly, it's not

really expedient to edit multiple properties in your project file every time you switch the target

environment. Nor is it an ideal solution to require an endless list of property values to be provided to

the build process.

Fortunately there is an alternative. MSBuild lets you split your build configuration across multiple

project files. To see how this works, in the sample solution, notice that there are two custom project

files:

 Publish.proj, which contains properties, items, and targets that are common to all

environments.

 Env-Dev.proj, which contains properties that are specific to a developer environment.

Now notice that the Publish.proj file includes an Import element, immediately beneath the opening

Project tag.

XML

<Import Project="$(TargetEnvPropsFile)"/>

The Import element is used to import the contents of another MSBuild project file into the current

MSBuild project file. In this case, the TargetEnvPropsFile parameter provides the filename of the project

file you want to import. You can provide a value for this parameter when you run MSBuild.

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

This effectively merges the contents of the two files into a single project file. Using this approach, you

can create one project file containing your universal build configuration and multiple supplementary

project files containing environment-specific properties. As a result, simply running a command with a

different parameter value lets you deploy your solution to a different environment.

http://msdn.microsoft.com/en-us/library/ms171462.aspx
http://msdn.microsoft.com/en-us/library/92x05xfs.aspx

41

Splitting your project files in this way is a good practice to follow. It allows developers to deploy to

multiple environments by running a single command, while avoiding the duplication of universal build

properties across multiple project files.

Note: For guidance on how to customize the environment-specific project files for your own server

environments, see Configure Deployment Properties for a Target Environment.

Conclusion

This topic provided a general introduction to MSBuild project files and explained how you can create

your own custom project files to control the build process. It also introduced the concept of splitting

project files into universal build instructions and environment-specific build properties, to make it easy

to build and deploy projects to multiple destinations.

The next topic, Understanding the Build Process, provides more insight into how you can use project

files to control build and deployment by walking you through the deployment of a solution with a

realistic level of complexity.

Further Reading

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:

Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William Bartholomew, ISBN:

978-0-7356-4524-0.

Understanding the Build Process

This topic provides a walkthrough of an enterprise-scale build and deployment process. The approach

described in this topic uses custom Microsoft Build Engine (MSBuild) project files to provide fine-grained

control over every aspect of the process. Within the project files, custom MSBuild targets are used to

run deployment utilities like the Internet Information Services (IIS) Web Deployment Tool

(MSDeploy.exe) and the database deployment utility VSDBCMD.exe.

http://amzn.com/0735645248
http://amzn.com/0735645248

42

Note: The previous topic, Understanding the Project File, described the key components of an MSBuild

project file and introduced the concept of split project files to support deployment to multiple target

environments. If you're not already familiar with these concepts, you should review Understanding the

Project File before you work through this topic.

Build and Deployment Overview

In the Contact Manager solution, three files control the build and deployment process:

 A universal project file (Publish.proj). This contains build and deployment instructions that do

not change between destination environments.

 An environment-specific project file (Env-Dev.proj). This contains build and deployment settings

that are specific to a particular destination environment. For example, you could use the Env-

Dev.proj file to provide settings for a developer or test environment and create an alternative

file named Env-Stage.proj to provide settings for a staging environment.

 A command file (Publish-Dev.cmd). This contains an MSBuild.exe command that specifies which

project files you want to execute. You can create a command file for every destination

environment, where each file contains an MSBuild.exe command that specifies a different

environment-specific project file. This lets the developer deploy to different environments

simply by running the appropriate command file.

In the sample solution, you can find these three files in the Publish solution folder.

Before you look at these files in more detail, let's take a look at how the overall build process works

when you use this approach. At a high level, the build and deployment process looks like this:

43

The first thing that happens is that the two project files—one containing universal build and deployment

instructions, and one containing environment-specific settings—are merged into a single project file.

MSBuild then works through the instructions in the project file. It builds each of the projects in the

solution, using the project file for each project. It then calls out to other tools, like Web Deploy

(MSDeploy.exe) and the VSDBCMD utility to deploy your web content and databases to the target

environment.

From start to finish, the build and deployment process performs these tasks:

1. It deletes the contents of the output directory, in preparation for a fresh build.

2. It builds each project in the solution:

a. For web projects—in this case, an ASP.NET MVC web application and a WCF web

service—the build process creates a web deployment package for each project.

b. For database projects, the build process creates a deployment manifest

(.deploymanifest file) for each project.

3. It uses the VSDBCMD.exe utility to deploy each database project in the solution, using various

properties from the project files—a target connection string and a database name—together

with the .deploymanifest file.

4. It uses the MSDeploy.exe utility to deploy each web project in the solution, using various

properties from the project files to control the deployment process.

44

You can use the sample solution to trace this process in more detail.

Note: For guidance on how to customize the environment-specific project files for your own server

environments, see Configure Deployment Properties for a Target Environment.

Invoking the Build and Deployment Process

To deploy the Contact Manager solution to a developer test environment, the developer runs the

Publish-Dev.cmd command file. This invokes MSBuild.exe, specifying Publish.proj as the project file to

execute and Env-Dev.proj as a parameter value.

msbuild.exe Publish.proj /fl /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

Note: The /fl switch (short for /fileLogger) logs the build output to a file named msbuild.log in the

current directory. For more information, see the MSBuild Command Line Reference.

At this point, MSBuild starts running, loads the Publish.proj file, and starts processing the instructions

within it. The first instruction tells MSBuild to import the project file that the TargetEnvPropsFile

parameter specifies.

XML

<Import Project="$(TargetEnvPropsFile)" />

The TargetEnvPropsFile parameter specifies the Env-Dev.proj file, so MSBuild merges the contents of

the Env-Dev.proj file into the Publish.proj file.

The next elements that MSBuild encounters in the merged project file are property groups. Properties

are processed in the order in which they appear in the file. MSBuild creates a key-value pair for each

property, providing that any specified conditions are met. Properties defined later in the file will

overwrite any properties with the same name defined earlier in the file. For example, consider the

OutputRoot properties.

XML

<OutputRoot Condition=" '$(OutputRoot)'=='' ">..\Publish\Out\</OutputRoot>

<OutputRoot Condition=" '$(BuildingInTeamBuild)'=='true' ">$(OutDir)</OutputRoot>

When MSBuild processes the first OutputRoot element, providing a similarly named parameter has not

been provided, it sets the value of the OutputRoot property to ..\Publish\Out. When it encounters the

second OutputRoot element, if the condition evaluates to true, it will overwrite the value of the

OutputRoot property with the value of the OutDir parameter.

The next element that MSBuild encounters is a single item group, containing an item named

ProjectsToBuild.

XML

<ItemGroup>

 <ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>

</ItemGroup>

http://msdn.microsoft.com/en-us/library/ms164311.aspx

45

MSBuild processes this instruction by building an item list named ProjectsToBuild. In this case, the item

list contains a single value—the path and filename of the solution file.

At this point, the remaining elements are targets. Targets are processed differently from properties and

items—essentially, targets are not processed unless they are either explicitly specified by the user or

invoked by another construct within the project file. Recall that the opening Project tag includes a

DefaultTargets attribute.

XML

<Project ToolsVersion="4.0"

 DefaultTargets="FullPublish"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

This instructs MSBuild to invoke the FullPublish target, if targets are not specified when MSBuild.exe is

invoked. The FullPublish target doesn't contain any tasks; instead it simply specifies a list of

dependencies.

XML

<PropertyGroup>

 <FullPublishDependsOn>

 Clean;

 BuildProjects;

 GatherPackagesForPublishing;

 PublishDbPackages;

 PublishWebPackages;

 </FullPublishDependsOn>

</PropertyGroup>

<Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />

This dependency tells MSBuild that in order to execute the FullPublish target, it needs to invoke this list

of targets in the order provided:

1. It must invoke the Clean target.

2. It must invoke the BuildProjects target.

3. It must invoke the GatherPackagesForPublishing target.

4. It must invoke the PublishDbPackages target.

5. It must invoke the PublishWebPackages target.

The Clean Target

The Clean target basically deletes the output directory and all its contents, as preparation for a fresh

build.

XML

<Target Name="Clean" Condition=" '$(BuildingInTeamBuild)'!='true' ">

 <Message Text="Cleaning up the output directory [$(OutputRoot)]"/>

46

 <ItemGroup>

 <_FilesToDelete Include="$(OutputRoot)***"/>

 </ItemGroup>

 <Delete Files="@(_FilesToDelete)"/>

 <RemoveDir Directories="$(OutputRoot)"/>

</Target>

Notice that the target includes an ItemGroup element. When you define properties or items within a

Target element, you’re creating dynamic properties and items. In other words, the properties or items

aren't processed until the target is executed. The output directory might not exist or contain any files

until the build process begins, so you can't build the _FilesToDelete list as a static item; you have to wait

until execution is underway. As such, you build the list as a dynamic item within the target.

Note: In this case, because the Clean target is the first to be executed, there's no real need to use a

dynamic item group. However, it's good practice to use dynamic properties and items in this type of

scenario, as you might want to execute targets in a different order at some point.

You should also aim to avoid declaring items that will never be used. If you have items that will only be

used by a specific target, consider placing them inside the target to remove any unnecessary overhead

on the build process.

Dynamic items aside, the Clean target is fairly straightforward and makes use of the built-in Message,

Delete, and RemoveDir tasks to:

1. Send a message to the logger.

2. Build a list of files to delete.

3. Delete the files.

4. Remove the output directory.

The BuildProjects Target

The BuildProjects target basically builds all the projects in the sample solution.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!='true' ">

 <MSBuild Projects="@(ProjectsToBuild)"

 Properties="OutDir=$(OutputRoot);

 Configuration=$(Configuration);

 DeployOnBuild=true;

 DeployTarget=Package"

 Targets="Build" />

 </Target>

This target was described in some detail in the previous topic, Understanding the Project File, to

illustrate how tasks and targets reference properties and items. At this point, you're mainly interested in

the MSBuild task. You can use this task to build multiple projects. The task does not create a new

47

instance of MSBuild.exe; it uses the current running instance to build each project. The key points of

interest in this example are the deployment properties:

 The DeployOnBuild property instructs MSBuild to run any deployment instructions in the

project settings when the build of each project is complete.

 The DeployTarget property identifies the target that you want to invoke after the project is

built. In this case, the Package target builds the project output into a deployable web package.

Note: The Package target invokes the Web Publishing Pipeline (WPP), which provides integration

between MSBuild and Web Deploy. If you want to take a look at the built-in targets that the WPP

provides, review the Microsoft.Web.Publishing.targets file in the

%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder.

The GatherPackagesForPublishing Target

If you study the GatherPackagesForPublishing target, you'll notice that it doesn't actually contain any

tasks. Instead, it contains a single item group that defines three dynamic items.

XML

<Target Name="GatherPackagesForPublishing">

 <ItemGroup>

 <PublishPackages

 Include="$(_ContactManagerDest)ContactManager.Mvc.deploy.cmd">

 <WebPackage>true</WebPackage>

 <!-- More item metadata -->

 </PublishPackages>

 <PublishPackages

 Include="$(_ContactManagerSvcDest)ContactManager.Service.deploy.cmd">

 <WebPackage>true</WebPackage>

 <!-- More item metadata -->

 </PublishPackages>

 <DbPublishPackages Include="$(_DbDeployManifestPath)">

 <DbPackage>true</DbPackage>

 <!-- More item metadata -->

 </DbPublishPackages>

 </ItemGroup>

</Target>

These items refer to the deployment packages that were created when the BuildProjects target was

executed. You couldn't define these items statically in the project file, because the files to which the

items refer don't exist until the BuildProjects target is executed. Instead, the items must be defined

dynamically within a target that is not invoked until after the BuildProjects target is executed.

The items are not used within this target—this target simply builds the items and the metadata

associated with each item value. Once these elements are processed, the PublishPackages item will

contain two values, the path to the ContactManager.Mvc.deploy.cmd file and the path to the

48

ContactManager.Service.deploy.cmd file. Web Deploy creates these files as part of the web package for

each project, and these are the files that you must invoke on the destination server in order to deploy

the packages. If you open up one of these files, you'll basically see an MSDeploy.exe command with

various build-specific parameter values.

The DbPublishPackages item will contain a single value, the path to the

ContactManager.Database.deploymanifest file.

Note: A .deploymanifest file is generated when you build a database project, and it uses the same

schema as an MSBuild project file. It contains all the information required to deploy a database,

including the location of the database schema (.dbschema) and details of any pre-deployment and

post-deployment scripts. For more information, see An Overview of Database Build and Deployment.

You'll learn more about how deployment packages and database deployment manifests are created and

used in Building and Packaging Web Application Projects and Deploying Database Projects.

The PublishDbPackages Target

Briefly speaking, the PublishDbPackages target invokes the VSDBCMD utility to deploy the

ContactManager database to a target environment. Configuring database deployment involves lots of

decisions and nuances, and you'll learn more about this in Deploying Database Projects and Customizing

Database Deployments for Multiple Environments. In this topic, we'll focus on how this target actually

functions.

First, notice that the opening tag includes an Outputs attribute.

XML

<Target Name="PublishDbPackages" Outputs="%(DbPublishPackages.Identity)">

This is an example of target batching. In MSBuild project files, batching is a technique for iterating over

collections. The value of the Outputs attribute, "%(DbPublishPackages.Identity)", refers to the Identity

metadata property of the DbPublishPackages item list. This notation,

Outputs=%(ItemList.ItemMetadataName), is translated as:

 Split the items in DbPublishPackages into batches of items that contain the same Identity

metadata value.

 Execute the target once per batch.

Note: Identity is one of the built-in metadata values that is assigned to every item on creation. It refers

to the value of the Include attribute in the Item element—in other words, the path and filename of the

item.

In this case, because there should never be more than one item with the same path and filename, we're

essentially working with batch sizes of one. The target is executed once for every database package.

http://msdn.microsoft.com/en-us/library/aa833165.aspx
http://msdn.microsoft.com/en-us/library/ms164313.aspx

49

You can see a similar notation in the _Cmd property, which builds a VSDBCMD command with the

appropriate switches.

XML

<_Cmd>"$(VsdbCmdExe)"

 /a:Deploy

 /cs:"%(DbPublishPackages.DatabaseConnectionString)"

 /p:TargetDatabase=%(DbPublishPackages.TargetDatabase)

 /manifest:"%(DbPublishPackages.FullPath)"

 /script:"$(_CmDbScriptPath)"

 $(_DbDeployOrScript)

</_Cmd>

In this case, %(DbPublishPackages.DatabaseConnectionString),

%(DbPublishPackages.TargetDatabase), and %(DbPublishPackages.FullPath) all refer to metadata

values of the DbPublishPackages item collection. The _Cmd property is used by the Exec task, which

invokes the command.

XML

<Exec Command="$(_Cmd)"/>

As a result of this notation, the Exec task will create batches based on unique combinations of the

DatabaseConnectionString, TargetDatabase, and FullPath metadata values, and the task will execute

once for each batch. This is an example of task batching. However, because the target-level batching has

already divided our item collection into single-item batches, the Exec task will run once and only once

for each iteration of the target. In other words, this task invokes the VSDBCMD utility once for each

database package in the solution.

Note: For more information on target and task batching, see MSBuild Batching, Item Metadata in

Target Batching, and Item Metadata in Task Batching.

The PublishWebPackages Target

By this point, you've invoked the BuildProjects target, which generates a web deployment package for

each project in the sample solution. Accompanying each package is a deploy.cmd file, which contains the

MSDeploy.exe commands required to deploy the package to the target environment, and a

SetParameters.xml file, which specifies the necessary details of the target environment. You've also

invoked the GatherPackagesForPublishing target, which generates an item collection containing the

deploy.cmd files you're interested in. Essentially, the PublishWebPackages target performs these

functions:

 It manipulates the SetParameters.xml file for each package to include the correct details for the

target environment, using the XmlPoke task.

 It invokes the deploy.cmd file for each package, using the appropriate switches.

http://msdn.microsoft.com/en-us/library/ms171473.aspx
http://msdn.microsoft.com/en-US/library/ms228229.aspx
http://msdn.microsoft.com/en-US/library/ms228229.aspx
http://msdn.microsoft.com/en-us/library/ms171474.aspx

50

Just like the PublishDbPackages target, the PublishWebPackages target uses target batching to ensure

that the target is executed once for each web package.

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

Within the target, the Exec task is used to run the deploy.cmd file for each web package.

XML

<PropertyGroup>

 <_Cmd>

 %(PublishPackages.FullPath)

 $(_WhatifSwitch)

 /M:$(MSDeployComputerName)

 %(PublishPackages.AdditionalMSDeployParameters)

 </_Cmd>

</PropertyGroup>

<Exec Command="$(_Cmd)"/>

For more information on configuring the deployment of web packages, see Building and Packaging Web

Application Projects.

Conclusion

This topic provided a walkthrough of how split project files are used to control the build and deployment

process from start to finish for the Contact Manager sample solution. Using this approach lets you run

complex, enterprise-scale deployments in a single, repeatable step, simply by running an environment-

specific command file.

Further Reading

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:

Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William Bartholomew, ISBN:

978-0-7356-4524-0.

Building and Packaging Web Application Projects

When you want to deploy a web application project to a remote server environment, your first task is to

build the project and generate a web deployment package. This topic describes how the build process

works for web application projects. In particular, it explains:

 How the Web Publishing Pipeline (WPP) extends the build process to include deployment

functionality.

 How the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) turns your web

application into a deployment package.

 How the build and packaging process works and what files are created.

http://amzn.com/0735645248
http://amzn.com/0735645248

51

Web Application Projects and the WPP

In Visual Studio 2010, the build and deployment process for web application projects is supported by the

WPP. The WPP provides a set of Microsoft Build Engine (MSBuild) targets that extend the functionality

of MSBuild and enable it to integrate with Web Deploy. Within Visual Studio, you can see this extended

functionality on the property pages for your web application project. The Package/Publish Web page,

together with the Package/Publish SQL page, lets you configure how your web application project is

packaged for deployment when the build process is complete.

How Does the WPP Work?

If you take a look at the project file for a C#-based web application project, you can see that it imports

two .targets files.

XML

<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />

<Import Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\

 v10.0\WebApplications\Microsoft.WebApplication.targets" />

The first Import statement is common to all Visual C# projects. This file, Microsoft.CSharp.targets,

contains targets and tasks that are specific to Visual C#. For example, the C# compiler (Csc) task is

invoked here. The Microsoft.CSharp.targets file in turn imports the Microsoft.Common.targets file. This

defines targets that are common to all projects, like Build, Rebuild, Run, Compile, and Clean. The

52

second Import statement is specific to web application projects. The Microsoft.WebApplication.targets

file in turn imports the Microsoft.Web.Publishing.targets file. The Microsoft.Web.Publishing.targets file

essentially is the WPP. It defines targets, like Package and MSDeployPublish, that invoke Web Deploy to

complete various deployment tasks.

To understand how these additional targets are used, in the Contact Manager sample solution, open the

Publish.proj file and take a look at the BuildProjects target.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!='true' ">

 <MSBuild Projects="@(ProjectsToBuild)"

 Properties="OutDir=$(OutputRoot);

 Configuration=$(Configuration);

 DeployOnBuild=true;

 DeployTarget=Package"

 Targets="Build" />

</Target>

This target uses the MSBuild task to build various projects. Notice the DeployOnBuild and DeployTarget

properties:

 The DeployOnBuild=true property essentially means "I want to execute an additional target

when build completes successfully."

 The DeployTarget property identifies the name of the target you want to execute when the

DeployOnBuild property is equal to true. In this case, you're specifying that you want MSBuild

to execute the Package target after building the project.

The Package target is defined in the Microsoft.Web.Publishing.targets file. Essentially, this target takes

the build output of your web application project and turns it into a web deployment package that can be

published to an IIS web server.

Note: To view a project file (for example, ContactManager.Mvc.csproj) in Visual Studio 2010, you first

need to unload the project from your solution. In the Solution Explorer window, right-click the project

node, and then click Unload Project. Right-click the project node again, and then click Edit [project

file]). The project file will open in its raw XML form. Remember to reload the project when you're

done.

For more information on MSBuild targets, tasks, and Import statements, see Understanding the

Project File. For a more in-depth introduction to project files and the WPP, see Inside the Microsoft

Build Engine: Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William

Bartholomew, ISBN: 978-0-7356-4524-0.

What Is a Web Deployment Package?

When you build and deploy a web application project, either by using Visual Studio 2010 or by using

MSBuild directly, the end result is typically a web deployment package. The web deployment package is

http://amzn.com/0735645248
http://amzn.com/0735645248

53

a .zip file. It contains everything that IIS and Web Deploy need in order to recreate your web application,

including:

 The compiled output of your web application, including content, resource files, configuration

files, JavaScript and cascading style sheets (CSS) resources, and so on.

 Assemblies for your web application project and for any referenced projects within your

solution.

 SQL scripts to generate any databases that you're deploying with your web application.

Once the web deployment package has been generated, you can publish it to an IIS web server in

various ways. For example, you can deploy it remotely by targeting the Web Deploy Remote Agent

service or the Web Deploy Handler on the destination web server, or you can use IIS Manager to

manually import the package on the destination web server. For more information on these approaches

to deployment, see Choosing the Right Approach to Web Deployment.

How Does the Build Process Work?

This shows what happens when you build and package a web application project:

When you build a web application project, the build process generates a file named [project

name].SourceManifest.xml. Along with the project file and the build output, this .SourceManifest.xml file

tells Web Deploy what it needs to include in the web deployment package. Using these inputs, Web

Deploy generates a web deployment package named [project name].zip.

54

Alongside the web deployment package, the build process generates two files that can help you to use

the package:

 The .deploy.cmd file includes a set of parameterized Web Deploy (MSDeploy.exe) commands

that publish your web deployment package to a remote IIS web server. Running the .deploy.cmd

file, with appropriate parameters, typically provides a quicker and easier alternative to manually

constructing the MSDeploy.exe commands yourself.

 The SetParameters.xml file provides a set of parameter values to the MSDeploy.exe command.

These values include properties like the name of the IIS web application to which you want to

deploy the package, the values of any service endpoints and connection strings defined in the

web.config file, and any deployment property values defined on the project properties pages.

The SetParameters.xml file is key to managing the deployment process. This file is generated

dynamically according to the contents of your web application project. For example, if you add a

connection string to your web.config file, the build process will automatically detect the connection

string, parameterize the deployment accordingly, and create an entry in the SetParameters.xml file to

allow you to modify the connection string as part of the deployment process. The next topic, Configuring

Parameters for Web Package Deployment, explains the role of this file in more detail and describes the

different ways in which you can modify it during build and deployment.

Note: In Visual Studio 2010, the WPP does not support precompiling the pages in a web application

prior to packaging. The next version of Visual Studio and the WPP will include the ability to precompile

a web application as a packaging option.

Conclusion

This topic provided an overview of the build and packaging process for web application projects in Visual

Studio 2010. It described how the WPP lets you invoke Web Deploy commands from MSBuild, and it

explained how the build and packaging process works.

Once you've created a web deployment package, your next step is to deploy it. For more information on

this, see Configuring Parameters for Web Package Deployment and Deploying Web Packages.

Further Reading

The next topics in this tutorial, Configuring Parameters for Web Package Deployment and Deploying

Web Packages, provide guidance on how to use the web package you've created. The final tutorial in

this series, Advanced Enterprise Web Deployment, provides guidance on how to customize and

troubleshoot the packaging process.

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:

Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William Bartholomew, ISBN:

978-0-7356-4524-0.

http://amzn.com/0735645248
http://amzn.com/0735645248

55

Configuring Parameters for Web Package Deployment

This topic describes how to set parameter values, like Internet Information Services (IIS) web application

names, connection strings, and service endpoints, when you deploy a web package to a remote IIS web

server.

Understanding Parameterization

When you build a web application project, the build and packaging process generates three key files:

 A [project name].zip file. This is the web deployment package for your web application project.

This package contains all the assemblies, files, database scripts, and resources required to

recreate your web application on a remote IIS web server.

 A [project name].deploy.cmd file. This contains a set of parameterized Web Deploy

(MSDeploy.exe) commands that publish your web deployment package to a remote IIS web

server.

 A [project name].SetParameters.xml file. This provides a set of parameter values to the

MSDeploy.exe command. You can update the values in this file and pass it to Web Deploy as a

command-line parameter when you deploy your web package.

Note: For more information on the build and packaging process, see Building and Packaging Web

Application Projects.

The SetParameters.xml file is dynamically generated from your web application project file and any

configuration files within your project. When you build and package your project, the Web Publishing

Pipeline (WPP) will automatically detect lots of the variables that are likely to change between

deployment environments, like the destination IIS web application and any database connection strings.

These values are automatically parameterized in the web deployment package and added to the

SetParameters.xml file. For example, if you add a connection string to the web.config file in your web

application project, the build process will detect this change and will add an entry to the

SetParameters.xml file accordingly.

In a lot of cases, this automatic parameterization will be sufficient. However, if your users need to vary

other settings between deployment environments, like application settings or service endpoint URLs,

you need to tell the WPP to parameterize these values in the deployment package and add

corresponding entries to the SetParameters.xml file. The sections that follow explain how to do this.

Automatic Parameterization

When you build and package a web application, the WPP will automatically parameterize these things:

 The destination IIS web application path and name.

 Any connection strings in your web.config file.

56

 Connection strings for any databases you add to the Package/Publish SQL tab in the project

property pages.

For example, if you were to build and package the Contact Manager sample solution without touching

the parameterization process in any way, the WPP would generate this

ContactManager.Mvc.SetParameters.xml file:

XML

<parameters>

 <setParameter

 name="IIS Web Application Name"

 value="Default Web Site/ContactManager.Mvc_deploy" />

 <setParameter

 name="ApplicationServices-Web.config Connection String"

 value="Data Source=DEVWORKSTATION\SQLEXPRESS;Initial Catalog=CMAppServices;

 Integrated Security=true;" />

</parameters>

In this case:

 The IIS Web Application Name parameter is the IIS path where you want to deploy the web

application. The default value is taken from the Package/Publish Web page in the project

property pages.

 The ApplicationServices-Web.config Connection String parameter was generated from a

connectionStrings/add element in the web.config file. It represents the connection string that

the application should use to contact the membership database. The value you provide here will

be substituted into the deployed web.config file. The default value is taken from the pre-

deployment web.config file.

The WPP also parameterizes these properties in the deployment package it generates. You can provide

values for these properties when you install the deployment package. If you install the package

manually through IIS Manager, as described in Manually Installing Web Packages, the installation wizard

prompts you to provide values for any parameters. If you install the package remotely using the

.deploy.cmd file, as described in Deploying Web Packages, Web Deploy will look to this

SetParameters.xml file to provide the parameter values. You can edit the values in the

SetParameters.xml file manually, or you can customize the file as part of an automated build and

deployment process. This process is described in more detail later in this topic.

Custom Parameterization

In more complex deployment scenarios, you'll often want to parameterize additional properties before

you deploy your project. Generally speaking, you should parameterize any properties and settings that

will vary between destination environments. These can include:

 Service endpoints in the web.config file.

57

 Application settings in the web.config file.

 Any other declarative properties that you want to prompt users to specify.

The easiest way to parameterize these properties is to add a parameters.xml file to the root folder of

your web application project. For example, in the Contact Manager solution, the ContactManager.Mvc

project includes a parameters.xml file in the root folder.

If you open this file, you'll see that it contains a single parameter entry. The entry uses an XML Path

Language (XPath) query to locate and parameterize the endpoint URL of the ContactService Windows

Communication Foundation (WCF) service in the web.config file.

XML

<parameters>

 <parameter name="ContactService Service Endpoint Address"

 description="Specify the endpoint URL for the ContactService WCF

 service in the destination environment"

 defaultValue="http://localhost/ContactManagerService">

 <parameterEntry kind="XmlFile" scope="Web.config"

 match="/configuration/system.serviceModel/client

 /endpoint[@name='BasicHttpBinding_IContactService']

 /@address" />

 </parameter>

58

</parameters>

In addition to parameterizing the endpoint URL in the deployment package, the WPP also adds a

corresponding entry to the SetParameters.xml file that gets generated alongside the deployment

package.

XML

<parameters>

 ...

 <setParameter

 name="ContactService Service Endpoint Address"

 value="http://localhost/ContactManagerService" />

 ...

</parameters>

If you install the deployment package manually, IIS Manager will prompt you for the service endpoint

address alongside the properties that were parameterized automatically. If you install the deployment

package by running the .deploy.cmd file, you can edit the SetParameters.xml file to provide a value for

the service endpoint address together with values for the properties that were parameterized

automatically.

For full details on how to create a parameters.xml file, see How to: Use Parameters to Configure

Deployment Settings When a Package is Installed. The procedure named To use deployment

parameters for Web.config file settings provides step-by-step instructions.

Modifying the SetParameters.xml File

If you plan to deploy the web application package manually—either by running the .deploy.cmd file or

by running MSDeploy.exe from the command line—there's nothing to stop you manually editing the

SetParameters.xml file prior to the deployment. However, if you’re working on an enterprise-scale

solution, you may need to deploy a web application package as part of a larger, automated build and

deployment process. In this scenario, you need the Microsoft Build Engine (MSBuild) to modify the

SetParameters.xml file for you. You can do this by using the MSBuild XmlPoke task.

The Contact Manager sample solution illustrates this process. The code examples that follow have been

edited to show only the details that are relevant to this example.

Note: For a broader overview of the project file model in the sample solution, and an introduction to

custom project files in general, see Understanding the Project File and Understanding the Build

Process.

First, the parameter values of interest are defined as properties in the environment-specific project file

(for example, Env-Dev.proj).

XML

<PropertyGroup>

 <ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'=='' ">

 DemoSite/ContactManager

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx

59

 </ContactManagerIisPath>

 <ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'=='' ">

 http://localhost:85/ContactManagerService/ContactService.svc

 </ContactManagerTargetUrl>

 <MembershipConnectionString Condition=" '$(MembershipConnectionString)'=='' ">

 Data Source=TESTDB1;Integrated Security=true;Initial Catalog=CMAppServices

 </MembershipConnectionString>

</PropertyGroup>

Note: For guidance on how to customize the environment-specific project files for your own server

environments, see Configure Deployment Properties for a Target Environment.

Next, the Publish.proj file imports these properties. Because each SetParameters.xml file is associated

with a .deploy.cmd file, and we ultimately want the project file to invoke each .deploy.cmd file, the

project file creates an MSBuild item for each .deploy.cmd file and defines the properties of interest as

item metadata.

XML

<ItemGroup>

 <PublishPackages Include="$(_ContactManagerDest)ContactManager.Mvc.deploy.cmd">

 <ParametersXml>

 $(_ContactManagerDest)ContactManager.Mvc.SetParameters.xml

 </ParametersXml>

 <IisWebAppName>

 $(ContactManagerIisPath)

 </IisWebAppName>

 <MembershipDBConnectionName>

 ApplicationServices-Web.config Connection String

 </MembershipDBConnectionName>

 <MembershipDBConnectionString>

 $(MembershipConnectionString.Replace(";","%3b"))

 </MembershipDBConnectionString>

 <ServiceEndpointParamName>

 ContactService Service Endpoint Address

 </ServiceEndpointParamName>

 <ServiceEndpointValue>

 $(ContactManagerTargetUrl)

 </ServiceEndpointValue>

 </PublishPackages>

 ...

</ItemGroup>

In this case:

 The ParametersXml metadata value indicates the location of the SetParameters.xml file.

 The IisWebAppName value is the IIS path to which you want to deploy the web application.

60

 The MembershipDBConnectionString value is the connection string for the membership

database, and the MembershipDBConnectionName value is the name attribute of the

corresponding parameter in the SetParameters.xml file.

 The ServiceEndpointValue value is the endpoint address for the WCF service on the destination

server, and the ServiceEndpointParamName value is the name attribute of the corresponding

parameter in the SetParameters.xml file.

Finally, in the Publish.proj file, the PublishWebPackages target uses the XmlPoke task to modify these

values in the SetParameters.xml file.

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

 <XmlPoke

 XmlInputPath="%(PublishPackages.ParametersXml)"

 Query="//parameters/setParameter[@name='%(PublishPackages.ConnectionName)']

 /@value"

 Value="%(PublishPackages.ConnectionString)"

 Condition =" '%(PublishPackages.ConnectionName)'!=''"

 />

 <XmlPoke

 XmlInputPath="%(PublishPackages.ParametersXml)"

 Query="//parameters/setParameter

 [@name='%(PublishPackages.MembershipDBConnectionName)']/@value"

 Value='%(PublishPackages.MembershipDBConnectionString)'

 Condition =" '%(PublishPackages.MembershipDBConnectionName)'!=''"

 />

 <XmlPoke

 XmlInputPath="%(PublishPackages.ParametersXml)"

 Query="//parameters/setParameter[@name='IIS Web Application Name']/@value"

 Value="%(PublishPackages.IisWebAppName)"

 Condition =" '%(PublishPackages.IisWebAppName)'!=''"

 />

 <XmlPoke

 XmlInputPath="%(PublishPackages.ParametersXml)"

 Query="//parameters/setParameter

 [@name='%(PublishPackages.ServiceEndpointParamName)']/@value"

 Value="%(PublishPackages.ServiceEndpointValue)"

 Condition =" '%(PublishPackages.ServiceEndpointParamName)'!=''"

 />

 <!--Execute the .deploy.cmd file-->

 ...

</Target>

You'll notice that each XmlPoke task specifies four attribute values:

 The XmlInputPath attribute tells the task where to find the file you want to modify.

 The Query attribute is an XPath query that identifies the XML node you want to change.

61

 The Value attribute is the new value you want to insert into the selected XML node.

 The Condition attribute is the criteria on which the task should run or not run. In these cases,

the condition ensures that you don't try to insert a null or empty value into the

SetParameters.xml file.

Conclusion

This topic described the role of the SetParameters.xml file and explained how it's generated when you

build a web application project. It explained how you can parameterize additional settings by adding a

parameters.xml file to your project. It also described how you can modify the SetParameters.xml file as

part of a larger, automated build process, by using the XmlPoke task in your project files.

The next topic, Deploying Web Packages, describes how you can deploy a web package either by

running the .deploy.cmd file or by using MSDeploy.exe commands directly. In both cases, you can

specify your SetParameters.xml file as a deployment parameter.

Further Reading

For information on how to create web packages, see Building and Packaging Web Application Projects.

For guidance on how to actually deploy a web package, see Deploying Web Packages. For a step-by-step

walkthrough on how to create a parameters.xml file, see How to: Use Parameters to Configure

Deployment Settings When a Package is Installed.

For more general information on parameterization in Web Deploy, see Web Deploy Parameterization in

Action (blog post).

Deploying Web Packages

This topic describes how you can publish web deployment packages to a remote server by using the

Internet Information Services (IIS) Web Deployment Tool (Web Deploy) 2.0.

There are two main ways in which you can deploy a web package to a remote server:

 You can use the MSDeploy.exe command-line utility directly.

 You can run the [project name].deploy.cmd file that the build process generates.

The end result is the same regardless of which approach you use. Essentially, all the .deploy.cmd file

does is to run MSDeploy.exe with some predetermined values, so that you don't have to provide as

much information in order to deploy the package. This simplifies the deployment process. On the other

hand, using MSDeploy.exe directly gives you a lot more flexibility over exactly how your package is

deployed.

Which approach you use will depend on a variety of factors, including how much control you require

over the deployment process and whether you’re targeting the Web Deploy Remote Agent service or

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://go.microsoft.com/?linkid=9805119
http://go.microsoft.com/?linkid=9805119

62

the Web Deploy Handler. This topic explains how to use each approach and identifies when each

approach is appropriate.

The tasks and walkthroughs in this topic assume that:

 You've built and packaged your web application, as described in Building and Packaging Web

Application Projects.

 You've modified the SetParameters.xml file to provide the right parameter values for your

target environment, as described in Configuring Parameters for Web Package Deployment.

Using the .Deploy.cmd File

Running the [project name].deploy.cmd file is the simplest way to deploy a web package. In particular,

using the .deploy.cmd file offers these advantages over using MSDeploy.exe directly:

 You don't need to specify the location of the web deployment package—the .deploy.cmd file

already knows where it is.

 You don't need to specify the location of the SetParameters.xml file—the .deploy.cmd file

already knows where it is.

 You don't need to specify source and destination MSDeploy providers—the .deploy.cmd file

already knows which values to use.

 You don't need to specify MSDeploy operation settings—the .deploy.cmd file adds the

commonly required values to the MSDeploy.exe command automatically.

Before you use the .deploy.cmd file to deploy a web package, you should ensure that:

 The .deploy.cmd file, the [project name].SetParameters.xml file, and the web package ([project

name].zip) are in the same folder.

 Web Deploy (MSDeploy.exe) is installed on the computer that runs the .deploy.cmd file.

The .deploy.cmd file supports various command-line options. When you run the file from a command

prompt, this is the basic syntax:

[project name].deploy.cmd [/T | /Y]

 [/M:<computer name>]

 [/A:<Basic | NTLM>]

 [/U:<user name>]

 [/P:<password>]

 [/L]

 [/G:<true | false>]

 [Additional MSDeploy.exe flags]

63

You must specify either a /T flag or a /Y flag, to indicate whether you want to perform a trial run or a

live deployment respectively (don't use both flags in the same command). This table explains the

purpose of each of these flags.

Flag Description

/T Calls MSDeploy.exe with the –whatif flag, which indicates a trial run. Rather than deploying the

package, it creates a report of what would happen if you did deploy the package.

/Y Calls MSDeploy.exe without the –whatif flag. This deploys the package to the local computer or

the specified destination server.

/M Specifies the destination server name or service URL. For more information on the values you

can provide here, see the Endpoint Considerations section in this topic.

If you omit the /M flag, the package will be deployed to the local computer.

/A Specifies the authentication type that MSDeploy.exe should use to perform the deployment.

Possible values are NTLM and Basic.

If you omit the /A flag, the authentication type defaults to NTLM for deployment to the Web

Deploy Remote Agent service and to Basic for deployment to the Web Deploy Handler.

/U Specifies the user name. This applies only if you’re using basic authentication.

/P Specifies the password. This applies only if you’re using basic authentication.

/L Indicates that the package should be deployed to the local IIS Express instance.

/G Specifies that the package is deployed using the tempAgent provider setting. If you omit the /G

flag, the value defaults to false.

Note: Every time the build process creates a web package, it also creates a file named [project

name].deploy-readme.txt that explains these deployment options.

In addition to these flags, you can specify Web Deploy operation settings as additional .deploy.cmd

parameters. Any additional settings you specify are simply passed through to the underlying

MSDeploy.exe command. For more information on these settings, see Web Deploy Operation Settings.

Suppose you want to deploy the ContactManager.Mvc web application project to a test environment by

running the .deploy.cmd file. Your test environment is configured to use the Web Deploy Remote Agent

service, as described in Configure a Web Server for Web Deploy Publishing (Remote Agent). To deploy

the web application, you need to complete the next steps.

To deploy a web application using the .deploy.cmd file

1. Build and package the web application project, as described in Building and Packaging Web

Application Projects.

2. Modify the ContactManager.Mvc.SetParameters.xml file to contain the correct parameter

values for your test environment, as described in Configuring Parameters for Web Package

Deployment.

http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx

64

3. Open a Command Prompt window and navigate to the location of the

ContactManager.Mvc.deploy.cmd file.

4. Type this command, and then press Enter:

ContactManager.Mvc.deploy.cmd /Y /M:TESTWEB1 /A:NTLM

In this example:

 The /Y flag indicates that you want to actually deploy the package, rather than doing a trial run.

 The /M flag indicates that you want to deploy the package to the server named TESTWEB1.

From this value, MSDeploy.exe will attempt to deploy the package to the Web Deploy Remote

Agent service at http://TESTWEB1/MSDeployAgentService.

 The /A flag indicates that you want to use NTLM authentication. As such, you don't need to

specify a user name and password.

To illustrate how using the .deploy.cmd file simplifies the deployment process, take a look at the

MSDeploy.exe command that gets generated and executed when you run

ContactManager.Mvc.deploy.cmd using the options shown above.

msdeploy.exe

-source:package='C:\Users\matt.FABRIKAM\Desktop\ContactManager-03\ContactManager\

 Publish\Out_PublishedWebsites\ContactManager.Mvc_Package\ContactManager.Mvc.zip' -

dest:auto,computerName='TESTWEB1.fabrikam.net', authtype='NTLM',

 includeAcls='False'

-verb:sync

-disableLink:AppPoolExtension

-disableLink:ContentExtension

-disableLink:CertificateExtension

-setParamFile:"C:\Users\matt.FABRIKAM\Desktop\ContactManager-03\ContactManager\

 Publish\Out_PublishedWebsites\ContactManager.Mvc_Package\

 ContactManager.Mvc.SetParameters.xml"

For more information on using the .deploy.cmd file to deploy a web package, see How to: Install a

Deployment Package Using the deploy.cmd File.

Using MSDeploy.exe

Although using the .deploy.cmd file generally simplifies the deployment process, there are some

situations when it's preferable to use MSDeploy.exe directly. For example:

 If you want to deploy to the Web Deploy Handler as a non-administrator user, you can’t use the

.deploy.cmd file. This is due to a bug in Web Deploy 2.0, as described under Endpoint

Considerations.

 If you want to manually switch between different SetParameters.xml files in different locations,

you may prefer to use MSDeploy.exe directly.

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

65

 If you want to override several MSDeploy.exe command-line arguments, you may prefer to use

MSDeploy.exe directly.

When you use MSDeploy.exe, you need to provide three key pieces of information:

 A –source parameter that indicates where your data is coming from.

 A –dest parameter that indicates where your data is going to.

 A –verb parameter that indicates the operation you want to perform.

MSDeploy.exe relies on Web Deploy providers to process source and destination data. Web Deploy

includes a lot of providers that represent the range of applications and data sources it can work with—

for example, there are providers for SQL Server databases, IIS web servers, certificates, global assembly

cache (GAC) assemblies, various different configuration files, and lots of other types of data. Both the –

source parameter and the –dest parameter must specify a provider, in the form –

source:[providerName]=[location]. When you're deploying a web package to an IIS website, you should

use these values:

 The –source provider is always package. For example:

-source:package='[path to web package]'

 The –dest provider is always auto. For example:

-dest:auto='[server name or service URL]'

 The –verb is always sync.

-verb:sync

In addition, you'll need to specify various other provider-specific settings and general operation settings.

For example, suppose you want to deploy the ContactManager.Mvc web application to a staging

environment. The deployment will target the Web Deploy Handler and must use basic authentication.

To deploy the web application, you need to complete the next steps.

To deploy a web application using MSDeploy.exe

1. Build and package the web application project, as described in Building and Packaging Web

Application Projects.

2. Modify the ContactManager.Mvc.SetParameters.xml file to contain the correct parameter

values for your staging environment, as described in Configuring Parameters for Web Package

Deployment.

3. Open a Command Prompt window and browse to the location of MSDeploy.exe. This is typically

at %PROGRAMFILES%\IIS\Microsoft Web Deploy V2\msdeploy.exe.

4. Type this command, and then press Enter (disregard the line breaks):

http://technet.microsoft.com/en-us/library/dd568989(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569040(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569019(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569016(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569001(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx

66

MSDeploy.exe

 -source:package="[path]\ContactManager.Mvc.zip"

 -dest:auto,

 computerName="https://stageweb1:8172/MSDeploy.axd?site=DemoSite",

 username="FABRIKAM\stagingdeployer",

 password="Pa$$w0rd",

 authtype="Basic",

 includeAcls="False"

 -verb:sync

 -disableLink:AppPoolExtension

 -disableLink:ContentExtension

 -disableLink:CertificateExtension

 -setParamFile:"[path]\ContactManager.Mvc.SetParameters.xml"

 -allowUntrusted

In this example:

 The –source parameter specifies the package provider and indicates the location of the web

package.

 The –dest parameter specifies the auto provider. The computerName setting provides the

service URL of the Web Deploy Handler on the destination server. The authtype setting

indicates that you want to use basic authentication, and as such you need to provide a

username and a password. Finally, the includeAcls="False" setting indicates that you don't

want to copy the access control lists (ACLs) of the files in your source web application to the

destination server.

 The –verb:sync argument indicates that you want to replicate the source content on the

destination server.

 The –disableLink arguments indicate that you don't want to replicate application pools, virtual

directory configuration, or Secure Sockets Layer (SSL) certificates on the destination server. For

more information, see Web Deploy Link Extensions.

 The –setParamFile parameter provides the location of the SetParameters.xml file.

 The –allowUntrusted switch indicates that Web Deploy should accept SSL certificates that were

not issued by a trusted certification authority. If you're deploying to the Web Deploy Handler,

and you've used a self-signed certificate to secure the service URL, you need to include this

switch.

Automating Web Package Deployment

In a lot of enterprise scenarios, you'll want to deploy your web packages as part of a larger single-step or

automated deployment. Regardless of whether you choose to deploy your web packages by running the

.deploy.cmd file or by using MSDeploy.exe directly, you can parameterize your commands and call them

from a target in a Microsoft Build Engine (MSBuild) project file.

http://technet.microsoft.com/en-us/library/dd569028(WS.10).aspx

67

In the Contact Manager sample solution, take a look at the PublishWebPackages target in the

Publish.proj file. This target runs once for each .deploy.cmd file identified by an item list named

PublishPackages. The target uses properties and item metadata to build up a full set of argument values

for each .deploy.cmd file and then uses the Exec task to run the command.

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

 ...

 <PropertyGroup>

 <_WhatIfSwitch>/Y</_WhatIfSwitch>

 <_WhatIfSwitch Condition=" '$(_WhatIf)'=='true' ">/T</_WhatIfSwitch>

 <_Cmd>

 %(PublishPackages.FullPath) $(_WhatifSwitch) /M:$(MSDeployComputerName)

 /U:$(MSDeployUsername) /P:$(Password) /A:$(MSDeployAuth)

 %(PublishPackages.AdditionalMSDeployParameters)

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

</Target>

Note: For a broader overview of the project file model in the sample solution, and an introduction to

custom project files in general, see Understanding the Project File and Understanding the Build

Process.

Endpoint Considerations

Regardless of whether you deploy your web package by running the .deploy.cmd file or by using

MSDeploy.exe directly, you need to specify a computer name or a service endpoint for your

deployment.

If the destination web server is configured for deployment using the Web Deploy Remote Agent service,

you specify the target service URL as your destination.

http://[server name]/MSDeployAgentService

Alternatively, you can specify the server name alone as your destination, and Web Deploy will infer the

remote agent service URL.

[server name]

If the destination web server is configured for deployment using the Web Deploy Handler, you need to

specify the endpoint address of the IIS Web Management Service (WMSvc) as your destination. By

default, this takes the form:

https://[server name]:8172/MSDeploy.axd

You can target any of these endpoints using either the .deploy.cmd file or MSDeploy.exe directly.

However, if you want to deploy to the Web Deploy Handler as a non-administrator user, as described in

68

Configure a Web Server for Web Deploy Publishing (Web Deploy Handler), you need to add a query

string to the service endpoint address.

https://[server name]:8172/MSDeploy.axd?site=[IIS website name]

This is because the non-administrator user doesn't have server-level access to IIS; he or she only has

access to a specific IIS website. At the time of writing, due to a bug in the Web Publishing Pipeline

(WPP), you can't run the .deploy.cmd file using an endpoint address that includes a query string. In this

scenario, you need to deploy your web package by using MSDeploy.exe directly.

Note: For more information on the Web Deploy Remote Agent service and the Web Deploy Handler,

see Choosing the Right Approach to Web Deployment. For guidance on how to configure your

environment-specific project files to deploy to these endpoints, see Configure Deployment Properties

for a Target Environment.

Authentication Considerations

Regardless of whether you deploy your web package by running the .deploy.cmd file or by using

MSDeploy.exe directly, you need to specify an authentication type. Web Deploy accepts two possible

values: NTLM or Basic. If you specify basic authentication, you also need to provide a user name and

password. There are various factors you need to be aware of when you select an authentication type:

 If you're deploying to the Web Deploy Remote Agent service, you must use NTLM

authentication. The remote agent service doesn't accept basic authentication credentials.

 If you're deploying to the Web Deploy Handler, you can use either NTLM or basic

authentication. The default setting is basic authentication. Although basic authentication relies

on user names and passwords being transmitted in plain text, your credentials are protected as

the Web Deploy Handler always uses SSL encryption.

 If your web package includes a database, and the web server and database server are separate

machines, you won’t be able to deploy the database using NTLM authentication due to the

NTLM "double-hop" limitation. You need to either use SQL Server credentials in your

deployment connection string or supply basic authentication credentials to Web Deploy. This

issue is described in more detail in Deploying Membership Databases to Enterprise

Environments.

Conclusion

This topic described how you can deploy a web package either by running the .deploy.cmd file or by

using MSDeploy.exe directly. It explained when each approach might be appropriate, and it described

how you can parameterize and run a deployment command as part of a larger single-step or automated

build process.

http://go.microsoft.com/?linkid=9805120

69

Further Reading

For guidance on how to create and parameterize a web deployment package, see Building and

Packaging Web Application Projects and Configuring Parameters for Web Package Deployment. For

guidance on how to build and deploy web packages from a Team Foundation Server (TFS) instance, see

Configuring Team Foundation Server for Automated Web Deployment. For information on how to

customize and troubleshoot the deployment process, see Excluding Files and Folders from Deployment.

Deploying Database Projects

This topic explains the build and deployment process for database projects in Visual Studio 2010. It also

describes how you can use the Microsoft Build Engine (MSBuild) and VSDBCMD.exe to gain more control

over database deployment.

If you want to control how your database projects are deployed, and customize your deployment for

different destination environments, you first need to understand how the build process works and what

deployment options are available to you. This topic will help you to understand these key aspects of

building and deploying database projects:

 What are the inputs to the build process?

 What are the outputs from the build process?

 What are the deployment options for database projects?

 What are the touch points for modifying a database project deployment?

Note: In lots of enterprise deployment scenarios, you need the ability to publish incremental updates

to a deployed database. The alternative is to recreate the database on every deployment, which

means you lose any data in the existing database. When you work with Visual Studio 2010, using

VSDBCMD is the recommended approach to incremental database publishing. However, the next

version of Visual Studio and the Web Publishing Pipeline (WPP) will include tooling that supports

incremental publishing directly.

Understanding the Build Process

If you open the Contact Manager sample solution in Visual Studio 2010, you'll see that the database

project includes a Properties folder that contains four files.

70

Together with the project file (ContactManager.Database.dbproj in this case), these files control various

aspects of the build and deployment process:

 The Database.sqlcmdvars file provides values for any SQLCMD variables you use when you

deploy the project. Each solution configuration (for example, debug and release) can specify a

different .sqlcmdvars file.

 The Database.sqldeployment file provides deployment-specific settings, like whether to use the

collation defined in your project or the collation of the destination server, whether to recreate

the destination database every time or simply amend the existing database to bring it up to

date, and so on. Each solution configuration can specify a different .sqldeployment file.

 The Database.sqlpermissions file is an XML document that you can use to define any

permissions you want to add to the target database. All solution configurations share the same

.sqlpermissions file.

 The Database.sqlsettings file specifies the database-level properties to use when creating the

database, like the collation to use, the behavior of comparison operators, and so on. All solution

configurations share the same .sqlsettings file.

It's worth taking a moment to open these files in Visual Studio and familiarize yourself with the

contents.

When you build a database project, the build process creates two files:

 A database schema (.dbschema file). This describes the schema of the database you want to

create in XML format.

 A deployment manifest (.deploymanifest file). This contains all the information required to

create and deploy your database. It references the .dbschema file along with other resources,

like the deployment instructions (the .sqldeployment file) and any pre-deployment or post-

deployment SQL scripts.

71

This shows the relationship between these resources:

As you can see, the .sqlsettings file and the .sqlpermissions file are inputs to the build process. Along

with the database project file, these files are used to create the database schema file. The

.sqldeployment file and the .sqlcmdvars file pass through the build process unchanged. The deployment

manifest indicates the location of the database schema, the .sqldeployment file, the .sqlcmdvars file,

and any pre-deployment or post-deployment SQL scripts.

Why Use VSDBCMD to Deploy a Database Project?

There are various different approaches to deploying database projects. However, not all of them are

suitable for deploying a database project to remote servers in an enterprise environment. Consider what

you want from a database project deployment. In enterprise deployment scenarios, you're likely to

want:

 The ability to deploy the database project from a remote location.

72

 The ability to make incremental updates to an existing database.

 The ability to include pre-deployment scripts or post-deployment scripts.

 The ability to tailor the deployment to multiple destination environments.

 The ability to deploy the database project as part of a larger, typically scripted, single-step

solution deployment.

There are three main approaches you can use to deploy a database project:

 You can use the deployment functionality with the database project type in Visual Studio 2010.

When you build and deploy a database project in Visual Studio 2010, the deployment process

uses the deployment manifest to generate a SQL-based deployment file specific to the build

configuration. This will create the database if it doesn't already exist or make any necessary

changes to the database if it does already exist. You can use SQLCMD.exe to run this file on your

destination server, or you can set Visual Studio to create and run the file. The disadvantage of

this approach is that you have only limited control over the deployment settings. You may often

also need to modify the SQL deployment file to provide environment-specific variable values.

You can only use this approach from a computer with Visual Studio 2010 installed, and the

developer would need to know and provide connection strings and credentials for all

destination environments.

 You can use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) to

deploy a database as part of a web application project. However, this approach is a lot more

complex if you want to deploy a database project rather than simply replicate an existing local

database on a destination server. You can configure Web Deploy to run the SQL deployment

script that the database project generates, but in order to do this, you need to create a custom

WPP targets file for your web application project. This adds a substantial amount of complexity

to the deployment process. In addition, Web Deploy does not directly support incremental

updates to existing databases. For more information on this approach, see Extending the Web

Publishing Pipeline to package database project deployed SQL file.

 You can use the VSDBCMD utility to deploy the database, using either the database schema or

the deployment manifest. You can call VSDBCMD.exe from an MSBuild target, which lets you

publish databases as part of a larger, scripted deployment process. You can override the

variables in your .sqlcmdvars file and lots of other database properties from a VSDBCMD

command, which allows you to customize your deployment for different environments without

creating multiple build configurations. VSDBCMD provides differentiation functionality, which

means it will make only the necessary changes to align a destination database with your

database schema. VSDBCMD also offers a wide range of command-line options, which give you

fine-grained control over the deployment process.

http://msdn.microsoft.com/en-us/library/dd465343.aspx
http://go.microsoft.com/?linkid=9805121
http://go.microsoft.com/?linkid=9805121

73

From this overview, you can see that using VSDBCMD with MSBuild is the approach best suited to a

typical enterprise deployment scenario:

 Visual Studio 2010 Web Deploy 2.0 VSDBCMD.exe

Supports remote deployment? Yes Yes Yes

Supports incremental updates? Yes No Yes

Supports pre/post-deployment scripts? Yes Yes Yes

Supports multi-environment deployment? Limited Limited Yes

Supports scripted deployment? Limited Yes Yes

The remainder of this topic describes the use of VSDBCMD with MSBuild to deploy database projects.

Understanding the Deployment Process

The VSDBCMD utility lets you deploy a database using either the database schema (the .dbschema file)

or the deployment manifest (the .deploymanifest file). In practice, you'll almost always use the

deployment manifest, as the deployment manifest lets you provide default values for various

deployment properties and identify any pre-deployment or post-deployment SQL scripts you want to

run. For example, this VSDBCMD command is used to deploy the ContactManager database to a

database server in a test environment:

vsdbcmd.exe /a:Deploy

 /manifest:"…\ContactManager.Database.deploymanifest"

 /cs:"Data Source=TESTDB1;Integrated Security=true"

 /p:TargetDatabase=ContactManager

 /dd+

 /script:"…\Publish-ContactManager-Db.sql"

In this case:

 The /a (or /Action) switch specifies what you want VSDBCMD to do. You can set this to Import

or Deploy. The Import option is used to generate a .dbschema file from an existing database,

and the Deploy option is used to deploy a .dbschema file to a target database.

 The /manifest (or /ManifestFile) switch identifies the .deploymanifest file you want to deploy.

If you wanted to use the .dbschema file instead, you'd use the /model (or /ModelFile) switch.

 The /cs (or /ConnectionString) switch provides the connection string for the target database

server. Note that this doesn't include the name of the database—VSDBCMD needs to connect

to the server to create the database; it doesn't need to connect to an individual database. If

your .deploymanifest file includes a connection string, you can omit this switch. If you use the

switch anyway, the switch value will override the .deploymanifest value.

 The /p:TargetDatabase property provides the name you want to assign to the target database

on creation. This overrides the value of the TargetDatabase property in the .deploymanifest file.

74

You can use the /p:[property name] syntax to set a wide variety of deployment properties and

to override any SQLCMD variables declared in your .sqlcmdvars file.

 The /dd+ (or /DeployToDatabase+) switch indicates that you want to create a deployment and

deploy it to the target environment. If you specify /dd-, or omit the switch, VSDBCMD will

generate a deployment script but will not deploy it to the target environment. This switch is

often the source of confusion and is explained in more detail in the next section.

 The /script (or /DeploymentScriptFile) switch specifies where you want to generate the

deployment script. This value does not affect the deployment process.

For more information on VSDBCMD, see Command-Line Reference for VSDBCMD.EXE (Deployment and

Schema Import) and How to: Prepare a Database for Deployment From a Command Prompt by Using

VSDBCMD.EXE.

For an example of how you can use VSDBCMD from an MSBuild project file, see Understanding the Build

Process. For examples of how to configure database deployment settings for multiple environments, see

Customizing Database Deployments for Multiple Environments.

Understanding the DeployToDatabase Switch

The behavior of the /dd or /DeployToDatabase switch depends on whether you’re using VSDBCMD with

a .dbschema file or a .deploymanifest file. If you're using a .dbschema file, the behavior is fairly

straightforward:

 If you specify /dd+ or /dd, VSDBCMD will generate a deployment script and deploy the

database.

 If you specify /dd- or omit the switch, VSDBCMD will generate a deployment script only.

If you're using a .deploymanifest file, the behavior is a lot more complicated. This is because the

.deploymanifest file contains a property name DeployToDatabase that also determines whether the

database is deployed.

XML

<DeployToDatabase>False</DeployToDatabase>

The value of this property is set according to the properties of the database project. If you set the

Deploy action to Create a deployment script (.sql), the value will be False. If you set the Deploy action

to Create a deployment script (.sql) and deploy to the database, the value will be True.

Note: These settings are associated with a specific build configuration and platform. For example, if

you configure settings for the Debug configuration and then publish using the Release configuration,

your settings will not be used.

http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx

75

Note: In this scenario, the Deploy action should always be set to Create a deployment script (.sql),

because you don't want Visual Studio 2010 to deploy your database. In other words, the

DeployToDatabase property should always be False.

When a DeployToDatabase property is specified, the /dd switch will only override the property if the

property value is false:

 If the DeployToDatabase property is False, and you specify /dd+ or /dd, VSDBCMD will override

the DeployToDatabase property and deploy the database.

 If the DeployToDatabase property is False, and you specify /dd- or omit the switch, VSDBCMD

will not deploy the database.

 If the DeployToDatabase property is True, VSDBCMD will ignore the switch and deploy the

database.

 A deployment script is generated in each case, regardless of whether you're deploying the

database as well.

Conclusion

This topic provided an overview of the build and deployment process for database projects in Visual

Studio 2010. It also described how you can use VSDBCMD.exe with MSBuild to support enterprise-scale

database deployment.

For more information on how this works in practice, see Customizing Database Deployments for

Multiple Environments.

Further Reading

For information on how to customize database deployments by creating a separate deployment

configuration file for each environment, see Customizing Database Deployments for Multiple

76

Environments. For guidance on how to configure database role memberships by running a post-

deployment script, see Deploying Database Role Memberships to Test Environments. For guidance on

managing some of the unique challenges that membership databases impose, see Deploying

Membership Databases to Enterprise Environments.

These topics on MSDN provide broader guidance and background information on Visual Studio database

projects and the database deployment process:

 Visual Studio 2010 SQL Server Database Projects

 Managing Database Change

 How to: Prepare a Database for Deployment From a Command Prompt by Using VSDBCMD.EXE

 An Overview of Database Build and Deployment

Creating and Running a Deployment Command File

This topic describes how to build a command file that will let you run a deployment using Microsoft

Build Engine (MSBuild) project files as a single-step, repeatable process.

Process Overview

In this topic, you'll learn how to create and run a command file that uses these project files to perform a

repeatable deployment to your target environment. Essentially, the command file simply needs to

contain an MSBuild command that:

 Tells MSBuild to execute the environment-agnostic Publish.proj file.

 Tells the Publish.proj file which file contains the environment-specific project settings and

where to find it.

Create an MSBuild Command

As described in Understanding the Build Process, the environment-specific project file—for example,

Env-Dev.proj—is designed to be imported into the environment-agnostic Publish.proj file at build time.

Together, these two files provide a complete set of instructions that tell MSBuild how to build and

deploy your solution.

The Publish.proj file uses an Import element to import the environment-specific project file.

XML

<Import Project="$(TargetEnvPropsFile)"/>

As such, when you use MSBuild.exe to build and deploy the Contact Manager solution, you need to:

 Run MSBuild.exe on the Publish.proj file.

http://msdn.microsoft.com/en-us/library/ff678491.aspx
http://msdn.microsoft.com/en-us/library/aa833404.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx
http://msdn.microsoft.com/en-us/library/aa833165.aspx

77

 Specify the location of the environment-specific project file by supplying a command-line

parameter named TargetEnvPropsFile.

To do this, your MSBuild command should resemble this:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

From here, it's a simple step to move to a repeatable, single-step deployment. All you need to do is to

add your MSBuild command to a .cmd file. In the Contact Manager solution, the Publish folder includes

a file named Publish-Dev.cmd that does exactly this.

%windir%\Microsoft.NET\Framework\v4.0.30319\msbuild.exe Publish.proj /fl

/p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

echo

pause

Note: The /fl switch instructs MSBuild to create a log file named msbuild.log in the working directory

in which MSBuild.exe was invoked.

To deploy or redeploy the Contact Manager solution, all you need to do is run the Publish-Dev.cmd file.

When you run the file, MSBuild will:

 Build all the projects in the solution.

 Generate deployable web packages for the web application projects.

 Generate .dbschema and .deploymanifest files for the database projects.

 Deploy the web packages to the web server.

 Deploy the database to the database server.

Run the Deployment

When you've created a command file for your target environment, you should be able to complete the

entire deployment by simply running the file.

To deploy the Contact Manager solution to your test environment

1. On your developer workstation, open Windows Explorer, and then browse to the location of the

Publish-Dev.cmd file.

2. Double-click the file to run it.

3. If an Open File – Security Warning dialog box appears, click Run.

4. If your configuration settings and test servers are set up correctly, the Command Prompt

window will show a Build succeeded message when MSBuild has finished processing the project

files.

78

5. If this is the first time you've deployed the solution to this environment, you'll need to add the

test web server machine account to the db_datawriter and db_datareader roles on the

ContactManager database. This procedure is described in Configure a Database Server for Web

Deploy Publishing.

Note: You only need to assign these permissions when you create the database. By default,

the build process will not recreate the database on every deployment—instead, it will

compare the existing database to the latest schema and make only the changes required. As a

result, you should only need to map these database roles the first time you deploy the

solution.

6. Open Internet Explorer and browse to the URL of the Contact Manager application (for

example, http://testweb1:85/ContactManager/).

7. Verify that the application works as expected and you’re able to add contacts.

79

Conclusion

Creating a command file containing your MSBuild instructions provides you with a quick and easy way of

building and deploying a multi-project solution to a specific destination environment. If you need to

repeatedly deploy your solution to multiple destination environments, you can create multiple

command files. In each command file, the MSBuild command will build the same universal project file,

but it will specify a different environment-specific project file. For example, a command file to publish to

a developer or test environment might contain this MSBuild command:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

A command file to publish to a staging environment might contain this MSBuild command:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj

Note: For guidance on how to customize the environment-specific project files for your own server

environments, see Configure Deployment Properties for a Target Environment.

You can also customize the build process for each environment by overriding properties or setting

various other switches in your MSBuild command. For more information, see MSBuild Command Line

Reference.

Manually Installing Web Packages

This topic describes how to manually import a web deployment package into Internet Information

Services (IIS).

http://msdn.microsoft.com/en-us/library/ms164311.aspx
http://msdn.microsoft.com/en-us/library/ms164311.aspx

80

The topic Building and Packaging Web Application Projects described how the IIS Web Deployment Tool

(Web Deploy), in conjunction with the Microsoft Build Engine (MSBuild) and the Web Publishing Pipeline

(WPP), lets you package your web application projects into a single zip file. This file, commonly known as

a web deployment package (or simply a deployment package), contains all the content and

configuration information that IIS needs in order to re-create your web application on a web server.

Once you've created a web deployment package, you can publish it to an IIS server in various ways. In a

lot of scenarios, you'll want to take advantage of the integration points between MSBuild, the WPP, and

Web Deploy to create and install web packages remotely as part of an automated or single-step build

and deployment process. This process is described in Deploying Web Packages. However, this isn't

always possible. Suppose you want to deploy a web application to an Internet-facing production

environment. For security reasons, such a production environment is at the very least likely to be behind

a firewall on a subnet that is separate from the build server, in a perimeter network (also known as

DMZ, demilitarized zone, and screened subnet). In lots of cases, the production environment will be on a

separate domain or on a physically isolated network.

In these scenarios, your only option may be to port the web package onto the destination server and

manually import it into IIS. Although this approach precludes automated deployment, it's still a highly

effective technique for publishing a web application—you simply copy a single zip file to your web server

and use a wizard to guide you through the import process.

Task Overview

You'll need to complete these high-level tasks to import a web deployment package into IIS:

 Create a web deployment package using the MSBuild command line, Team Build, or Visual

Studio 2010.

 Copy the web package to the destination web server.

 Use the Import Application Package Wizard in IIS Manager to install the web package and

provide values for variables like connection strings and service endpoints.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic

assume that you're already familiar with the concepts behind web packages, Web Deploy, and the WPP.

For more information, see Building and Packaging Web Application Projects.

Note: This topic is best used in conjunction with Configure a Web Server for Web Deploy Publishing

(Offline Deployment), which explains how to install the required components and prepare an IIS

website for package import.

Create a Web Deployment Package

The first task is to create a web deployment package for the web application project you want to deploy.

You can create web packages in a variety of ways.

Approach 1: Create a package as part of the build process with Visual Studio

81

You can configure your web application project to create a web deployment package after every build

through the Package/Publish Web tab on the project property pages. This process is described in

Building and Packaging Web Application Projects.

Approach 2: Create a package as part of the build process with MSBuild

If you build your web application project by using MSBuild directly, either through a custom MSBuild

project file or from the command line, you can create a web deployment package as part of the build

process by including the DeployOnBuild=true and DeployTarget=Package properties in your command.

This process is described in Understanding the Build Process.

Approach 3: Create a package on demand in Visual Studio

You can create a web deployment package for a web application project at any time in Visual Studio

2010. To do this, in the Solution Explorer window, right-click your web application project, and then

click Build Deployment Package.

Approach 4: Create a package on demand from the command line

You can create a web deployment package from the command line by invoking the Package target on

your web application project using MSBuild. The command should resemble this:

MSBuild.exe [Path to your project].[csproj/vbproj] /T:Package

Whichever approach you use, the end result is the same. The WPP creates a web deployment package

as a zip file, together with various supporting resources, in the output folder for your web application

project.

82

When you're planning to import the web package manually, you require only the zip file. Copy this file to

your target web server and you can begin the import process.

Import a Web Package into IIS

You can use the next procedure to import a web deployment package from the local file system into an

IIS website. Before you perform this procedure, ensure that you have:

 Copied the web deployment package to the web server.

 Configured an IIS web server to host your application.

For more information on configuring an IIS web server to support web deployment packages, see

Configure a Web Server for Web Deploy Publishing (Offline Deployment).

To import a web deployment package using IIS Manager

1. In IIS Manager, in the Connections pane, right-click your IIS website, point to Deploy, and then

click Import Application.

83

2. In the Import Application Package Wizard, on the Select the Package page, browse to the

location of your web deployment package, and then click Next.

3. On the Select the Contents of the Package page, clear any content that you don't require, and

then click Next.

84

Note: In a lot of cases, you may not want to import everything that comes with a web

deployment package. For example, you may not want to allow Web Deploy to replace the

associated database.

The Grant permissions entries set permissions on the destination file system to ensure that

the application pool identity can access the physical folder that stores the website content. In

addition, the anonymous authentication user is granted read permission to the folder to let

the application serve Multipurpose Internet Mail Extensions (MIME) type files. If you prefer,

you can remove these entries and configure permissions manually.

4. On the Enter Application Package Information page, provide the requested information.

85

When you create a web package, the WPP analyzes the configuration file for your application

and detects any variables, like connection strings and service endpoints. In this case:

a. Application Path is the IIS path where you want to install your application. This setting is

common to all deployment packages that the WPP creates.

b. ContactService Service Endpoint Address is the address that the application should use

to communicate with the deployed WCF service. This setting corresponds to an entry in

the web.config file.

c. The first Connection String setting is the connection string that Web Deploy should use

to deploy the database associated with the application (in this case an ASP.NET

membership database). This setting corresponds to the setting on the Package/Publish

SQL tab in Visual Studio.

d. The second Connection String setting is the connection string that your application will

actually use to communicate with the database when it's up and running. This

corresponds to a connection string entry in the web.config file.

Note: For more information on where these parameters come from, see Configuring

Parameters for Web Package Deployment.

5. Click Next.

6. If this is not the first time you've deployed the application to this website, you'll be prompted to

specify whether you want to delete all existing content prior to installation. Choose the option

that's appropriate for your requirements, and then click Next.

86

7. When IIS has finished installing the package, click Finish.

At this point, you've successfully published your web application to IIS.

87

Conclusion

This topic described how to import a web deployment package into an IIS website using IIS Manager.

This approach to web application publishing is appropriate when security or infrastructure constraints

make remote deployment impossible or undesirable.

Further Reading

For guidance on how to configure an IIS web server to support manually importing a web package, see

Configure a Web Server for Web Deploy Publishing (Offline Deployment). For more general guidance on

deploying web packages, see Walkthrough: Deploying a Web Application Project Using a Web

Deployment Package (Part 1 of 4).

http://msdn.microsoft.com/en-us/library/dd483479.aspx
http://msdn.microsoft.com/en-us/library/dd483479.aspx

88

Configuring Server Environments for Web Deployment

This tutorial will show you how to set up server environments to support one-click, or automated,

website deployment and publishing in various different scenarios. The tutorial includes topics to walk

you through completing various tasks, like configuring a web server to support specific approaches to

deployment and setting up a Web Farm Framework (WFF) server farm, together with scenario-based

overviews that provide higher-level end-to-end guidance.

The tutorial uses the Fabrikam, Inc. deployment scenario described in Enterprise Web Deployment:

Scenario Overview as a reference point for examples and network infrastructure.

How to Use This Tutorial

This tutorial includes these topics:

 Choosing the Right Approach to Web Deployment

 Scenario: Configuring a Test Environment for Web Deployment

 Scenario: Configuring a Staging Environment for Web Deployment

 Scenario: Configuring a Production Environment for Web Deployment

 Configuring a Web Server for Web Deploy Publishing (Remote Agent)

 Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler)

 Configuring a Web Server for Web Deploy Publishing (Offline Deployment)

 Configuring a Database Server for Web Deploy Publishing

 Creating a Server Farm with the Web Farm Framework

 Configuring Deployment Properties for a Target Environment

The first topic, Choosing the Right Approach to Web Deployment, describes the main approaches you

can use to publish web applications by using the Internet Information Services (IIS) Web Deployment

Tool (Web Deploy) 2.0. It also identifies the scenarios that map to each approach. From here, each

scenario topic provides a high-level overview of the tasks you need to complete and identifies the topics

you'll need to work through to help you complete these tasks.

If you're using the split project file approach described in Understanding the Build Process to build and

deploy your solution, the final topic, Configuring Deployment Properties for a Target Environment,

describes how to configure environment-specific project files for deployment to different destination

environments.

Key Technologies

This tutorial focuses on how to use these products and technologies to support web deployment:

89

 IIS 7.5

 Web Deploy 2.x

 WFF 2.x

 IIS Web Management Service (WMSvc)

The tutorial also touches on the use of Windows Server 2008 R2, SQL Server 2008 R2, ASP.NET 4.0, and

ASP.NET MVC 3.

Choosing the Right Approach to Web Deployment

When you work with the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) 2.0 or

later, there are three main approaches you can use to get your packaged web applications onto a web

server. You can either:

 Deploy the application from a remote location by targeting the Web Deployment Agent Service

(also known as the "remote agent") on the destination server.

 Deploy the application from a remote location using Web Deploy On Demand (also known as

the "temp agent").

 Deploy the application from a remote location by targeting the IIS Web Deploy Handler on the

destination server.

 Deploy the application by manually copying the web package to the destination server and

importing it through IIS Manager.

How you configure your destination web servers will depend on which approach to deployment you

want to use. This topic will help you decide which approach to deployment is right for you.

Overview

This table shows the main advantages and disadvantages of each deployment approach, together with

the scenarios that most typically suit each approach.

Approach Advantages Disadvantages Typical Scenarios

Remote Agent It is easy to set up.

It is suitable for regular

updates to web

applications and content.

The user must be an

administrator on the target

server.

the user can't supply

alternative credentials.

Development

environments.

Test environments.

Temp Agent There is no need to install

Web Deploy on the target

computer.

The user must be an

administrator on the target

server.

Development

environments.

Test environments.

90

The latest version of Web

Deploy is automatically

used.

The user can't supply

alternative credentials.

Web Deploy Handler Non-administrator users

can deploy content.

It is suitable for regular

updates to web

applications and content.

It is a lot more complex to

set up.

Staging environments.

Intranet production

environments.

Hosted environments.

Offline Deployment It is very easy to set up.

It is suitable for isolated

environments.

The server administrator

must manually copy and

import the web package

every time.

Internet-facing production

environments.

Isolated network

environments.

Using the Remote Agent

When you install Web Deploy using the default settings on a destination server, the Web Deployment

Agent Service (the "remote agent") is automatically installed and started. By default, the remote agent

exposes an HTTP endpoint at this address:

http://[server]/MSDEPLOYAGENTSERVICE

Note: You can replace [server] with the machine name of your web server, an IP address for your web

server, or a hostname that resolves to your web server.

Server administrators can deploy web packages from a remote location, like a developer machine or a

build server, by specifying this endpoint address. For example, suppose Matt Hink at Fabrikam, Inc. has

built the ContactManager.Mvc web application project on his developer machine. The build process

generates a web package, together with a .deploy.cmd file that contains the Web Deploy commands

required to install the package. If Matt is a server administrator on the TESTWEB1 server, he can deploy

the web application to the test web server by running this command on his developer machine:

ContactManager.Mvc.deploy.cmd /y /m:http://TESTWEB1/MSDEPLOYAGENTSERVICE a/:NTLM

In actual fact, the Web Deploy executable can infer the endpoint address of the remote agent if you

provide the machine name, so Matt only needs to type this:

ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /a:NTLM

Note: For more information on Web Deploy command-line syntax and .deploy.cmd files, see How to:

Install a Deployment Package Using the deploy.cmd File.

The remote agent offers a straightforward way to deploy content from a remote location, and this

approach can work well with one-click or automated deployment. However, the user who runs the

deployment command must also be either a domain administrator or a member of the local

administrators group on the destination server. In addition, the remote agent doesn't support basic

authentication, so you can't pass alternative credentials on the command line.

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

91

The remote agent provides a useful approach to deployment in development or test scenarios, where

it's not uncommon for developers to have full administrator control over a test server environment, and

applications are typically rebuilt and redeployed very frequently. However, this approach is usually less

acceptable for staging or production environments.

For an end-to-end example of a scenario that uses the remote agent approach, see Scenario:

Configuring a Test Environment for Web Deployment.

Using the Temp Agent

The temp agent approach to deployment is similar to the remote agent approach. However, in contrast

to the remote agent approach, you don't need to install Web Deploy on the destination web server.

Instead, when you perform the deployment, Web Deploy will install a temporary version of the web

deployment agent service on the destination server and will use this to deploy your content to IIS. When

the deployment is complete, all temporary files are removed.

If you want to use the temp agent provider setting, add the /g flag to your deployment command:

ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /g:true

Note: You can’t use the temp agent if the web deployment agent service is installed on the destination

computer, even if the service is not running.

The advantage of this approach is that you don't need to maintain installations of Web Deploy on your

destination servers. Furthermore, you don't need to ensure that the source and destination computers

are running the same version of Web Deploy. However, this approach suffers from the same principal

limitations as the remote agent approach, namely that you must be a local administrator on the

destination server in order to deploy content, and only NTLM authentication is supported. The temp

agent approach also requires a lot more initial configuration of the destination environment.

For more information on using the temp agent, see How to: Install a Deployment Package Using the

deploy.cmd File and Web Deploy On Demand.

Using the Web Deploy Handler

For IIS 7 onwards, Web Deploy offers an alternative deployment approach through the IIS Web Deploy

Handler. The Web Deploy Handler is closely integrated with the IIS Web Management Service (WMSvc),

which is designed to allow users to manage IIS websites from remote locations.

By default, the remote agent exposes an HTTP endpoint at this address:

https://[server]:8172/MSDeploy.axd

Note: You can replace [server] with the machine name of your web server, an IP address for your web

server, or a hostname that resolves to your web server.

The big advantage of the Web Deploy Handler over the remote agent, and the temp agent, is that you

can configure IIS to allow non-administrator users to deploy applications and content to specific IIS

websites. The Web Deploy Handler also supports basic authentication, so you can provide alternative

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

92

credentials as parameters in your Web Deploy commands. The major drawback is that the Web Deploy

Handler is initially a lot more complicated to set up and configure.

In the case of non-administrator users, the Web Management Service (WMSvc) will only allow the user

to connect to IIS using a site-level connection, rather than a server-level connection. To access a

particular site, you can include a site-specific query string in the endpoint address:

https://[server]:8172/MSDeploy.axd?site=DemoSite

For example, suppose a build process is configured to automatically deploy a web application to a

staging environment after every successful build. If you used the remote agent approach, you'd need to

make the build process identity an administrator on your destination servers. In contrast, using the Web

Deploy Handler approach you can give a non-administrator user—FABRIKAM\stagingdeployer in this

case—permission to a specific IIS website only, and the build process can provide these credentials to

deploy the web package.

msdeploy.exe

 -source:package='…\ContactManager.Mvc.zip'

 -dest:auto,

 computerName='https://STAGEWEB1:8172/MSDeploy.axd?site=DemoSite',

 userName='FABRIKAM\stagingdeployer',

 password='Pa$$w0rd',

 authtype='Basic',

 -verb:sync

 -setParamFile:"…\ContactManager.Mvc.SetParameters.xml"

 -allowUntrusted

Note: For more information on Web Deploy command-line operations and syntax, see Web Deploy

Command Line Reference. For more information on using the .deploy.cmd file, see How to: Install a

Deployment Package Using the deploy.cmd File.

The Web Deploy Handler provides a useful approach to deployment in staging environments, hosted

environments, and intranet-based production environments, where remote access to the server is

available but administrator credentials are not.

For an end-to-end example of a scenario that uses the Web Deploy Handler approach, see Scenario:

Configuring a Staging Environment for Web Deployment.

Using Offline Deployment

In some cases, it's not possible or practical to deploy applications and content to an IIS website from a

remote location. For example, the source and destination computers may be in isolated networks or

network segments, or firewall policy may not permit remote access.

In scenarios like these, you can still use the packaging and publishing capabilities of Web Deploy; you

just can't use them from a remote location. Instead, an administrator on the destination server must

copy the web package onto the server and import it through IIS Manager.

http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

93

The offline deployment approach is typically useful in Internet-facing production environments, where

servers in a perimeter network may have restricted connectivity with computers in the internal network.

For an end-to-end example of a scenario that uses the offline deployment approach, see Scenario:

Configuring a Production Environment for Web Deployment.

Further Reading

For more information on Web Deploy command-line operations and syntax, see Web Deploy Command

Line Reference. For more information on using the .deploy.cmd file, see How to: Install a Deployment

Package Using the deploy.cmd File.

For more general guidance on the different ways in which you can deploy web packages from a remote

computer, see Using Web Deploy Remotely. For more information on using Web Deploy On Demand,

see Web Deploy On Demand.

Scenario: Configuring a Test Environment for Web Deployment

This topic describes a typical web deployment scenario for developer or test environments and explains

the tasks you need to complete in order to set up a similar environment.

http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://technet.microsoft.com/en-us/library/ee461175(WS.10).aspx
http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

94

Scenario Overview

When developers work on web applications, they're often given access to a server environment that

they can use to test changes to their applications in a realistic setting. This kind of development or test

environment typically has these characteristics:

 The environment consists of a single web server and a single database server.

 The developers usually have administrator privileges on the servers, to let them configure the

environment to the requirements of their applications.

 Changes to applications are deployed on a frequent basis, so the environment needs to support

single-step or automated deployment.

For example, in our tutorial scenario, Matt Hink is a developer at Fabrikam, Inc. Matt is working on the

Contact Manager solution and regularly needs to deploy changes to a test environment. Matt is an

administrator on the test web server and the test database server. Initially, Matt needs to be able to

deploy the solution to the test environment directly.

As work progresses and more developers join the team, the Contact Manager solution is configured for

continuous integration (CI) in Team Foundation Server (TFS). Whenever a developer checks in content,

95

Team Build should build the solution, run any unit tests, and automatically deploy the solution to the

test environment.

Solution Overview

The test environment needs to support single-step or automated deployment from a remote computer,

so you have a choice of two main approaches. You can:

 Configure the test web server to support deployment using the Web Deployment Agent Service

(the "remote agent").

 Configure the test web server to support deployment using the Web Deploy handler.

Note: You could also use Web Deploy On Demand (the "temp agent"). This is similar to the remote

agent approach in terms of requirements and constraints.

In this case, the developers have administrator privileges on the destination servers, and the test

environment is not subject to strict security constraints, so the logical choice is to configure the test web

server to support deployment using the remote agent. This is less complex and requires less initial

configuration than the Web Deploy Handler approach. You'll also need to configure your database

server to support remote access and deployment.

http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

96

These topics provide all the information you need in order to complete these tasks:

 Configure a Web Server for Web Deploy Publishing (Remote Agent). This topic describes how to

build a web server that supports Web Deploy publishing, using the remote agent approach,

starting from a clean Windows Server 2008 R2 build.

 Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a

database server to support remote access and deployment, starting from a default installation

of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical staging environment, see Scenario: Configuring a Staging

Environment for Web Deployment. For guidance on configuring a typical production environment, see

Scenario: Configuring a Production Environment for Web Deployment.

Scenario: Configuring a Staging Environment for Web Deployment

This topic describes a typical web deployment scenario for a staging environment and explains the tasks

you need to complete in order to set up a similar environment.

Scenario Overview

Lots of organizations use staging environments to preview updates to web applications or websites. This

gives people within the organization a chance to explore and review new functionality or content before

the site "goes live," or in other words is deployed to a production environment. The staging

environment is designed to replicate the production environment as closely as possible, in order to

provide a realistic preview. This kind of staging environment typically has these characteristics:

 The environment consists of multiple load-balanced web servers and one or more database

servers, often with failover clustering and database mirroring.

 Applications may be deployed manually by a development team or automatically by a Team

Build server.

 The users or process accounts that deploy applications are unlikely to have administrator

privileges on the staging servers.

 Changes to applications are deployed on a frequent basis, so the environment needs to support

single-step or automated deployment.

Note: Scaling out a database deployment across multiple servers is beyond the scope of this tutorial.

For more information on this area, please consult SQL Server Books Online.

For example, in our tutorial scenario, Team Foundation Server (TFS) manages the Contact Manager

solution. The TFS administrator, Rob Walters, has created a build definition that lets developers trigger a

deployment to the staging environment as required.

http://technet.microsoft.com/en-us/library/ms130214.aspx

97

Note that in most cases, you won't necessarily want to deploy the latest build to the staging

environment. Instead, you're a lot more likely to want to deploy a specific build that has already

undergone validation and verification in the test environment.

Solution Overview

In this scenario, you can deduce these facts from an analysis of the deployment requirements:

 The user or process account that performs the deployment won’t have administrator privileges

on the staging servers, so the staging web servers must support non-administrator deployment.

As such, you'll need to configure the staging web servers to use the Web Deploy Handler rather

than the remote agent.

 The staging environment includes multiple web servers, but it needs to support one-click or

automated deployment, so you'll need to use the Web Farm Framework (WFF) to create a

server farm. Using this approach, you can deploy an application to one web server (the primary

server), and WFF will replicate the deployment on all the other web servers in the staging

environment.

 The user or process account that performs the deployment must have permissions to create

databases. As such, you'll need to add the account to the dbcreator server role on the database

98

server, in addition to configuring the database server to support remote access and

deployment.

These topics provide all the information you need in order to complete these tasks:

 Create a Server Farm with the Web Farm Framework. This topic describes how to create and

configure a server farm using WFF, so that web platform products and components,

configuration settings, and websites and applications are replicated across multiple load-

balanced web servers.

 Configure a Web Server for Web Deploy Publishing (Web Deploy Handler). This topic describes

how to build a web server that supports Web Deploy publishing, using the remote agent

approach, starting from a clean Windows Server 2008 R2 build.

 Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a

database server to support remote access and deployment, starting from a default installation

of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical developer test environment, see Scenario: Configuring a Test

Environment for Web Deployment. For guidance on configuring a typical production environment, see

Scenario: Configuring a Production Environment for Web Deployment.

Scenario: Configuring a Production Environment for Web Deployment

This topic describes a typical web deployment scenario for a production environment and explains the

tasks you need to complete in order to set up a similar environment.

Scenario Overview

The production environment is the final destination for a web application or a website. By this point,

your application has been through testing, has been deployed to a staging environment, and is ready to

"go live." The characteristics of a production environment can vary widely according to the nature and

purpose of your web content, the size of your organization, your target audience, and lots of other

factors. In an enterprise-scale scenario, the production environment may have these characteristics:

 The environment consists of multiple load-balanced web servers and one or more database

servers, often with failover clustering and database mirroring.

 If the environment is Internet-facing, it's likely to be segregated from your internal network. It

may be on a different subnet in a perimeter network, it may be on a different domain, and it

may be on an entirely different network infrastructure.

 Developers and build server process accounts are highly unlikely to have administrator

privileges on the production servers.

99

 Changes to applications are deployed on a less frequent basis than test or staging deployments.

Note: Scaling out a database deployment across multiple servers is beyond the scope of this tutorial.

For more information on this area, please consult SQL Server Books Online.

For example, in our tutorial scenario, a Team Build server includes build definitions that let users build

the Contact Manager solution and deploy it to a staging environment in a single step. When the

application is ready to be deployed to production, due to the constraints imposed by security

requirements and the network infrastructure, the production environment administrator must manually

copy the web package onto a production web server and import it through Internet Information Services

(IIS) Manager.

Solution Overview

In this scenario, you can deduce these facts from an analysis of the deployment requirements:

 Due to security restrictions and the network configuration, you can’t configure the production

environment to support one-click or automated deployment. Offline deployment is the only

viable approach in this scenario.

 The production environment includes multiple web servers, so you can use the Web Farm

Framework (WFF) to create a server farm. Using this approach, the administrator only needs to

import the application onto one web server (the primary server), and WFF will replicate the

deployment on all the other web servers in the production environment.

http://technet.microsoft.com/en-us/library/ms130214.aspx

100

These topics provide all the information you need in order to complete these tasks:

 Create a Server Farm with the Web Farm Framework. This topic describes how to create and

configure a server farm using WFF, so that web platform products and components,

configuration settings, and websites and applications are replicated across multiple load-

balanced web servers.

 Configure a Web Server for Web Deploy Publishing (Offline Deployment). This topic describes

how to build a web server that lets administrators import and deploy web packages manually,

starting from a clean Windows Server 2008 R2 build.

 Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a

database server to support remote access and deployment, starting from a default installation

of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical developer test environment, see Scenario: Configuring a Test

Environment for Web Deployment. For guidance on configuring a typical staging environment, see

Scenario: Configuring a Staging Environment for Web Deployment.

Configuring a Web Server for Web Deploy Publishing (Remote Agent)

This topic describes how to configure an Internet Information Services (IIS) web server to support web

publishing and deployment using the IIS Web Deployment Tool (Web Deploy) Remote Agent Service.

When you work with Web Deploy 2.0 or later, there are three main approaches you can use to get your

applications or sites onto a web server. You can:

 Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web

server, but you need to provide the credentials of a local server administrator in order to deploy

anything to the server.

 Use the Web Deploy Handler. This approach is a lot more complex and requires more initial

effort to set up the web server. However, when you use this approach, you can configure IIS to

allow non-administrator users to perform the deployment. The Web Deploy Handler is only

available in IIS version 7 or later.

 Use offline deployment. This approach requires the least configuration of the web server, but a

server administrator must manually copy the web package onto the server and import it

through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see

Choosing the Right Approach to Web Deployment.

101

Is the Web Deploy Remote Agent the Right Approach for You?

Yes, if the user who will deploy the content can supply the credentials of an administrator on the

destination server. This approach is often desirable in these types of scenarios:

 Development or test environments, where the developer has full control over the destination

web server and database server.

 Smaller organizations in which a single user or a small group of users has control over the entire

application lifecycle.

In lots of larger organizations, and particularly for staging or production environments, it's often not

realistic to give users administrator rights on web servers. In the case of hosted web servers, this is

especially unlikely to be the case. In addition, if you're planning to automate deployment from a build

server, you may not want to use administrator credentials for the deployment process. In these

scenarios, configuring your web servers to support deployment using the Web Deploy Handler may

provide a more satisfactory choice.

Task Overview

To configure the web server to accept and deploy web packages from a remote computer using the Web

Deploy Remote Agent approach, you'll need to:

 Install IIS 7.5 and the IIS 7 recommended configuration.

 Install Web Deploy 2.1 or later.

 Create an IIS website to host the deployed content.

 Ensure that the Web Deployment Agent Service is running.

To host the sample solution specifically, you'll also need to:

 Install the .NET Framework 4.0.

 Install ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this

topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you

continue, ensure that:

 Windows Server 2008 R2 Service Pack 1 and all available updates are installed.

 The server is domain-joined.

 The server has a static IP address.

102

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP

Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.

Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to

date.

In this case, you need to install these things:

 IIS 7 Recommended Configuration. This enables the Web Server (IIS) role on your web server

and installs the set of IIS modules and components that you need in order to host an ASP.NET

application.

 .NET Framework 4.0. This is required to run applications that were built on this version of the

.NET Framework.

 Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,

MSDeploy.exe) on your server. As part of this process, it installs and starts the Web Deployment

Agent Service. This service lets you deploy web packages from a remote computer.

 ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure the

required components. Although you don't have to use the Web Platform Installer, it simplifies the

installation process by automatically detecting dependencies and ensuring that you always get the

latest product versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1. Download and install the Web Platform Installer.

2. When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do

this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

3. At the top of the Web Platform Installer 3.0 window, click Products.

4. On the left side of the window, in the navigation pane, click Frameworks.

5. In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click

Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a

product or component is already installed, the Web Platform Installer will indicate this by

replacing the Add button with the text Installed.

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

103

6. In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

7. In the navigation pane, click Server.

8. In the IIS 7 Recommended Configuration row, click Add.

9. In the Web Deployment Tool 2.1 row, click Add.

10. Click Install. The Web Platform Installer will show you a list of products—together with any

associated dependencies—to be installed and will prompt you to accept the license terms.

104

11. Review the license terms, and if you consent to the terms, click I Accept.

12. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET IIS

Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do

this, you'll find that IIS will serve static content (like HTML files) without any problems, but it will return

HTTP Error 404.0 – Not Found when you attempt to browse to ASP.NET content. You can use this

procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS

1. Click Start, and then type Command Prompt.

2. In the search results, right-click Command Prompt, and then click Run as administrator.

3. In the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:

aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit

version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

105

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available

updates for the new products and components you've installed.

Configure the IIS Website

Before you can deploy web content to your server, you need to create and configure an IIS website to

host the content. Web Deploy can only deploy web packages to an existing IIS website; it can't create

the website for you. At a high level, you'll need to complete these tasks:

 Create a folder on the file system to host your content.

 Create an IIS website to serve the content, and associate it with the local folder.

 Grant read permissions to the application pool identity on the local folder.

Although there's nothing stopping you from deploying content to the default website in IIS, this

approach is not recommended for anything other than test or demonstration scenarios. To simulate a

production environment, you should create a new IIS website with settings that are specific to the

requirements of your application.

To create and configure an IIS website

1. On the local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services

(IIS) Manager.

3. In IIS Manager, in the Connections pane, expand the server node (for example, TESTWEB1).

4. Right-click the Sites node, and then click Add Web Site.

5. In the Site name box, type a name for the IIS website (for example, DemoSite).

6. In the Physical path box, type (or browse to) the path to your local folder (for example,

C:\DemoSite).

7. In the Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this

website on port 80, you’ll need to stop the default website before you can access your site.

106

8. Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)

record for the website, and then click OK.

Note: In a production environment, you’ll likely want to host your website on port 80 and

configure a host header, together with matching DNS records. For more information on

configuring host headers in IIS 7, see Configure a Host Header for a Web Site (IIS 7). For more

information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and

DNS Server.

9. In the Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site

configuration.

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

107

12. In the Host name box, type the name of your web server (for example, TESTWEB1), and then

click OK.

Note: The first site binding allows you to access the site locally using the IP address and port or

http://localhost:85. The second site binding allows you to access the site from other

computers on the domain using the machine name (for example, http://testweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15. In the Application Pools pane, right-click the name of your application pool, and then click Basic

Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).

16. In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web

Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on

the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool

identity by default (in contrast to previous versions of IIS, where application pools would typically run

using the Network Service account). The application pool identity is not a real user account and does not

108

show up on any lists of users or groups—instead, it's created dynamically when the application pool is

started. Each application pool identity is added to the local IIS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

 Assign permissions to the application pool identity directly, using the format IIS

AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

 Assign permissions to the IIS_IUSRS group.

The most common approach is to assign permissions to the local IIS_IUSRS group because this approach

lets you change application pools without reconfiguring file system permissions. The next procedure

uses this group-based approach.

Note: For more information on application pool identities in IIS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.

2. Right-click the folder, and then click Properties.

3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

5. In the Select Users or Groups dialog box, type IIS_IUSRS, click Check Names, and then click OK.

6. In the Permissions for [folder name] dialog box, notice that the new group has been assigned

the Read & execute, List folder contents, and Read permissions by default. Leave this

unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

As a final task before you attempt to deploy any web packages to your server, you should ensure that

the Web Deployment Agent Service is running. When you deploy a package from a remote computer,

http://go.microsoft.com/?linkid=9805123

109

the Web Deployment Agent Service is responsible for extracting and installing the contents of the

package. The service is started by default when you install the Web Deployment Tool and runs under the

Network Service identity.

You can check whether a service is running in multiple different ways, using various command-line

utilities or Windows PowerShell cmdlets. This procedure describes a straightforward UI-based approach.

To check that the Web Deployment Agent Service is running

1. On the Start menu, point to Administrative Tools, and then click Services.

2. Locate the Web Deployment Agent Service row, and verify that the Status is set to Started.

3. If the service is not already started, click Start.

Configure Firewall Exceptions

By default, the Remote Agent Service listens on TCP port 80, at this URL:

http://[server name]/MSDEPLOYAGENTSERVICE

In most cases, you won't need to configure any additional firewall rules for the Remote Agent Service

because web servers typically listen for HTTP requests on port 80. If you customized your installation to

listen on a nonstandard port, you'll need to configure firewall exceptions as required.

Conclusion

At this point, your web server is ready to accept and install web packages from a remote computer.

Before you attempt to deploy a web application to the server, you may want to check these key points:

 Have you registered ASP.NET 4.0 with IIS?

 Does the application pool identity have read access to the source folder for your website?

 Is the Web Deployment Agent Service running?

Further Reading

For guidance on how to configure custom Microsoft Build Engine (MSBuild) project files to deploy web

packages to the Remote Agent Service, see Configure Deployment Properties for a Target Environment.

110

Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler)

This topic describes how to configure an Internet Information Services (IIS) web server to support web

publishing and deployment using the IIS Web Deploy Handler.

When you work with Web Deploy 2.0 or later, there are three main approaches you can use to get your

applications or sites onto a web server. You can:

 Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web

server, but you need to provide the credentials of a local server administrator in order to deploy

anything to the server.

 Use the Web Deploy Handler. This approach is a lot more complex and requires more initial

effort to set up the web server. However, when you use this approach, you can configure IIS to

allow non-administrator users to perform the deployment. The Web Deploy Handler is only

available in IIS version 7 or later.

 Use offline deployment. This approach requires the least configuration of the web server, but a

server administrator must manually copy the web package onto the server and import it

through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see

Choosing the Right Approach to Web Deployment.

Is the Web Deploy Handler the Right Approach for You?

Yes, if you want to allow non-administrator users to deploy content to specific IIS websites. This

approach is often desirable in these types of scenarios:

 Staging or production environments, where the person or service account that triggers the

remote deployment is unlikely to have access to the credentials of a server administrator.

 Hosted environments, where you want to give remote users the ability to update their websites

without giving them full control of your web servers (or access to anyone else's websites).

In development or test scenarios, or in smaller organizations, deploying content using server

administrator credentials is often less contentious. In these scenarios, configuring your web servers to

support deployment using the Web Deploy Remote Agent Service offers a more straightforward

approach.

Task Overview

To configure the web server to accept and deploy web packages from a remote computer using the Web

Deploy Handler approach, you'll need to:

 Create, or choose, a domain user account (the "non-administrator user") whose credentials

you'll use to perform deployments.

111

 Install IIS 7.5, including the Web Management Service and the Basic Authentication module.

 Install Web Deploy 2.1 or later.

 Configure the Web Management Service to allow remote connections, and start the service.

 Create an IIS website to host the deployed content.

 Grant your non-administrator user permissions on your website in IIS Manager.

 Ensure that the Web Management Service delegation rules permit the service to add and

change website content using your non-administrator user account.

 Configure any firewalls to allow incoming connections on port 8172.

To host the ContactManager sample solution specifically, you'll also need to:

 Install the .NET Framework 4.0.

 Install ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this

topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you

continue, ensure that:

 Windows Server 2008 R2 Service Pack 1 and all available updates are installed.

 The server is domain-joined.

 The server has a static IP address.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP

Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.

Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to

date.

In this case, you need to install these things:

 IIS 7 Recommended Configuration. This enables the Web Server (IIS) role on your web server

and installs the set of IIS modules and components that you need in order to host an ASP.NET

application.

 IIS: Management Service. This installs the Web Management Service (WMSvc) in IIS. This

service enables remote management of IIS websites and exposes the Web Deploy Handler

endpoint to clients.

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx

112

 IIS: Basic Authentication. This installs the IIS Basic Authentication module. This lets the Web

Management Service (WMSvc) authenticate the credentials you provide.

 Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,

MSDeploy.exe) on your server. As part of this process, it installs the Web Deploy Handler and

integrates it with the Web Management Service.

 .NET Framework 4.0. This is required to run applications that were built on this version of the

.NET Framework.

 ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure various

components. Although you don't have to use the Web Platform Installer, it simplifies the installation

process by automatically detecting dependencies and ensuring that you always get the latest product

versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1. Download and install the Web Platform Installer.

2. When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do

this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

3. At the top of the Web Platform Installer 3.0 window, click Products.

4. On the left side of the window, in the navigation pane, click Frameworks.

5. In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click

Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a

product or component is already installed, the Web Platform Installer will indicate this by

replacing the Add button with the text Installed.

http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

113

6. In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

7. In the navigation pane, click Server.

8. In the IIS 7 Recommended Configuration row, click Add.

9. In the Web Deployment Tool 2.1 row, click Add.

10. In the IIS: Basic Authentication row, click Add.

11. In the IIS: Management Service row, click Add.

12. Click Install. The Web Platform Installer will show you a list of products—together with any

associated dependencies—to be installed and will prompt you to accept the license terms.

114

13. Review the license terms, and if you consent to the terms, click I Accept.

14. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET IIS

Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do

this, you'll find that IIS will serve static content (like HTML files) without any problems, but it will return

HTTP Error 404.0 – Not Found when you attempt to browse to ASP.NET content. You can use the next

procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS

1. Click Start, and then type Command Prompt.

2. In the search results, right-click Command Prompt, and then click Run as administrator.

3. In the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:

aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit

version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

115

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available

updates for the new products and components you've installed.

Configure the Web Management Service

Now that you've installed everything you need, the next step is to configure the Web Management

Service in IIS. At a high level, you'll need to complete these tasks:

 Enable basic authentication at the server level.

 Configure the Web Management Service to accept remote connections.

 Start the Web Management Service.

 Check that the required Web Management Service delegation rules are in place.

To configure the Web Management Service

1. On the Start menu, point to Administrative Tools, and then click Internet Information Services

(IIS) Manager.

2. In IIS Manager, in the Connections pane, click the server node (for example, STAGEWEB1).

3. In the center pane, under IIS, double-click Authentication.

116

4. Right-click Basic Authentication, and then click Enable.

5. In the Connections pane, click the server node again to return to the top-level settings.

6. In the center pane, under Management, double-click Management Service.

117

7. In the center pane, select Enable remote connections.

Note: If the Web Management Service is already running, you'll need to stop it first.

8. In the Actions pane, click Start to start the Web Management Service.

118

9. If you’re prompted to save your settings, click Yes.

Note: You may also want to configure the service to start automatically. To do this, open the

Services console, right-click Web Management Service, and then click Properties. In the

Startup type dropdown list, select Automatic, and then click OK.

10. In the Connections pane, click the server node again to return to the top-level settings.

11. In the center pane, under Management, double-click Management Service Delegation.

12. Verify that the center pane contains a set of rules.

119

These rules allow authorized Web Management Service users to use various Web Deploy

providers. For example, to deploy web applications and content to IIS through the Web Deploy

Handler, there must be a delegation rule that allows all authenticated Web Management Service

users to use the contentPath and iisApp providers (the last rule that you can see in the

screenshot).

If you installed products and components in the order described in this topic, the latest version

of Web Deploy should automatically add all the required delegation rules to the Web

Management Service. If the Management Service Delegation page does not show any rules,

you'll need to create them yourself. For instructions on how to do this, see Configure the Web

Deployment Handler.

13. In the Connections pane, click the server node again to return to the top-level settings.

Create and Configure an IIS Website

Before you can deploy web content to your server, you need to create and configure an IIS website to

host the content. Web Deploy can only deploy web packages to an existing IIS website; it can't create

the website for you. You also need to do a little extra configuration to allow your non-administrator

account to deploy content remotely. At a high level, you'll need to complete these tasks:

 Create a folder on the file system to host your content.

 Create an IIS website to serve the content, and associate it with the local folder.

 Grant read permissions to the application pool identity on the local folder.

 Grant the necessary IIS permissions to the domain account that will deploy your web

application.

Although there's nothing stopping you from deploying content to the default website in IIS, this

approach is not recommended for anything other than test or demonstration scenarios. To simulate a

production environment, you should create a new IIS website with settings that are specific to the

requirements of your application.

To create an IIS website

1. On the local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services

(IIS) Manager.

3. In IIS Manager, in the Connections pane, expand the server node (for example, STAGEWEB1).

http://go.microsoft.com/?linkid=9805124
http://go.microsoft.com/?linkid=9805124

120

4. Right-click the Sites node, and then click Add Web Site.

5. In the Site name box, type a name for the IIS website (for example, DemoSite).

6. In the Physical path box, type (or browse to) the path to your local folder (for example,

C:\DemoSite).

7. In the Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this

website on port 80, you’ll need to stop the default website before you can access your site.

8. Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)

record for the website, and then click OK.

Note: In a production environment, you’ll likely want to host your website on port 80 and

configure a host header, together with matching DNS records. For more information on

configuring host headers in IIS 7, see Configure a Host Header for a Web Site (IIS 7). For more

information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and

DNS Server.

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

121

9. In the Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site

configuration.

12. In the Host name box, type the name of your web server (for example, STAGEWEB1), and then

click OK.

Note: The first site binding allows you to access the site locally using the IP address and port or

http://localhost:85. The second site binding allows you to access the site from other

computers on the domain using the machine name (for example, http://stageweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15. In the Application Pools pane, right-click the name of your application pool, and then click Basic

Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).

16. In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

122

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web

Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on

the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool

identity by default (in contrast to previous versions of IIS, where application pools would typically run

using the Network Service account). The application pool identity is not a real user account and does not

show up on any lists of users or groups—instead, it's created dynamically when the application pool is

started. Each application pool identity is added to the local IIS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

 Assign permissions to the application pool identity directly, using the format IIS

AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

 Assign permissions to the IIS_IUSRS group.

The most common approach is to assign permissions to the local IIS_IUSRS group, because this

approach lets you change application pools without reconfiguring file system permissions. The next

procedure uses this group-based approach.

Note: For more information on application pool identities in IIS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.

2. Right-click the folder, and then click Properties.

3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

http://go.microsoft.com/?linkid=9805123

123

5. In the Select Users or Groups dialog box, type IIS_IUSRS, click Check Names, and then click OK.

6. In the Permissions for [folder name] dialog box, notice that the new group has been assigned

the Read & execute, List folder contents, and Read permissions by default. Leave this

unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

As a final task, you must grant the appropriate permissions to the non-administrator user whose

credentials you'll use to deploy content. This user requires the permissions to deploy content remotely

to your website.

To configure IIS website permissions for a non-administrator domain user

1. In IIS Manager, in the Connections pane, right-click your website node (for example, DemoSite),

point to Deploy, and then click Configure Web Deploy Publishing.

124

2. In the Configure Web Deploy Publishing dialog box, to the right of the Select a user to give

publishing permissions list, click the ellipsis button.

3. In the Allow User dialog box, type the domain and user name of the account you want to use to

deploy content, and then click OK.

125

4. In the Configure Web Deploy Publishing dialog box, click Setup.

Note: This operation performs two key functions in one step. First, it grants the user

permission to modify the website remotely through the Web Management Service, according

to the delegation rules you examined in the previous section. Second, it grants the user full

control of the source folder for the website, which allows the user to add, modify, and set

permissions on the website content.

5. In the Configure Web Deploy Publishing dialog box, click Close.

Configure Firewall Exceptions

By default, the IIS Web Management Service listens on TCP port 8172. If Windows Firewall is enabled on

your web server, you'll need to create a new inbound rule to allow TCP traffic on port 8172 (all

outbound traffic is permitted by default in Windows Firewall). If you use a third-party firewall, you'll

need to create rules to allow traffic.

126

Direction From Port To Port Port Type

Inbound Any 8172 TCP

Outbound 8172 Any TCP

For more information on configuring rules in Windows Firewall, see Configuring Firewall Rules. For third-

party firewalls, please consult your product documentation.

Conclusion

Your web server should now be ready to accept remote deployments to the Web Deploy Handler

through the Web Management Service. Before you attempt to deploy a web application to the server,

you may want to check these key points:

 Have you enabled basic authentication at the server level in IIS?

 Have you enabled remote connections to the Web Management Service?

 Have you started the Web Management Service?

 Are there management service delegation rules in place?

 Does the application pool identity have read access to the source folder for your website?

 Does the non-administrator user account have site-level permissions in IIS?

 Does your firewall allow incoming connections to the server on TCP port 8172?

Further Reading

For guidance on how to configure custom Microsoft Build Engine (MSBuild) project files to deploy web

packages to the Web Deploy Handler, see Configure Deployment Properties for a Target Environment.

Configuring a Web Server for Web Deploy Publishing (Offline Deployment)

This topic describes how to configure an IIS web server to support offline web publishing and

deployment.

When you work with Internet Information Services (IIS) Web Deployment Tool (Web Deploy) 2.0 or

later, there are three main approaches you can use to get your applications or sites onto a web server.

You can:

 Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web

server, but you need to provide the credentials of a local server administrator in order to deploy

anything to the server.

 Use the Web Deploy Handler. This approach is a lot more complex and requires more initial

effort to set up the web server. However, when you use this approach, you can configure IIS to

http://technet.microsoft.com/en-us/library/dd448559(WS.10).aspx

127

allow non-administrator users to perform the deployment. The Web Deploy Handler is only

available in IIS version 7 or later.

 Use offline deployment. This approach requires the least configuration of the web server, but a

server administrator must manually copy the web package onto the server and import it

through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see

Choosing the Right Approach to Web Deployment.

Is Offline Deployment the Right Approach for You?

Yes, if your network infrastructure or security restrictions prevent remote deployment. This is most

likely to be the case in Internet-facing production environments, where the web servers are isolated—

either physically or by firewalls and subnets—from the rest of your server infrastructure.

Obviously, this approach becomes less desirable if your web applications are updated on a regular basis.

If your infrastructure allows it, you may want to consider enabling remote deployment, using either the

Web Deploy Handler or the Web Deploy Remote Agent Service.

Task Overview

To configure the web server to support offline import and deployment of web packages, you'll need to:

 Install IIS 7.5 and the IIS 7 recommended configuration.

 Install Web Deploy 2.1 or later.

 Create an IIS website to host the deployed content.

 Disable the Web Deployment Agent Service.

To host the sample solution specifically, you'll also need to:

 Install the .NET Framework 4.0.

 Install ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this

topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you

continue, ensure that:

 Windows Server 2008 R2 Service Pack 1 and all available updates are installed.

 The server is domain-joined.

 The server has a static IP address.

128

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP

Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.

Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to

date.

In this case, you need to install these things:

 IIS 7 Recommended Configuration. This enables the Web Server (IIS) role on your web server

and installs the set of IIS modules and components that you need in order to host an ASP.NET

application.

 .NET Framework 4.0. This is required to run applications that were built on this version of the

.NET Framework.

 Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,

MSDeploy.exe) on your server. Web Deploy integrates with IIS and lets you import and export

web packages.

 ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure various

components. Although you don't have to use the Web Platform Installer, it simplifies the installation

process by automatically detecting dependencies and ensuring that you always get the latest product

versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1. Download and install the Web Platform Installer.

2. When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do

this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

3. At the top of the Web Platform Installer 3.0 window, click Products.

4. On the left side of the window, in the navigation pane, click Frameworks.

5. In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click

Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a

product or component is already installed, the Web Platform Installer will indicate this by

replacing the Add button with the text Installed.

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

129

6. In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

7. In the navigation pane, click Server.

8. In the IIS 7 Recommended Configuration row, click Add.

9. In the Web Deployment Tool 2.1 row, click Add.

10. Click Install. The Web Platform Installer will show you a list of products—together with any

associated dependencies—to be installed and will prompt you to accept the license terms.

130

11. Review the license terms, and if you consent to the terms, click I Accept.

12. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET IIS

Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do

this, you'll find that IIS will serve static content (like HTML files) without any problems, but it will return

HTTP Error 404.0 – Not Found when you attempt to browse to ASP.NET content. You can use the next

procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS

1. Click Start, and then type Command Prompt.

2. In the search results, right-click Command Prompt, and then click Run as administrator.

3. In the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:

aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit

version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

131

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available

updates for the new products and components you've installed.

Configure the IIS Website

Before you can deploy web content to your server, you need to create and configure an IIS website to

host the content. Web Deploy can only deploy web packages to an existing IIS website; it can't create

the website for you. At a high level, you'll need to complete these tasks:

 Create a folder on the file system to host your content.

 Create an IIS website to serve the content, and associate it with the local folder.

 Grant read permissions to the application pool identity on the local folder.

Although there's nothing stopping you from deploying content to the default website in IIS, this

approach is not recommended for anything other than test or demonstration scenarios. To simulate a

production environment, you should create a new IIS website with settings that are specific to the

requirements of your application.

To create and configure an IIS website

1. On the local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services

(IIS) Manager.

3. In IIS Manager, in the Connections pane, expand the server node (for example, PROWEB1).

4. Right-click the Sites node, and then click Add Web Site.

5. In the Site name box, type a name for the IIS website (for example, DemoSite).

6. In the Physical path box, type (or browse to) the path to your local folder (for example,

C:\DemoSite).

7. In the Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this

website on port 80, you’ll need to stop the default website before you can access your site.

132

8. Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)

record for the website, and then click OK.

Note: In a production environment, you’ll likely want to host your website on port 80 and

configure a host header, together with matching DNS records. For more information on

configuring host headers in IIS 7, see Configure a Host Header for a Web Site (IIS 7). For more

information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and

DNS Server.

9. In the Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site

configuration.

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

133

12. In the Host name box, type the name of your web server (for example, PROWEB1), and then

click OK.

Note: The first site binding allows you to access the site locally using the IP address and port or

http://localhost:85. The second site binding allows you to access the site from other

computers on the domain using the machine name (for example, http://proweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15. In the Application Pools pane, right-click the name of your application pool, and then click Basic

Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).

16. In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web

Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on

the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool

identity by default (in contrast to previous versions of IIS, where application pools would typically run

using the Network Service account). The application pool identity is not a real user account and does not

134

show up on any lists of users or groups—instead, it's created dynamically when the application pool is

started. Each application pool identity is added to the local IIS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

 Assign permissions to the application pool identity directly, using the format IIS

AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

 Assign permissions to the IIS_IUSRS group.

The most common approach is to assign permissions to the local IIS_IUSRS group, because this

approach lets you change application pools without reconfiguring file system permissions. The next

procedure uses this group-based approach.

Note: For more information on application pool identities in IIS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.

2. Right-click the folder, and then click Properties.

3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

5. In the Select Users or Groups dialog box, type IIS_IUSRS, click Check Names, and then click OK.

6. In the Permissions for [folder name] dialog box, notice that the new group has been assigned

the Read & execute, List folder contents, and Read permissions by default. Leave this

unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

http://go.microsoft.com/?linkid=9805123

135

Disable the Remote Agent Service

When you install Web Deploy, the Web Deployment Agent Service is installed and started automatically.

This service allows you to deploy and publish web packages from a remote location. You won't be using

the remote deployment capability in this scenario, so you should stop and disable the service.

Note: You don't need to stop the remote agent service in order to import and deploy a web package

manually. However, it's a good practice to stop and disable the service if you don't plan to use it.

You can stop and disable a service in multiple ways, using various command-line utilities or Windows

PowerShell cmdlets. This procedure describes a straightforward UI-based approach.

To stop and disable the remote agent service

1. On the Start menu, point to Administrative Tools, and then click Services.

2. In the Services console, locate the Web Deployment Agent Service row.

3. Right-click Web Deployment Agent Service, and then click Properties.

4. In the Web Deployment Agent Service Properties dialog box, click Stop.

5. In the Startup type list, select Disabled, and then click OK.

136

Conclusion

At this point, your web server is ready for offline web package deployment. Before you attempt to

import web packages to an IIS website, you may want to check these key points:

 Have you registered ASP.NET 4.0 with IIS?

 Does the application pool identity have read access to the source folder for your website?

 Have you stopped the Web Deployment Agent Service?

Configuring a Database Server for Web Deploy Publishing

This topic describes how to configure a SQL Server 2008 R2 database server to support web deployment

and publishing.

The tasks described in this topic are common to every deployment scenario—it doesn't matter whether

your web servers are configured to use the IIS Web Deployment Tool (Web Deploy) Remote Agent

Service, the Web Deploy Handler, or offline deployment or your application is running on a single web

server or a server farm. The way you deploy the database may change according to security

requirements and other considerations. For example, you might deploy the database with or without

sample data, and you might deploy user role mappings or configure them manually after deployment.

However, the way you configure the database server remains the same.

137

Task Overview

You don't have to install any additional products or tools to configuring a database server to support

web deployment. Assuming that your database server and your web server run on different machines,

you simply need to:

 Permit SQL Server to communicate using TCP/IP.

 Allow SQL Server traffic through any firewalls.

 Give the web server machine account a SQL Server login.

 Map the machine account login to any required database roles.

 Give the account that will run the deployment a SQL Server login and database creator

permissions.

 To support repeat deployments, map the deployment account login to the db_owner database

role.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this

topic assume that you're starting with a default instance of SQL Server 2008 R2 running on Windows

Server 2008 R2. Before you continue, ensure that:

 Windows Server 2008 R2 Service Pack 1 and all available updates are installed.

 The server is domain-joined.

 The server has a static IP address.

 SQL Server 2008 R2 Service Pack 1 and all available updates are installed.

The SQL Server instance only needs to include the Database Engine Services role, which is included

automatically in any SQL Server installation. However, for ease of configuration and maintenance, we

recommend that you include the Management Tools – Basic and Management Tools – Complete server

roles.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP

Address. For more information on installing SQL Server, see Installing SQL Server 2008 R2.

Enable Remote Access to SQL Server

SQL Server uses TCP/IP to communicate with remote computers. If your database server and your web

server are on different machines, you need to:

 Configure SQL Server networking settings to allow communication over TCP/IP.

 Configure any hardware or software firewalls to allow TCP traffic (and in some cases User

Datagram Protocol (UDP) traffic) on the ports that the SQL Server instance uses.

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/bb500395.aspx

138

To enable SQL Server to communicate over TCP/IP, use SQL Server Configuration Manager to change the

network configuration for your SQL Server instance.

To enable SQL Server to communicate using TCP/IP

1. On the Start menu, point to All Programs, click Microsoft SQL Server 2008 R2, click

Configuration Tools, and then click SQL Server Configuration Manager.

2. In the tree view pane, expand SQL Server Network Configuration, and then click Protocols for

MSSQLSERVER.

Note: If you have installed multiple instances of SQL Server, you'll see a Protocols for [instance

name] item for each instance. You need to configure network settings on an instance-by-

instance basis.

3. In the details pane, right-click the TCP/IP row, and then click Enable.

4. In the Warning dialog box, click OK.

You need to restart the MSSQLSERVER service before your new network configuration will take

effect. You can do that at a command prompt, from the Services console, or from SQL Server

Management Studio. In this procedure, you'll use SQL Server Management Studio.

5. Close SQL Server Configuration Manager.

6. On the Start menu, point to All Programs, click Microsoft SQL Server 2008 R2, and then click

SQL Server Management Studio.

139

7. In the Connect to Server dialog box, in the Server name box, type the name of the database

server, and then click Connect.

8. In the Object Explorer pane, right-click the parent server node (for example, TESTDB1), and

then click Restart.

9. In the Microsoft SQL Server Management Studio dialog box, click Yes.

10. When the service has restarted, close SQL Server Management Studio.

140

To allow SQL Server traffic through a firewall, you first need to know which ports your SQL Server

instance is using. This will depend on how the SQL Server instance was created and configured:

 A default instance of SQL Server listens for (and responds to) requests on TCP port 1433.

 A named instance of SQL Server listens for (and responds to) requests on a dynamically assigned

TCP port.

 If the SQL Server Browser service is enabled, clients can query the service on UDP port 1434 to

find out which TCP port to use for a particular SQL Server instance. However, this service is

often disabled for security reasons.

Assuming that you're using a default instance of SQL Server, you need to configure your firewall to allow

traffic.

Direction From Port To Port Port Type

Inbound Any 1433 TCP

Outbound 1433 Any TCP

Note: Technically, a client computer will use a randomly assigned TCP port between 1024 and 5000 to

communicate with SQL Server, and you can restrict your firewall rules accordingly. For more

information on SQL Server ports and firewalls, see TCP/IP port numbers required to communicate to

SQL over a firewall and How to: Configure a Server to Listen on a Specific TCP Port (SQL Server

Configuration Manager).

In most Windows Server environments, you’ll likely have to configure Windows Firewall on the database

server. By default, Windows Firewall allows all outbound traffic unless a rule specifically prohibits it. To

enable your web server to reach your database, you need to configure an inbound rule that allows TCP

traffic on the port number that the SQL Server instance uses. If you're using a default instance of SQL

Server, you can use the next procedure to configure this rule.

To configure Windows Firewall to allow communication with a default SQL Server instance

1. On the database server, on the Start menu, point to Administrative Tools, and then click

Windows Firewall with Advanced Security.

2. In the tree view pane, click Inbound Rules.

3. In the Actions pane, under Inbound Rules, click New Rule.

http://go.microsoft.com/?linkid=9805125
http://go.microsoft.com/?linkid=9805125
http://msdn.microsoft.com/en-us/library/ms177440.aspx
http://msdn.microsoft.com/en-us/library/ms177440.aspx

141

4. In the New Inbound Rule Wizard, on the Rule Type page, select Port, and then click Next.

5. On the Protocol and Ports page, ensure that TCP is selected, and in the Specific local ports box,

type 1433, and then click Next.

142

6. On the Action page, leave Allow the connection selected and click Next.

7. On the Profile page, leave Domain selected, clear the Private and Public check boxes, and then

click Next.

143

8. On the Name page, give the rule a suitably descriptive name (for example, SQL Server default

instance – network access), and then click Finish.

For more information on configuring Windows Firewall for SQL Server, particularly if you need to

communicate with SQL Server over non-standard or dynamic ports, see How to: Configure a Windows

Firewall for Database Engine Access.

Configure Logins and Database Permissions

When you deploy a web application to Internet Information Services (IIS), the application runs using the

identity of the application pool. In a domain environment, application pool identities use the machine

account of the server on which they run to access network resources. Machine accounts take the form

[domain name]\[machine name]$—for example, FABRIKAM\TESTWEB1$. To allow your web application

to access a database across the network, you need to:

 Add a login for the web server machine account to the SQL Server instance.

 Map the machine account login to any required database roles (typically db_datareader and

db_datawriter).

http://technet.microsoft.com/en-us/library/ms175043.aspx
http://technet.microsoft.com/en-us/library/ms175043.aspx

144

If your web application is running on a server farm, rather than a single server, you'll need to repeat

these procedures for every web server in the server farm.

Note: For more information on application pool identities and accessing network resources, see

Application Pool Identities.

You can approach these tasks in various ways. To create the login, you can either:

 Create the login manually on the database server, using Transact-SQL or SQL Server

Management Studio.

 Use a SQL Server 2008 Server Project in Visual Studio to create and deploy the login.

A SQL Server login is a server-level object, rather than a database-level object, so it's not dependent on

the database you want to deploy. As such, you can create the login at any point, and the easiest

approach is often to create the login manually on the database server before you start deploying

databases. You can use the next procedure to create a login in SQL Server Management Studio.

To create a SQL Server login for the web server machine account

1. On the database server, on the Start menu, point to All Programs, click Microsoft SQL Server

2008 R2, and then click SQL Server Management Studio.

2. In the Connect to Server dialog box, in the Server name box, type the name of the database

server, and then click Connect.

3. In the Object Explorer pane, right-click Security, point to New, and then click Login.

4. In the Login – New dialog box, in the Login name box, type the name of your web server

machine account (for example, FABRIKAM\TESTWEB1$).

http://go.microsoft.com/?linkid=9805123

145

5. Click OK.

At this point, your database server is ready for Web Deploy publishing. However, any solutions you

deploy won't work until you map the machine account login to the required database roles. Mapping

the login to database roles requires a lot more thought, as you can't map roles until after you've

deployed the database. To map the machine account login to the required database roles, you can

either:

 Assign the database roles to the login manually, after you've deployed the database for the first

time.

 Use a post-deployment script to assign the database roles to the login.

For more information on automating the creation of logins and database role mappings, see Deploying

Database Role Memberships to Test Environments. Alternatively, you can use the next procedure to

146

map the machine account login to the required database roles manually. Remember that you can’t

perform this procedure until after you've deployed the database.

To map database roles to the web server machine account login

1. Open SQL Server Management Studio as before.

2. In the Object Explorer pane, expand the Security node, expand the Logins node, and then

double-click the machine account login (for example, FABRIKAM\TESTWEB1$).

3. In the Login Properties dialog box, click User Mapping.

4. In the Users mapped to this login table, select the name of your database (for example,

ContactManager).

5. In the Database role membership for: [database name] list, select the permissions required. In

the case of the Contact Manager sample solution, you must select the db_datareader and

db_datawriter roles.

147

6. Click OK.

While manually mapping database roles is often more than adequate for test environments, it's less

desirable for automated or one-click deployments to staging or production environments. You can find

more information on automating this kind of task using post-deployment scripts in Deploying Database

Role Memberships to Test Environments.

Note: For more information on server projects and database projects, see Visual Studio 2010 SQL

Server Database Projects.

Configure Permissions for the Deployment Account

If the account that you’ll use to run the deployment is not a SQL Server administrator, you'll also need to

create a login for this account. In order to create the database, the account must be a member of the

dbcreator server role or have equivalent permissions.

http://msdn.microsoft.com/en-us/library/ff678491.aspx
http://msdn.microsoft.com/en-us/library/ff678491.aspx

148

Note: When you use Web Deploy or VSDBCMD to deploy a database, you can use Windows credentials

or SQL Server credentials (if your SQL Server instance is configured to support mixed mode

authentication). The next procedure assumes that you want to use Windows credentials, but there's

nothing stopping you from specifying a SQL Server user name and password in your connection string

when you configure the deployment.

To set up permissions for the deployment account

1. Open SQL Server Management Studio as before.

2. In the Object Explorer pane, right-click Security, point to New, and then click Login.

3. In the Login – New dialog box, in the Login name box, type the name of your deployment

account (for example, FABRIKAM\matt).

4. In the Select a page pane, click Server Roles.

5. Select dbcreator, and then click OK.

To support subsequent deployments, you’ll also need to add the deploying account to the db_owner

role on the database after the first deployment. This is because on subsequent deployments you’re

149

modifying the schema of an existing database, rather than creating a new database. As described in the

previous section, you can't add a user to a database role until you've created the database, for obvious

reasons.

To map the deployment account login to the db_owner database role

1. Open SQL Server Management Studio as before.

2. In the Object Explorer window, expand the Security node, expand the Logins node, and then

double-click the machine account login (for example, FABRIKAM\matt).

3. In the Login Properties dialog box, click User Mapping.

4. In the Users mapped to this login table, select the name of your database (for example,

ContactManager).

5. In the Database role membership for: [database name] list, select the db_owner role.

6. Click OK.

150

Conclusion

Your database server should now be ready to accept remote database deployments and to allow remote

IIS web servers to access your databases. Before you attempt to deploy and use databases, you may

want to check these key points:

 Have you configured SQL Server to accept remote TCP/IP connections?

 Have you configured any firewalls to permit SQL Server traffic?

 Have you created a machine account login for every web server that will access SQL Server?

 Does your database deployment include a script to create user role mappings, or do you need

to create these manually after you deploy the database for the first time?

 Have you created a login for the deployment account and added it to the dbcreator server role?

Further Reading

For guidance on deploying database projects, see Deploying Database Projects. For guidance on creating

database role memberships by running a post-deployment script, see Deploying Database Role

Memberships to Test Environments. For guidance on how to meet the unique deployment challenges

that membership databases pose, see Deploying Membership Databases to Enterprise Environments.

Creating a Server Farm with the Web Farm Framework

This topic describes how to use the Web Farm Framework (WFF) 2.0 to create and configure a web

server farm from a collection of servers.

Why Should You Create a Server Farm?

WFF lets you synchronize web platform products and components, web applications, websites, and

configuration settings across multiple load-balanced web servers. In scenarios where you need more

than one web server, like staging and production environments, this can vastly simplify your deployment

and configuration process. You can deploy a web application to a single server—the primary server—and

WFF will automatically replicate that web application on all the other web servers in the server farm.

Understanding the Web Farm Framework

You can use WFF 2.0 to provision, manage, and deploy content to a group of web servers. A WFF

deployment consists of three key server roles:

 The controller server. You use this server to create and configure WFF server farms. The

controller server manages the synchronization of web platform components, configuration

settings, and applications between the web servers in a server farm. You install WFF 2.0 on the

controller server, and the controller server will in turn install the WFF agent on each of the

servers in a server farm. The controller server does not conceptually belong to any WFF server

farm, and a single controller server can manage multiple server farms. In this scenario, you use

151

a single WFF controller server to create and manage the staging server farm and the production

server farm.

 The primary server. Each WFF server farm includes a single primary server. When you install

web platform components or deploy applications to the primary server, the WFF synchronizes

your changes to all the other servers in the server farm.

 The secondary server. Each WFF server farm includes one or more secondary servers. Any

changes you make to the primary server are replicated to every secondary server within the

server farm.

This shows how these server roles relate to the Fabrikam, Inc. staging and production environments:

In this scenario, the staging environment and the production environment are both configured as WFF

server farms. A single WFF controller server manages both farms. Within each server farm, any changes

to the primary server are replicated to every secondary server.

Before you start to configure your staging and production environments, we recommend that you read

these articles to familiarize yourself with the key concepts of WFF 2.0:

152

 Overview of the Web Farm Framework 2.0 for IIS 7

 Setting up a Server Farm with the Web Farm Framework 2.0 for IIS 7

 System and Platform Requirements for the Web Farm Framework 2.0 for IIS 7

Task Overview

To complete the tasks and walkthroughs in this topic, you'll need at least three servers—one WFF

controller, one primary web server for the server farm, and one or more secondary web servers for the

server farm. You can add more secondary servers to a WFF server farm at any time. At a high level, to

create and configure a WFF server farm for your staging or production environment you'll need to:

 Create a controller server by installing Internet Information Services (IIS) 7.5 and WFF 2.0.

 Prepare primary and secondary servers by creating a common administrator account and

configuring firewall exceptions.

 Configure the server farm by using IIS Manager on the controller server.

 Configure load balancing using IIS Application Request Routing (ARR) or an alternative load-

balancing technology.

The tasks and walkthroughs in this topic assume that you're starting with clean server builds running

Windows Server 2008 R2. Before you begin, for each server, ensure that:

 Windows Server 2008 R2 Service Pack 1 and all available updates are installed.

 The server is domain-joined.

 The server has a static IP address.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP

Address.

Create the WFF Controller Server

To create a WFF controller server, you'll need to install both IIS 7 or later and WFF 2.0 or later. Under

the covers, WFF uses the IIS Web Deployment Tool (Web Deploy) 2.x to synchronize the servers in your

farm. If you use the Web Platform Installer to install WFF, the installer will automatically download and

install Web Deploy for you.

To create the WFF controller server

1. Download and install the Web Platform Installer.

2. At the top of the Web Platform Installer 3.0 window, click Products.

3. On the left side of the window, in the navigation pane, click Server.

http://go.microsoft.com/?linkid=9805126
http://go.microsoft.com/?linkid=9805127
http://go.microsoft.com/?linkid=9805128
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9739157

153

4. In the IIS 7 Recommended Configuration row, click Add.

5. In the Web Farm Framework 2.x row, click Add.

6. Click Install. Notice that the Web Platform Installer has added the Web Deployment Tool, along

with various other dependencies, to the installation list.

154

7. Review the license terms, and if you consent to the terms, click I Accept.

8. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

Configure the Primary and Secondary Servers

Before you create a WFF server farm, you should complete some preparation tasks on the web servers

that will make up the farm:

 Add firewall exceptions to allow the Core Networking, Remote Administration, and File and

Printer Sharing features to communicate with the WFF controller server.

 Create a domain account (for example, FABRIKAM\stagingfarm) in Active Directory and add it

to the local administrators group on each server. You'll use this account as the server farm

administrator account when you create the server farm.

For more information on how to configure these firewall exceptions in Windows Firewall, see System

and Platform Requirements for the Web Farm Framework 2.0 for IIS 7. For other firewall systems,

consult your product documentation.

You can use the next procedure to add a domain account to the local administrators group in Windows

Server 2008 R2. You should perform this procedure on every server that you want to add to the server

http://go.microsoft.com/?linkid=9805128
http://go.microsoft.com/?linkid=9805128

155

farm—in other words, add the same domain account to the local administrators group on the primary

server and on each secondary server.

To add a domain account to the local administrators group

1. On the Start menu, point to Administrative Tools, and then click Server Manager.

2. In the Server Manager window, in the tree view pane, expand Configuration, expand Local

Users and Groups, and then click Groups.

3. In the Groups pane, double-click Administrators.

4. In the Administrators Properties dialog box, click Add.

5. In the Select Users, Computers, Service Accounts, or Groups dialog box, type (or browse) to

your domain account (for example, FABRIKAM\stagingfarm), and then click OK.

156

6. In the Administrators Properties dialog box, click OK.

Your servers are now ready to be added to a server farm. In the case of the primary server, you can

configure the server to meet your application requirements before or after you create the server farm—

in both cases, the WFF will synchronize the servers by deploying the same products, components, or

configuration to your secondary servers. For the sake of simplicity, this tutorial assumes that you'll

configure the primary server when you've finished creating the server farm.

Create the WFF Server Farm

At this point, all your servers are ready to be added to a WFF server farm:

 You've installed WFF on the controller server.

 You've configured firewall exceptions on your primary and secondary web servers.

 You've added a domain account to the local administrators group on your primary and

secondary web servers.

The next step is to create the server farm in WFF. You can do this from IIS Manager on the WFF

controller server.

157

To create a WFF server farm

1. On the WFF controller server, on the Start menu, point to Administrative Tools, and then click

Internet Information Services (IIS) Manager.

2. In the Connections pane, expand the local server node, right-click Server Farms, and then click

Create Server Farm.

3. In the Create Server Farm dialog box, type a meaningful name for the server farm (for example,

Staging Farm), and then select Provision server farm.

4. Type the user name and password of the domain account that you added to the local

administrators group on each server.

5. Click Next.

6. On the Add Servers page, type the fully qualified domain name (FQDN) of the primary server,

select Primary Server, and then click Add.

At this point, WFF will attempt to contact the primary server using the credentials you provided.

If the connection succeeds, the primary server will be added to the table on the Add Servers

page.

158

Note: You might have noticed that Server is available for Load Balancing is selected by

default. WFF uses the IIS ARR module to implement load balancing and thereby distribute

requests across the web servers in your server farm. In most scenarios, you'd only clear the

Server is available for Load Balancing option if you wanted to use a third-party load balancing

solution instead.

7. On the Add Servers page, type the FQDN of your first secondary server, and then click Add.

159

8. Repeat step 7 for any additional secondary servers in your farm, and then click Finish.

Your WFF server farm is now up and running. Any web platform products or components that you install

on the primary server, and any web applications or content that you deploy to the primary server, will

be automatically provisioned on all your secondary servers.

WFF is a broad and complex topic, and you can learn more about it on the Microsoft Web Farm

Framework 2.0 for IIS 7 website. For the time being, however, there are two features areas that you

need to be aware of:

 Application provisioning is the process that replicates content from the primary server, like web

applications and configuration settings, across all the secondary servers in the server farm. For

example, if you deploy the Contact Manager sample solution to your primary staging server, the

WFF application provisioning process will deploy this solution to all your secondary staging

servers. By default, the application provisioning process runs every 30 seconds.

 Platform provisioning is the process that synchronizes web platform products and components

from the primary server to all the secondary servers in the server farm. For example, if you

install ASP.NET MVC 3 on your primary staging server, the platform provisioning process will use

http://go.microsoft.com/?linkid=9805129
http://go.microsoft.com/?linkid=9805129

160

the Web Platform Installer to install ASP.NET MVC 3 on all your secondary staging servers. By

default, the platform provisioning process runs every five minutes.

You can manage basic application and platform provisioning settings from IIS Manager on your WFF

controller server.

Explore application and platform provisioning settings

1. In IIS Manager, in the Connections pane, select your server farm.

2. In the Server Farm pane, double-click Application Provisioning.

As you can see, the server farm is currently configured to synchronize web content and

configuration settings between the primary server and the secondary servers every 30 seconds.

3. Click Back, and then double-click Platform Provisioning.

161

As you can see, the server farm is currently configured to synchronize web platform products

and components between the primary server and the secondary servers every five minutes.

4. Click Back.

5. To force the server farm to synchronize web platform products immediately, in the Actions

pane, click Provision Platform.

Note: Platform provisioning may take some time. The installer process runs in the background

on the secondary servers in your server farm.

6. Once you’ve allowed sufficient time for the provisioning process to complete, you can verify

that the products and components that you added to the primary server have now been

replicated on the secondary servers. For example, you can log on to a secondary server and use

the Server Manager window to verify that the web server role has been installed.

162

You can also check the installed programs list to verify that various web platform components

have been added.

Configure Load Balancing

When you create a web farm, you need to set up some form of load balancing to distribute HTTP

requests between your web servers. This could be Windows Server 2008 network load balancing, IIS

ARR, or a third-party software-based or hardware-based load balancing solution.

WFF is designed to integrate closely with IIS ARR. To take advantage of this integration, you need to

install the ARR module on the WFF controller server. You then direct all your web traffic to the

controller server, typically by configuring Domain Name System (DNS) records. The controller server will

then distribute incoming requests among the servers in your farm, based on server availability and

various other criteria.

Note: You don't have to use ARR with WFF; you can configure WFF to work with third-party load

balancing solutions. For more information, see Overview of the Web Farm Framework 2.0 for IIS 7.

Load balancing using ARR is a complex topic, most of which is beyond the scope of this tutorial.

However, you can use the next procedure to install the ARR module and get started with load balancing.

To set up load balancing on the WFF controller server

1. On the WFF controller server, launch the Web Platform Installer.

2. At the top of the Web Platform Installer 3.0 window, click Products.

3. On the left side of the window, in the navigation pane, click Server.

http://go.microsoft.com/?linkid=9805126

163

4. In the Application Request Routing 2.5 row, click Add.

5. Click Install, and then follow the instructions in the Web Platform Installation window.

6. When the installation is complete, launch IIS Manager, and in the Connections pane, click your

server farm node. Notice that several new icons have been added to the Server Farm pane.

7. In the Server Farm pane, double-click Load Balance.

8. In the Load Balance pane, select a load balance algorithm (for example, Least current request).

Note: For more information on load balancing algorithms and other configuration settings, see

Application Request Routing Module.

http://go.microsoft.com/?linkid=9805130

164

9. In the Actions pane, click Apply.

You have now configured basic load balancing for the servers in your server farm. If you direct all your

web farm traffic to the controller server, the requests will be distributed between the servers in your

farm according to availability and the load balancing algorithm you selected.

For more information on how to configure load balancing with ARR, see Application Request Routing

Module.

Monitor the Server Farm

You can monitor the health of your server farm at any time through IIS Manager on the controller

server. In the Connections pane, expand your server farm, and then click Servers. The center pane will

show a summary of each server in the farm together with a trace log of recent activity.

http://go.microsoft.com/?linkid=9805130
http://go.microsoft.com/?linkid=9805130

165

Conclusion

Your WFF server farm should now be up and running. You can configure the primary server to support

whichever deployment approach you prefer—see the Further Reading section for details—and your

configuration will be replicated on each secondary server in the server farm.

Further Reading

For more guidance on all aspects of configuring and using the WFF, see the Microsoft Web Farm

Framework 2.0 for IIS 7 website.

Configuring Deployment Properties for a Target Environment

This topic describes how to configure environment-specific properties in order to deploy the sample

Contact Manager solution to a specific target environment.

Process Overview

The project file that you'll use to build and deploy the Contact Manager solution is split into two physical

files:

 One that contains universal build settings and instructions (the Publish.proj file).

 One that contains environment-specific build settings (Env-Dev.proj, Env-Stage.proj, and so on).

At build time, the appropriate environment-specific project file is merged into the universal Publish.proj

file to form a complete set of build instructions. You can configure deployment to specific destination

environments by creating or customizing environment-specific project files with settings that describe

your own deployment scenario.

Lots of these values are determined by how your destination environment is configured—in particular,

whether your target web server is configured to use the Web Deployment Agent Service (the remote

agent) or the Web Deploy Handler. For more information on these approaches, and for guidance on

choosing the right approach for your own environment, see Choosing the Right Approach to Web

Deployment.

The Contact Manager scenario requires two environment-specific project files:

 Deployment to a developer test environment (Env-Dev.proj). The developer test environment is

configured to accept remote deployments using the remote agent, as described in Scenario:

Configuring a Test Environment for Web Deployment. This file needs to provide the remote

agent endpoint address as well as location-specific settings like connection strings and service

endpoints.

 Deployment to a staging environment (Env-Stage.proj). The staging environment is configured

to accept remote deployments using the Web Deploy Handler, as described in Scenario:

Configuring a Staging Environment for Web Deployment. This file needs to provide the Web

http://go.microsoft.com/?linkid=9805129
http://go.microsoft.com/?linkid=9805129

166

Deploy Handler endpoint address as well as location-specific settings like connection strings and

service endpoints.

It's important to note that the settings you configure in the environment-specific project file don't affect

the contents of the web package itself—instead, they control how the package is deployed and what

parameter values are provided when the package is extracted. You're importing the web package into

the production environment manually, as described in Scenario: Configuring a Production Environment

for Web Deployment and Manually Installing Web Packages, so it doesn't matter what settings you used

in the environment-specific project file when you generated the package. Internet Information Services

(IIS) Manager will prompt you for any parameterized values, like connection strings and service

endpoints, when you import the package.

To deploy the Contact Manager solution to your own target environment, you can either customize this

file or use it as a template and create your own file.

To configure environment-specific deployment settings for the Contact Manager solution

1. Open the ContactManager-WCF solution in Visual Studio 2010.

2. In the Solution Explorer window, expand the Publish folder, expand the EnvConfig folder, and

then double-click Env-Dev.proj.

3. Replace the property values in the Env-Dev.proj file with the correct values for your own test

environment.

Note: The table that follows this procedure provides more information on each of these

properties.

4. Save your work, and then close the Env-Dev.proj file.

Choosing the Right Deployment Properties

This table describes the purpose of each property in the sample environment-specific project file, Env-

Dev.proj, and provides some guidance on the values you should provide.

Property Name Details

167

Property Name Details

MSDeployComputerName

The name of the destination web

server or service endpoint.

If you’re deploying to the remote agent service on the destination web server,

you can specify the target computer name (for example, TESTWEB1 or

TESTWEB1.fabrikam.net), or you can specify the remote agent endpoint

(for example, http://TESTWEB1/MSDEPLOYAGENTSERVICE). The

deployment works the same way in each case.

If you’re deploying to the Web Deploy Handler on the destination web server,

you should specify the service endpoint and include the name of the IIS

website as a query string parameter (for example,

https://STAGEWEB1:8172/MSDeploy.axd?site=DemoSite).

MSDeployAuth

The method that Web Deploy should

use to authenticate to the remote

computer.

This should be set to NTLM or Basic.

Typically, you'll use NTLM if you're deploying to the remote agent service

and Basic if you're deploying to the Web Deploy Handler.

If you use basic authentication, you also need to specify the user name and

password that the IIS Web Deployment Tool (Web Deploy) should

impersonate in order to perform the deployment. In this example, these

values are provided through the MSDeployUsername and

MSDeployPassword properties. If you use NTLM authentication, you can

omit these properties or leave them blank.

MSDeployUsername

If you use basic authentication, Web

Deploy will use this account on the

remote computer.

This should take the form DOMAIN\username (for example,

FABRIKAM\matt).

This value is only used if you specify basic authentication. If you use NTLM

authentication, the property can be omitted. If a value is supplied, it will be

ignored.

MSDeployPassword

If you use basic authentication, Web

Deploy will use this password on the

remote computer.

This is the password for the user account you specified in the

MSDeployUsername property.

This value is only used if you specify basic authentication. If you use NTLM

authentication, the property can be omitted. If a value is supplied, it will be

ignored.

ContactManagerIisPath

The IIS path on which you want to

deploy the Contact Manager MVC

application.

This should be the path as it appears in IIS Manager, in the form

[IIS website name]/[web application name].

Remember that the IIS website needs to exist before you deploy your

application. For example, if you've created an IIS website named DemoSite,

you could specify the IIS path for the MVC application as

DemoSite/ContactManager.

ContactManagerServiceIisPath

The IIS path on which you want to

deploy the Contact Manager WCF

service.

For example, if you've created an IIS website named DemoSite, you could

specify the IIS path for the WCF service as

DemoSite/ContactManagerService.

168

Property Name Details

ContactManagerTargetUrl

The URL at which the WCF service

can be reached.

This will take the form

[IIS website root URL]/[service application name]/[service endpoint].

For example, if you've created an IIS website on port 85, the URL would take

the form http://localhost:85/ContactManagerService/ContactService.svc.

Remember that the MVC application and the WCF service are deployed to

the same server. As a result, this URL is only ever accessed from the

machine on which it's installed. Because of this, it's better to use localhost or

the IP address, rather than the machine name or a host header, in the URL.

If you use the machine name or a host header, the loopback check security

feature in IIS may block the URL and return an HTTP 401.1 - Unauthorized

error.

CmDatabaseConnectionString

The connection string for the

database server.

The connection string determines both the credentials that VSDBCMD will

use to contact the database server and create the database and the

credentials that the web server application pool will use to contact the

database server and interact with the database. Essentially you have two

choices here. You can specify Integrated Security=true, in which case

integrated Windows authentication is used:

Data Source=TESTDB1;Integrated Security=true

In this case, the database will be created using the credentials of the user

who runs the VSDBCMD executable, and the application will access the

database using the identity of the web server machine account. Alternatively,

you can specify the user name and password of a SQL Server account. In

this case, the SQL Server credentials are used both by VSDBCMD to create

the database and by the application pool to interact with the database:

Data Source=TESTDB1;User Id=ASqlUser; Password=Pa$$w0rd

The walkthroughs in this topic assume that you'll use integrated Windows

authentication.

CmTargetDatabase

The name you want to give the

database you’ll create on the

database server.

The value you provide here is added to the VSDBCMD command as a

parameter. It's also used to build a full connection string that the application

pool on the web server can use to interact with the database.

These examples show how you might configure these properties for specific deployment scenarios.

Example 1—Deployment to the Remote Agent Service

In this example:

 You're deploying to the remote agent service on TESTWEB1.

 You're instructing Web Deploy to use NTLM authentication. Web Deploy will run using the

credentials you used to invoke the Microsoft Build Engine (MSBuild).

http://go.microsoft.com/?linkid=9805131

169

 You're using integrated authentication to deploy the ContactManager database to TESTDB1.

The database will be deployed using the credentials you used to invoke MSBuild.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup>

 <MSDeployComputerName Condition=" '$(MSDeployComputerName)'=='' ">

 TESTWEB1.fabrikam.net

 </MSDeployComputerName>

 <MSDeployAuth Condition=" '$(MSDeployAuth)'=='' ">NTLM</MSDeployAuth>

 <ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'=='' ">

 http://localhost:85/ContactManagerService/ContactService.svc

 </ContactManagerTargetUrl>

 <ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'=='' ">

 DemoSite/ContactManager

 </ContactManagerIisPath>

 <ContactManagerServiceIisPath

 Condition=" '$(ContactManagerServiceIisPath)'=='' ">

 DemoSite/ContactManagerService

 </ContactManagerServiceIisPath>

 <CmDatabaseConnectionString Condition=" '$(CmDatabaseConnectionString)'=='' ">

 Data Source=TESTDB1;Integrated Security=true</CmDatabaseConnectionString>

 <CmTargetDatabase Condition=" '$(CmTargetDatabase)'=='' ">

 ContactManager

 </CmTargetDatabase>

 </PropertyGroup>

</Project>

Example 2—Deployment to the Web Deploy Handler Endpoint

In this example:

 You're deploying to the Web Deploy Handler service endpoint on STAGEWEB1.

 You're instructing Web Deploy to use basic authentication.

 You're specifying that Web Deploy should impersonate the FABRIKAM\stagingdeployer account

on the remote computer.

 You're using SQL Server authentication to deploy the ContactManager database to STAGEDB1.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup>

 <MSDeployComputerName Condition=" '$(MSDeployComputerName)'=='' ">

 https://STAGEWEB1:8172/MSDeploy.axd?site=DemoSite

 </MSDeployComputerName>

 <MSDeployAuth Condition=" '$(MSDeployAuth)'=='' ">Basic</MSDeployAuth>

170

 <MSDeployUsername Condition=" '$(MSDeployUsername)'=='' ">

 FABRIKAM\stagingdeployer

 </MSDeployUsername>

 <MSDeployPassword Condition=" '$(MSDeployPassword)'=='' ">

 Pa$$w0rd

 </MSDeployPassword>

 <ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'=='' ">

 http://localhost:85/ContactManagerService/ContactService.svc

 </ContactManagerTargetUrl>

 <ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'=='' ">

 DemoSite/ContactManager

 </ContactManagerIisPath>

 <ContactManagerServiceIisPath

 Condition=" '$(ContactManagerServiceIisPath)'=='' ">

 DemoSite/ContactManagerService

 </ContactManagerServiceIisPath>

 <CmDatabaseConnectionString Condition=" '$(CmDatabaseConnectionString)'=='' ">

 Data Source=STAGEDB1;User ID=sa;Password=Pa$$w0rd;

 </CmDatabaseConnectionString>

 <CmTargetDatabase Condition=" '$(CmTargetDatabase)'=='' ">

 ContactManager

 </CmTargetDatabase>

 </PropertyGroup>

</Project>

Conclusion

At this point, your project files are fully configured to build and deploy the Contact Manager solution to

one or more destination environments.

To use these project files as part of a single-step, repeatable deployment process, you need to execute

the Publish.proj file using MSBuild and pass in the location of the environment-specific project file as a

parameter. You can do this in various ways:

 For an overview of MSBuild and an introduction to custom project files, see Understanding the

Project File.

 For information on how to formulate an MSBuild command that executes your custom project

files, see Deploying Web Packages.

 For information on how to incorporate your MSBuild commands into a command file for single-

step, repeatable deployments, see Create and Run a Deployment Command File.

 For information on how to execute your custom project files from Team Build, see Creating a

Build Definition that Supports Deployment.

171

Configuring Team Foundation Server for Web Deployment

This tutorial will show you how to configure Team Foundation Server (TFS) 2010 to build solutions and

deploy web content to various target environments. This includes continuous integration (CI) scenarios,

where you deploy content automatically every time a developer makes a change. It can also include

manual trigger scenarios, where an administrator may want to trigger deployment of a specific build to a

staging environment once the build has been verified and validated in the test environment. The topics

in this tutorial will guide you through the entire configuration process, including:

 How to create a new team project in TFS.

 How to add content to source control.

 How to configure a build server to support CI and deployment.

 How to create a build definition that includes deployment logic.

 How to configure permissions for automated deployment.

Before You Begin

This tutorial assumes that you have installed TFS 2010 and created a team project collection as part of

the initial configuration process. The Team Foundation Installation Guide for Visual Studio 2010 provides

comprehensive guidance on these tasks.

Scenario Overview

The high-level scenario for these tutorials is described in Enterprise Web Deployment: Scenario

Overview. We recommend that you review this topic before you get started on this tutorial.

How to Use This Tutorial

If this is the first time you've performed the tasks described in this tutorial, or if you want to follow the

examples using the sample solution, you should work through the tutorial topics in order. Alternatively,

you can use individual topics as guidance for specific tasks. This tutorial includes these topics:

 Creating a Team Project in TFS. A team project is the core unit for source control, process

management, and build in TFS. You need to create a team project before you can add content

to source control or create build definitions.

 Adding Content to Source Control. Once you've created a team project, you can start adding

content to source control. You'll need to add your projects and solutions, together with any

external dependencies, before you can start configuring builds.

 Configuring a TFS Build Server for Web Deployment. If you want to build your team project

content, you'll need to configure a build server. In most cases, this should be on a separate

machine from your TFS installation. To configure a build server, you need to install and

configure the TFS build service, install Visual Studio 2010, create build controllers and build

http://go.microsoft.com/?linkid=9805132

172

agents, install any products or components that your code needs in order to build successfully,

and install the Internet Information Services (IIS) Web Deployment Tool (Web Deploy).

 Creating a Build Definition That Supports Deployment. Before you can start queuing or

triggering builds in TFS, you need to create at least one build definition for your team project.

The build definition defines every aspect of the build, including which things should be included

in the build, what should trigger the build, and where Team Build should send the build outputs.

You can configure a build definition to run custom Microsoft Build Engine (MSBuild) project

files, which lets you include deployment logic in your automated builds.

 Deploying a Specific Build. In a lot of scenarios, you'll want to deploy a specific build, rather than

the latest build, to a target environment. In this case, you can configure a build definition that

deploys content from a specific drop folder.

 Configuring Permissions for Team Build Deployment. If the build service is to deploy content as

part of an automated build process, you need to grant various permissions to the build service

account on any destination web servers and database servers.

Key Technologies

This tutorial focuses on how to use these products and technologies to support automated build and

web deployment:

 Visual Studio Team Foundation Server 2010

 Team Build and MSBuild

 Web Deploy

The tutorial also touches on the use of Windows Server 2008 R2, IIS 7.5, SQL Server 2008 R2, ASP.NET

4.0, and ASP.NET MVC 3.

Creating a Team Project in TFS

This topic describes how to create a new team project in Team Foundation Server (TFS) 2010.

Task Overview

To provision and use a new team project in TFS, you'll need to complete these high-level steps:

 Grant permissions to the user who will create the new team project.

 Create the team project.

 Grant permissions to the team members who will work on the project.

 Check in some content.

173

This topic will show you how to perform these procedures, and it will identify the users and job roles

that are likely to be responsible for each procedure. Be aware that, depending on the structure of your

organization, each of these tasks may be the responsibility of a different person.

The tasks and walkthroughs in this topic assume that you've installed and configured TFS, and that

you've created a team project collection as part of the configuration process. For more information on

these assumptions, and for more general background information on the scenario, see Configure a TFS

Build Server for Web Deployment.

Grant Permissions to the Team Project Creator

In order to create a new team project, you need these permissions:

 You must have the Create new projects permission on the TFS application tier. You typically

grant this permission by adding users to the Project Collection Administrators TFS group. The

Team Foundation Administrators global group also includes this permission.

 You must have permission to create new team sites within the SharePoint site collection that

corresponds to the TFS team project collection. You typically grant this permission by adding

the user to a SharePoint group with Full Control rights on the SharePoint site collection.

 If you're using SQL Server Reporting Services features, you must be a member of the Team

Foundation Content Manager role in Reporting Services.

Who Performs These Procedures?

Typically, the person or group who administers the TFS deployment also performs these procedures.

Because this is a highly privileged set of permissions, new team projects are typically created by a small

subset of users with responsibility for administering a TFS deployment. Developers will not usually be

granted the permissions required to create new team projects.

Grant Permissions in TFS

If you want to enable a user to create new team projects, the first high-level task is to add the user to

the Project Collection Administrators group for the team project collection.

To add a user to the Project Collection Administrators group

1. On the TFS server, on the Start menu, point to All Programs, click Microsoft Team Foundation

Server 2010, and then click Team Foundation Administration Console.

2. In the navigation tree view, expand Application Tier, and then click Team Project Collections.

174

3. In the Team Project Collections pane, select the team project collection you want to manage.

4. On the General tab, click Group Membership.

5. In the Global Groups dialog box, select the Project Collection Administrators group, and then

click Properties.

6. In the Team Foundation Server Group Properties dialog box, select Windows User or Group,

and then click Add.

175

7. In the Select Users, Computers, or Groups dialog box, type the user name of the user you want

to be able to create new team projects, click Check Names, and then click OK.

8. In the Team Foundation Server Group Properties dialog box, click OK.

9. In the Global Groups dialog box, click Close.

Grant Permissions in SharePoint Services

Next, you need to give the user permission to create new team sites in the SharePoint site collection

that corresponds to your TFS team project collection.

To grant Full Control permissions on the SharePoint site collection

176

1. In the Team Foundation Server Administration Console, on the Team Project Collections page,

select the team project collection you want to manage.

2. On the SharePoint Site tab, note the value of the Current Default Site Location URL.

3. Open Internet Explorer, and then go to the URL you noted in step 2.

Note: If you're not logged on to Windows as the user who created the team project collection,

you'll need to sign in to SharePoint as this user in order to continue.

4. On the Site Actions menu, click Site Settings.

5. On the Site Settings page, under Users and Permissions, click People and groups.

6. In the left navigation panel, click Groups.

177

7. On the People and Groups: All Groups page, click Set Up Groups for this Site.

Note: You may receive an HTTP 404 Not Found error due to a double HTTP encoding bug. If

this occurs, replace the URL with this:

[site collection URL]/_layouts/permsetup.aspx

For example:

http://tfs/sites/Fabrikam%20Web%20Projects/_layouts/permsetup.aspx

8. On the Set Up Groups for this Site page, add the user who will create team projects to the

Owners group, and then click OK.

178

For more information on enabling users to create new team projects within a team project collection,

see Set Administrator Permissions for Team Project Collections.

Create a New Team Project and Add Users

Once you have the necessary permissions, you can use the Team Explorer window in Visual Studio 2010

to create a new team project. This approach provides a wizard that collects all the required information

and performs the necessary tasks in TFS, SharePoint, and SQL Server Reporting Services. You'll also need

to grant permissions on the new team project to members of the developer team, to enable them to

add and modify content.

Who Performs These Procedures?

Usually either a TFS administrator or a developer team leader performs these procedures.

Create a New Team Project

The next procedure describes how to create a new team project in TFS 2010.

To create a new team project

1. On the Start menu, point to All Programs, click Microsoft Visual Studio 2010, right-click

Microsoft Visual Studio 2010, and then click Run as administrator.

Note: If you don't run Visual Studio 2010 as an administrator, the New Team Project Wizard

will fail on the last step.

2. If the User Account Control dialog box appears, click Yes.

3. In Visual Studio, on the Team menu, click Connect to Team Foundation Server.

Note: If you have already configured a connection to a TFS server, you can omit steps 4-7.

http://msdn.microsoft.com/en-us/library/dd547204.aspx

179

4. In the Connection to Team Project dialog box, click Servers.

5. In the Add/Remove Team Foundation Server dialog box, click Add.

6. In the Add Team Foundation Server dialog box, provide the details of your TFS instance, and

then click OK.

7. In the Add/Remove Team Foundation Server dialog box, click Close.

8. In the Connect to Team Project dialog box, select the TFS instance you want to connect to,

select the team project collection you want to add to, and then click Connect.

180

9. In the Team Explorer window, right-click the team project collection, and then click New Team

Project.

10. In the New Team Project dialog box, provide a name and a description for the team project, and

then click Next.

Note: If your team project includes spaces, you may face some issues when you come to use

the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) to deploy packages

from the output path. Spaces in the path can make it a lot more difficult to run Web Deploy

commands.

181

11. On the Select a Process Template page, select the process template that you want to use to

manage the development process, and then click Next.

Note: For more information on process templates for TFS, see Process Templates and Tools.

12. On the Team Site Settings page, leave the default settings unchanged, and then click Next.

This setting creates, or identifies, a SharePoint team site that is associated with the TFS team

project. Your development team can use this site to manage documentation, participate in

discussion threads, create wiki pages, and perform various other tasks that are not related to

code. For more information, see Interactions Between SharePoint Products and Team

Foundation Server.

13. On the Specify Source Control Settings page, leave the default settings unchanged, and then

click Next.

This setting identifies or creates the location in the TFS folder hierarchy that will act as a root

folder for your content.

14. On the Confirm Team Project Settings page, click Finish.

15. When the new team project is successfully created, on the Team Project Created page, click

Close.

Add Users to a Team Project

Now that you've created the new team project, you can grant permissions to users to enable them to

start adding and collaborating on content.

To add users to a team project

1. In Visual Studio 2010, in the Team Explorer window, right-click the team project, point to Team

Project Settings, and then click Group Membership.

http://msdn.microsoft.com/en-us/vstudio/aa718795
http://msdn.microsoft.com/en-us/library/ms253177.aspx
http://msdn.microsoft.com/en-us/library/ms253177.aspx

182

To enable a user to add, modify, and remove code under source control, you need to add him or

her to the Contributors group.

2. In the Project Groups dialog box, select the Contributors group, and then click Properties.

3. In the Team Foundation Server Group Properties dialog box, select Windows User or Group,

and then click Add.

183

4. In the Select Users, Computers, or Groups dialog box, type the user name of the user you want

to add to the team project, click Check Names, and then click OK.

5. In the Team Foundation Server Group Properties dialog box, click OK.

6. In the Project Groups dialog box, click Close.

Conclusion

At this point, your new team project is ready to use, and your developer team can start adding content

and collaborating on the development process.

The next topic, Adding Content to Source Control, describes how to add content to source control.

184

Further Reading

For broader guidance on creating team projects in TFS, see Create a Team Project. For more information

on enabling users to create new team projects within a team project collection, see Set Administrator

Permissions for Team Project Collections. For more information on adding users to team projects, see

Add Users to Team Projects.

Adding Content to Source Control

This topic explains how to add content to source control in Team Foundation Server (TFS) 2010. It

describes how to add solutions and projects to a team project in TFS, and it explains how to add external

dependencies like frameworks or assemblies to source control.

Task Overview

In most cases, every member of the developer team should be able to add content to source control. To

add a solution to source control in TFS, you'll need to complete these high-level steps:

 Connect to a team project.

 Map the team project folder structure on the server to a folder structure on your local

computer.

 Add the solution and its contents to source control.

 Add any external dependencies to source control.

This topic will show you how to perform these procedures.

The tasks and walkthroughs in this topic assume that you've already created a new TFS team project to

manage your content. For more information on creating a new team project, see Creating a Team

Project in TFS.

Who Performs These Procedures?

In most cases, every member of the developer team should be able to add and modify content within

specific team projects.

Connect to a Team Project and Create a Folder Mapping

Before you add any content to source control, you need to connect to a team project and create a

mapping between the folder structure on the server and the file system on your local machine.

To connect to a team project and map a local path

1. On your developer workstation, open Visual Studio 2010.

2. In Visual Studio, on the Team menu, click Connect to Team Foundation Server.

Note: If you have already configured a connection to a TFS server, you can omit steps 3-6.

http://msdn.microsoft.com/en-us/library/ms181477(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd547204.aspx
http://msdn.microsoft.com/en-us/library/dd547204.aspx
http://msdn.microsoft.com/en-us/library/bb558971.aspx

185

3. In the Connection to Team Project dialog box, click Servers.

4. In the Add/Remove Team Foundation Server dialog box, click Add.

5. In the Add Team Foundation Server dialog box, provide the details of your TFS instance, and

then click OK.

6. In the Add/Remove Team Foundation Server dialog box, click Close.

7. In the Connect to Team Project dialog box, select the TFS instance you want to connect to,

select the team project collection, select the team project you want to add to, and then click

Connect.

8. In the Team Explorer window, expand your team project, and then double-click Source Control.

186

9. On the Source Control Explorer tab, click Not mapped.

10. In the Map dialog box, in the Local folder box, browse to (or create) a local folder to act as the

root folder for the team project, and then click Map.

11. When you're prompted to download source files, click Yes.

187

At this point, you have mapped the server-side folder for the team project to a local folder on your

developer workstation. You've also downloaded any existing content from the team project to your local

folder structure. You can now start to add your own content to source control.

Add Projects and Solutions to Source Control

To add projects and solutions to source control, you first need to move them to the mapped folder for

the team project on your local machine. You can then check in the content to synchronize your additions

with the server.

To add projects to source control

1. On your developer workstation, move your projects and solutions to an appropriate location

within the mapped folder structure for the team project.

Note: Many organizations will have a preferred approach to how projects and solutions should

be organized in source control. For guidance on how to structure folders, see How To:

Structure Your Source Control Folders in Team Foundation Server.

2. Open the solution in Visual Studio 2010.

3. In the Solution Explorer window, right-click the solution, and then click Add Solution to Source

Control.

http://msdn.microsoft.com/en-us/library/bb668992.aspx
http://msdn.microsoft.com/en-us/library/bb668992.aspx

188

Note: In some cases, depending on how your organization likes to structure content in TFS,

you may need to add projects to source control individually to provide more fine-grained

control over how your source code is organized.

4. Verify that the Source Control Explorer tab displays the content you've added within the server

folder structure for the team project.

Note: The Source Control Explorer tab displays your content with no further prompting

because you added your solution to a mapped folder on the local file system. If your solution

189

was in an unmapped location, you'd be prompted to specify folder locations in both TFS and

your local file system.

5. On the Source Control Explorer tab, in the Folders pane, right-click the team project (for

example, ContactManager), and then click Check In Pending Changes.

6. In the Check In – Source Files dialog box, type a comment, and then click Check In.

At this point you have added your solution to source control in TFS.

Add External Dependencies to Source Control

When you add a project or solution to source control, any files and folders within your project or

solution will also be added. However, in a lot of cases, projects and solutions also rely on external

dependencies, like local assemblies, to function properly. You need to add any such resources to source

control to let both Team Build and other members of the developer team build your code successfully.

For example, the folder structure for the Contact Manager sample solution includes a folder named

packages. This contains the assembly and various supporting resources for the ADO.NET Entity

Framework 4.1. The packages folder is not part of the Contact Manager solution, but the solution will

not build successfully without it. To enable Team Build to build the solution, you need to add the

packages folder to source control.

Note: The inclusion of a packages folder is typical of what happens when you add the Entity

Framework, or similar resources, to your solution using the NuGet extension for Visual Studio 2010.

To add non-project content to source control

190

1. Ensure that the items you want to add (for example, the packages folder) are in an appropriate

location within a mapped folder on your local file system.

2. In Visual Studio 2010, In the Team Explorer window, expand your team project, and then

double-click Source Control.

3. On the Source Control Explorer tab, in the Folders pane, select the folder that contains the item

or items you want to add.

4. Click the Add Items to Folder button.

5. In the Add to Source Control dialog box, select the folder or items you want to add, and then

click Next.

191

6. On the Excluded items tab, select any required items that have been automatically excluded

(for example, assemblies), and then click Include item(s).

192

7. On the Items to add tab, verify that all the files you want to include are listed, and then click

Finish.

193

8. In the Source Control Explorer window, click the Check In button.

9. In the Check In – Source Files dialog box, type a comment, and then click Check In.

At this point, you have added the external dependencies for your solution to source control.

Conclusion

This topic described how to connect to a team project, map a folder structure, and add content to

source control. For more information on how to work with items under source control, see Using

Version Control.

The next topic, Configuring a TFS Build Server for Web Deployment, describes how to prepare a TFS

Team Build server to build and deploy your solution.

Further Reading

For more comprehensive information on working with source control in TFS, see Using Version Control.

http://msdn.microsoft.com/en-us/library/ms181368.aspx
http://msdn.microsoft.com/en-us/library/ms181368.aspx
http://msdn.microsoft.com/en-us/library/ms181368.aspx

194

Configuring a TFS Build Server for Web Deployment

This topic describes how to prepare a Team Foundation Server (TFS) build server to build and deploy

your solutions using Team Build and the Internet Information Services (IIS) Web Deployment Tool (Web

Deploy).

Task Overview

To prepare a build server to build and deploy your solutions, you'll need to:

 Install and configure the TFS build service.

 Install Visual Studio 2010.

 Install any products or components that are required to build your solution, like versions of the

.NET Framework or ASP.NET MVC.

 Install Web Deploy 2.0 or later.

This topic will show you how to perform these procedures or point to other resources where they exist.

The tasks and walkthroughs in this topic assume that:

 You're starting with a clean server build running Windows Server 2008 R2 Service Pack 1.

 The server is domain-joined with a static IP address.

 You've installed the TFS application tier on a separate server, as described in Enterprise Web

Deployment: Scenario Overview.

Who Performs These Procedures?

In most cases, a TFS administrator will be responsible for configuring build servers. In some cases, the

developer team may take ownership of specific build servers.

Install and Configure the TFS Build Service

When you configure a build server, your first task is to install and configure the TFS build service. As part

of this process, you'll need to:

 Install the TFS build service and configure a service account. Any build tasks, including

deployment, will run using the identity of the build service account.

 Create a build controller and one or more build agents. Each build controller manages a set of

build agents. When you queue a build, the build controller assigns the build task to an available

build agent. Each team project collection in TFS is mapped to a single build controller.

 Configure a drop folder for your build outputs. This is a network share. Any build outputs, like

web deployment packages, are sent to the drop folder.

195

The Administering Team Foundation Build chapter on MSDN contains all the resources you need in

order to perform these tasks:

 For a conceptual overview of Team Foundation Build, including the build service, build

controllers, and build agents, see Understanding a Team Foundation Build System.

 For information on installing and configuring the build service, see Configure a Build Machine.

 For information on creating build controllers, see Create and Work with a Build Controller.

 For information on creating build agents, see Create and Work with Build Agents.

 For information on creating and configuring drop folders, see Set Up Drop Folders.

Install Required Products and Components

To enable the build server to build your solutions, you must install any products, components, or

assemblies that your solution requires. Before you install any web platform components, you should

install Visual Studio 2010 (any version) on the build server. This ensures that the core Microsoft Build

Engine (MSBuild) target files and the Web Publishing Pipeline (WPP) target files are available to the build

service. The Visual Studio installer should also install Web Deploy, which you'll need if you plan to

deploy web packages as part of your build process.

The best way to install common web platform components is to use the Web Platform Installer. This

ensures that you're installing the latest version of each product, and it also automatically detects and

installs any prerequisites for each product. In the case of the Contact Manager solution, you should use

the Web Platform Installer to install these products and components:

 .NET Framework 4.0. This is required to run applications that were built on this version of the

.NET Framework.

 Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,

MSDeploy.exe) on your server. As part of this process, it installs and starts the Web Deployment

Agent Service. This service lets you deploy web packages from a remote computer.

 ASP.NET MVC 3. This installs the assemblies you need to run ASP.NET MVC 3 applications.

To install the required products and components

1. Install Visual Studio 2010. When prompted to select features to install, you should include:

a. Any programming languages that you need to compile.

b. Visual Web Developer. This ensures that the WPP targets are added to your build server.

http://msdn.microsoft.com/en-us/library/ms252495.aspx
http://msdn.microsoft.com/en-us/library/dd793166.aspx
http://msdn.microsoft.com/en-us/library/ms181712.aspx
http://msdn.microsoft.com/en-us/library/ee330987.aspx
http://msdn.microsoft.com/en-us/library/bb399135.aspx
http://msdn.microsoft.com/en-us/library/bb778394.aspx
http://go.microsoft.com/?linkid=9805118

196

2. When the installation of Visual Studio 2010 is complete, download and install Visual Studio 2010

Service Pack 1 (if it's not already included in your installation media).

Note: Visual Studio 2010 Service Pack 1 resolves a bug that can prevent MSBuild from locating

the MSDeploy executable.

3. Download and launch the Web Platform Installer.

4. At the top of the Web Platform Installer 3.0 window, click Products.

5. On the left side of the window, in the navigation pane, click Frameworks.

6. In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click

Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a

product or component is already installed, the Web Platform Installer will indicate this by

replacing the Add button with the text Installed.

http://go.microsoft.com/?linkid=9805133
http://go.microsoft.com/?linkid=9805133
http://go.microsoft.com/?linkid=9805118

197

7. In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

8. In the navigation pane, click Server.

9. In the Web Deployment Tool 2.1 row, click Add.

Click Install. The Web Platform Installer will show you a list of products—together with any

associated dependencies—to be installed and will prompt you to accept the license terms.

10. Review the license terms, and if you consent to the terms, click I Accept.

11. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

Note: If your deployment process includes the use of tools like VSDBCMD.exe or SQLCMD.exe, you'll

need to ensure that these are installed on your build server. VSDBCMD.exe is a Visual Studio tool and

is typically added to the server when you install Team Foundation Build. SQLCMD.exe is a SQL Server

tool. You can download a stand-alone version of SQLCMD.exe from the Microsoft SQL Server 2008 R2

Feature Pack page.

Conclusion

At this point, your build server is ready to start building and deploying your web application projects.

The next topic, Creating a Build Definition That Supports Deployment, describes how to create and

configure a build definition to control when and how your projects are built and deployed.

http://go.microsoft.com/?linkid=9805134
http://go.microsoft.com/?linkid=9805134

198

Further Reading

For more general guidance on working with Team Build, see Administering Team Foundation Build.

Creating a Build Definition That Supports Deployment

If you want to perform any kind of build in Team Foundation Server (TFS) 2010, you need to create a

build definition within your team project. This topic describes how to create a new build definition in TFS

and how to control web deployment as part of the build process in Team Build.

Task Overview

A build definition is the mechanism that controls how and when builds occur for team projects in TFS.

Each build definition specifies:

 The things you want to build, like Visual Studio solution files or custom Microsoft Build Engine

(MSBuild) project files.

 The criteria that determine when a build should take place, like manual triggers, continuous

integration (CI), or gated check-ins.

 The location to which Team Build should send build outputs, including deployment artifacts like

web packages and database scripts.

 The amount of time that each build should be retained.

 Various other parameters of the build process.

Note: For more information on build definitions, see Define Your Build Process.

This topic will show you how to create a build definition that uses CI, so that a build is triggered when a

developer checks in new content. If the build succeeds, the build service runs a custom project file to

deploy the solution to a test environment.

When you trigger a build, these actions need to happen:

 First, Team Build should build the solution. As part of this process, Team Build will invoke the

Web Publishing Pipeline (WPP) to generate web deployment packages for each of the web

application projects in the solution. Team Build will also run any unit tests associated with the

solution.

 If the solution build fails, Team Build should take no further action. Unit test failures should be

treated as a build failure.

 If the solution build succeeds, Team Build should run the custom project file that controls the

deployment of the solution. As part of this process, Team Build will invoke the Internet

Information Services (IIS) Web Deployment Tool (Web Deploy) to install the packaged web

applications on the destination web servers, and it will invoke the VSDBCMD.exe utility to run

database creation scripts on the destination database servers.

http://msdn.microsoft.com/en-us/library/ms252495.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx

199

This illustrates the process:

The Contact Manager sample solution includes a custom MSBuild project file, Publish.proj, that you can

run from MSBuild or Team Build. As described in Understanding the Build Process, this project file

defines the logic that deploys your web packages and databases to a target environment. The file

includes logic that omits the building and packaging process if it's running in Team Build, leaving just the

deployment tasks to run. This is because when you automate deployment in this way, you'll typically

want to ensure that the solution builds successfully and passes any unit tests before the deployment

process commences.

The next section explains how to implement this process by creating a new build definition.

200

Note: This procedure—in which a single automated process builds, tests, and deploys a solution—is

likely to be most suited to deployment to test environments. For staging and production environments

you're a lot more likely to want to deploy content from a previous build that you've already verified

and validated in a test environment. This approach is described in the next topic, Deploying a Specific

Build.

Who Performs This Procedure?

Typically, a TFS administrator performs this procedure. In some cases, a developer team leader may take

responsibility for the team project collection in TFS. In order to create a new build definition, you need

to be a member of the Project Collection Build Administrators group for the team project collection

that contains your solution.

Create a Build Definition for CI and Deployment

The next procedure describes how to create a build definition that CI triggers. If the build succeeds, the

solution is deployed using the logic in a custom MSBuild project file.

To create a build definition for CI and deployment

1. In Visual Studio 2010, in the Team Explorer window, expand your team project node, right-

click Builds, and then click New Build Definition.

2. On the General tab, give the build definition a name (for example, DeployToTest) and an

optional description.

201

3. On the Trigger tab, select the criteria on which you want to trigger a new build. For example,

if you want to build the solution and deploy to the test environment every time a developer

checks in new code, select Continuous Integration.

4. On the Build Defaults tab, in the Copy build output to the following drop folder box, type

the Universal Naming Convention (UNC) path of your drop folder (for example,

\\TFSBUILD\Drops).

Note: This drop location stores several builds, depending on the retention policy you

configure. When you want to publish deployment artifacts from a specific build to a staging or

production environment, this is where you'll find them.

5. On the Process tab, in the Build process file dropdown list, leave DefaultTemplate.xaml

selected. This is one of the default build process templates that get added to all new team

projects.

6. In the Build process parameters table, click in the Items to Build row, and then click the

ellipsis button.

7. In the Items to Build dialog box, click Add.

8. Browse to the location of your solution file, and then click OK.

202

9. In the Items to Build dialog box, click Add.

10. In the Items of type dropdown list, select MSBuild Project files.

11. Browse to the location of the custom project file with which you control the deployment

process, select the file, and then click OK.

12. The Items to Build dialog box should now show two items. Click OK.

203

13. On the Process tab, in the Build process parameters table, expand the Advanced section.

14. In the MSBuild Arguments row, add any MSBuild command-line arguments that either of

your items to build requires. In the Contact Manager solution scenario, these arguments are

required:

/p:DeployOnBuild=true;DeployTarget=Package;

 TargetEnvPropsFile=EnvConfig\Env-Dev.proj

In this example:

a. The DeployOnBuild=true and DeployTarget=package arguments are required when you

build the Contact Manager solution. This instructs MSBuild to create web deployment

packages after building each web application project, as described in Building and

Packaging Web Application Projects.

204

b. The TargetEnvPropsFile argument is required when you build the Publish.proj file. This

property indicates the location of the environment-specific configuration file, as

described in Understanding the Build Process.

15. On the Retention Policy tab, configure how many builds of each type you want to retain as

required.

16. Click Save.

Queue a Build

At this point, you have created at least one new build definition. The build process you defined will now

run according to the triggers you specified in the build definition.

If you've configured your build definition to use CI, you can test your build definition in two ways:

 Check in some content to the team project to trigger an automatic build.

 Queue a build manually.

To queue a build manually

1. In the Team Explorer window, right-click the build definition, and then click Queue New

Build.

2. In the Queue Build dialog box, review the build properties, and then click Queue.

205

To review the progress and the outcome of a build—regardless of whether it was triggered manually or

automatically—double-click the build definition in the Team Explorer window. This will open a Build

Explorer tab.

From here, you can troubleshoot failed builds. If you double-click an individual build, you can view

summary information and click through to detailed log files.

206

You can use this information to troubleshoot failed builds and address any problems before you attempt

another build.

Note: Builds that execute deployment logic are likely to fail until you have granted the build server any

permissions required in the destination environment. For more information, see Configuring

Permissions for Team Build Deployment.

Monitor the Build Process

TFS provides a broad range of functionality to help you monitor the build process. For example, TFS can

send you an email or display alerts in your taskbar notification area when a build has completed. For

more information, see Run and Monitor Builds.

Conclusion

This topic described how to create a build definition in TFS. The build definition is configured for CI, so

the build process runs whenever a developer checks in content to the team project. The build definition

executes a custom MSBuild project file to deploy web packages and database scripts to a target server

environment.

http://msdn.microsoft.com/en-us/library/ms181721.aspx

207

In order for an automated deployment to succeed as part of a build process, you'll need to grant

appropriate permissions to the build service account on the target web servers and the target database

server. The final topic in this tutorial, Configuring Permissions for Team Build Deployment, describes

how to identify and configure the permissions required for automated deployment from a Team Build

server.

Further Reading

For more information on creating build definitions, see Create a Basic Build Definition and Define Your

Build Process. For more guidance on queuing builds, see Queue a Build.

Deploying a Specific Build

This topic describes how to deploy web packages and database scripts from a specific previous build to a

new destination, like a staging or production environment.

Task Overview

Until now, the topics in this tutorial set have focused on how to build, package, and deploy web

applications and databases as part of a single-step or automated process. However, in some common

scenarios, you'll want to select the resources that you deploy from a list of builds in a drop folder. In

other words, the latest build may not be the build you want to deploy.

Consider the continuous integration (CI) scenario described in the previous topic, Creating a Build

Definition That Supports Deployment. You've created a build definition in Team Foundation Server (TFS)

2010. Every time a developer checks code into TFS, Team Build will build your code, create web

packages and database scripts as part of the build process, run any unit tests, and deploy your resources

to a test environment. Depending on the retention policy you configured when you created the build

definition, TFS will retain a certain number of previous builds.

Now, suppose you've performed verification and validation testing against one of these builds in your

test environment, and you're ready to deploy your application to a staging environment. In the

meantime, developers may have checked in new code. You don't want to rebuild the solution and

deploy to the staging environment, and you don't want to deploy the latest build to the staging

environment. Instead, you want to deploy the specific build that you've verified and validated on the

test servers.

http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181722.aspx

208

To accomplish this, you need to tell the Microsoft Build Engine (MSBuild) where to find the web

packages and database scripts that a specific build generated.

Overriding the OutputRoot Property

In the sample solution, the Publish.proj file declares a property named OutputRoot. As the name

suggests, this is the root folder that contains everything that the build process generates. In the

Publish.proj file, you can see that the OutputRoot property refers to the root location for all deployment

resources.

Note: OutputRoot is a commonly used property name. Visual C# and Visual Basic project files also

declare this property to store the root location for all build outputs.

XML

<PropertyGroup>

 <!--This is where the .deploymanifest file will be written to during a build-->

 <_DbDeployManifestPath>

 $(OutputRoot)ContactManager.Database.deploymanifest

 </_DbDeployManifestPath>

 <!-- The folder where the .zip and .cmd file will be located for

 ContactManager.Mvc Web project -->
 <_ContactManagerDest>

 $(OutputRoot)_PublishedWebsites\ContactManager.Mvc_Package\

 </_ContactManagerDest>

 <!-- The folder where the .zip and .cmd file will be located for

 ContactManager.Service Web project -->
 <_ContactManagerSvcDest>

 $(OutputRoot)_PublishedWebsites\ContactManager.Service_Package\

 </_ContactManagerSvcDest>

 <!-- ... -->

</PropertyGroup>

If you want your project file to deploy web packages and database scripts from a different location—like

the outputs of a previous TFS build—you simply need to override the OutputRoot property. You should

set the property value to the relevant build folder on the Team Build server. If you were running

MSBuild from the command line, you could specify a value for OutputRoot as a command-line

argument:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

 /p:OutputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest_20120228.3\

In practice, however, you'd also want to skip the Build target—there's no point in building your solution

if you don't plan to use the build outputs. You could do this by specifying the targets you want to

execute from the command line:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

209

 /p:OutputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest_20120228.3\

 /target:GatherPackagesForPublishing;PublishDBPackages;PublishWebPackages

However, in most cases, you'll want to build your deployment logic into a TFS build definition. This

enables users with the Queue builds permission to trigger the deployment from any Visual Studio

installation with a connection to the TFS server.

Creating a Build Definition to Deploy Specific Builds

The next procedure describes how to create a build definition that enables users to trigger deployments

to a staging environment with a single command.

In this case, you don't want the build definition to actually build anything—you just want it to execute

the deployment logic in your custom project file. The Publish.proj file includes conditional logic that

skips the Build target if the file is running in Team Build. It does this by evaluating the built-in

BuildingInTeamBuild property, which is automatically set to true if you run your project file in Team

Build. As a result, you can skip the build process and simply run the project file to deploy an existing

build.

To create a build definition to trigger deployment manually

1. In Visual Studio 2010, in the Team Explorer window, expand your team project node, right-click

Builds, and then click New Build Definition.

2. On the General tab, give the build definition a name (for example, DeployToStaging) and an

optional description.

3. On the Trigger tab, select Manual – Check-ins do not trigger a new build.

210

4. On the Build Defaults tab, in the Copy build output to the following drop folder box, type the

Universal Naming Convention (UNC) path of your drop folder (for example, \\TFSBUILD\Drops).

5. On the Process tab, in the Build process file dropdown list, leave DefaultTemplate.xaml

selected. This is one of the default build process templates that get added to all new team

projects.

6. In the Build process parameters table, click in the Items to Build row, and then click the

ellipsis button.

7. In the Items to Build dialog box, click Add.

8. In the Items of type dropdown list, select MSBuild Project files.

9. Browse to the location of the custom project file with which you control the deployment

process, select the file, and then click OK.

211

10. In the Items to Build dialog box, click OK.

11. In the Build process parameters table, expand the Advanced section.

12. In the MSBuild Arguments row, specify the location of your environment-specific project file

and add a placeholder for the location of your build folder:

/p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj;

OutputRoot=PLACEHOLDER

212

Note: You'll need to override the OutputRoot value every time you queue a build. This is

covered in the next procedure.

13. Click Save.

When you trigger a build, you need to update the OutputRoot property to point to the build you want

to deploy.

To deploy a specific build from a build definition

1. In the Team Explorer window, right-click the build definition, and then click Queue New Build.

2. In the Queue Build dialog box, on the Parameters tab, expand the Advanced section.

3. In the MSBuild Arguments row, replace the value of the OutputRoot property with the location

of your build folder. For example:

/p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj;

 OutputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest_20120228.3\

213

Note: Be sure to include a trailing slash at the end of the path to your build folder.

4. Click Queue.

When you queue the build, the project file will deploy the database scripts and web packages from the

build drop folder you specified in the OutputRoot property.

Conclusion

This topic described how to publish deployment resources, like web packages and database scripts, from

a specific previous build using the split project file deployment model. It explained how to override the

OutputRoot property and how to incorporate the deployment logic into a TFS build definition.

214

Further Reading

For more information on creating build definitions, see Create a Basic Build Definition and Define Your

Build Process. For more guidance on queuing builds, see Queue a Build.

Configuring Permissions for Team Build Deployment

This topic describes how to configure permissions to enable your build server to deploy content to web

servers and database servers as part of an automated build process.

Task Overview

When you install the Team Foundation Server (TFS) 2010 build service, you specify the identity with

which you want the service to run. By default, this is the Network Service account. Alternatively, you can

configure the build service to run using a domain account.

Any deployment tasks that require Windows authentication, and that you plan to automate using Team

Build, will run using the build service identity. As such, you'll need to grant the build service identity any

required permissions on your web servers and your database servers.

Note: The Network Service account uses the machine account to authenticate to other computers.

Machine accounts take the form [domain name]\[machine name]$—for example,

FABRIKAM\TFSBUILD$. As such, if your build service runs using the Network Service identity, you

should grant any required permissions to the machine account identity for your build server.

Configuring Web Server Permissions

As described in Choosing the Right Approach to Web Deployment, there are two main approaches you

can use if you want to deploy web packages to a remote web server:

 Deploy the application from a remote location by targeting the Web Deployment Agent Service

(also known as the remote agent) on the destination server.

 Deploy the application from a remote location by targeting the Internet Information Services

(IIS) Web Deploy Handler on the destination server.

The remote agent has two key limitations in this case:

 The remote agent supports only NTLM authentication. In other words, the deployment must

use the build service identity—you can't impersonate another account.

 To use the remote agent, the account that performs the deployment must be an administrator

on the target server.

Together, these two limitations make the remote agent approach undesirable for an automated Team

Build deployment. To use this approach, you'd need to make the build service account an administrator

on any target web servers.

http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181722.aspx

215

In contrast, the Web Deploy Handler approach offers various advantages:

 The Web Deploy Handler supports basic authentication over HTTPS, which allows you to pass

the credentials of an alternative account to the IIS Web Deployment Tool (Web Deploy).

 You can configure target web servers to allow non-administrator users to deploy content to

specific IIS websites using the Web Deploy Handler.

As a result, it's clearly preferable to target the Web Deploy Handler when you automate web package

deployment from Team Build. This is the recommended process:

1. Create a low-privileged domain account to use for the deployment.

2. Configure the Web Deploy Handler and grant the account the required permissions to deploy

content to a specific IIS website, as described in Configuring a Web Server for Web Deploy

Publishing (Web Deploy Handler).

3. Invoke Web Deploy and target the Web Deploy Handler, using basic authentication and

supplying the credentials of the domain account you created, to perform the deployment.

In the Contact Manager sample solution, you specify the authentication type (basic or NTLM), the Web

Deploy credentials, and the endpoint address (remote agent or Web Deploy Handler) in the

environment-specific project file. These values are used to formulate and run a Web Deploy command

when the project file is executed. For more information, see Deploying Web Packages.

For more information on configuring the Web Deploy Handler, including how to configure permissions,

see Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler). For more information

on configuring the remote agent, see Configuring a Web Server for Web Deploy Publishing (Remote

Agent).

Configuring Database Server Permissions

To deploy a database to SQL Server, you must:

 Create a login for the deploying account on the SQL Server instance.

 Grant the login DBCreator permissions on the SQL Server instance.

 After the initial deployment, add the login to the db_owner role on the target database. This is

required because on subsequent deployments, you're modifying an existing database rather

than creating a new database.

You can authenticate to a SQL Server instance using either NTLM authentication or SQL Server

authentication:

 If you use NTLM authentication, you need to grant the permissions described above to the build

service account.

216

 If you use SQL Server authentication, you need to grant the permissions described above to the

SQL Server account. You also need to include the SQL Server user name and password in the

connection string you use to deploy the database.

For step-by-step details on how to configure permissions for database deployment, see Configuring a

Database Server for Web Deploy Publishing.

Conclusion

At this point, you should understand the permissions required, together with the authentication options

open to you, when you automate web application and database deployments from Team Build. You

should also be able to implement the necessary permissions on IIS web servers and SQL Server database

servers.

Further Reading

For more information on configuring Windows server environments to support remote deployment, see

Configuring Server Environments for Web Deployment.

217

Advanced Enterprise Web Deployment

This tutorial will show you how to perform various tasks that are required or desirable in a lot of

enterprise deployment scenarios.

Scenario Overview

The high-level scenario for these tutorials is described in Enterprise Web Deployment: Scenario

Overview. We recommend that you review this topic before you get started on this tutorial.

How to Use This Tutorial

Each of the topics in this tutorial is self-contained and addresses a particular challenge or problem that

occurs in enterprise deployment scenarios. You don't need to work through these topics in any

particular order. However, this tutorial covers some advanced tasks. As such, you should familiarize

yourself with the concepts and techniques that the Web Deployment in the Enterprise tutorial covers in

order to gain the most benefit from this content.

This tutorial includes these topics:

 Performing a "What If" Deployment. In a lot of scenarios, you'll want to determine the impact of

a proposed deployment on a target environment or any existing content before you actually

make any changes. This topic describes how you can run a "what if" deployment to generate log

files and database update scripts as if you had deployed content to a target environment,

without actually making any changes. Analyzing these resources can help you to spot any

potential problems in advance of a live deployment.

 Customizing Database Deployments for Multiple Environments. When you deploy a database

project to multiple destinations, you'll often want to customize the deployment properties for

each target environment. For example, in test environments you'd typically recreate the

database on every deployment, whereas in staging or production environments you'd be a lot

more likely to make incremental updates to preserve your data. This topic describes how you

can incorporate these property changes into your deployment logic by creating an

environment-specific deployment configuration (.sqldeployment) file for each target

environment.

 Deploying Database Role Memberships to Test Environments. When you recreate a database on

every deployment—for example, as part of a continuous integration (CI) build and deploy to a

test environment—you'll typically need to configure database role memberships every time. For

example, you'll usually need to grant permissions to the application pool identity associated

with your web application. This topic describes how you can automate this process by adding a

post-deployment SQL script to your deployment logic.

 Deploying Membership Databases to Enterprise Environments. ASP.NET membership databases

have various characteristics that can complicate the deployment process. For example, a

schema-only deployment will leave the database in a non-operational state. In most scenarios,

218

it's preferable to create a membership database directly in each destination environment.

However, if you do have to deploy a membership database, this topic describes some of the

approaches you can use to meet the inherent challenges.

 Excluding Files and Folders from Deployment. In some scenarios, you'll want to tailor the

contents of your web package to specific destination environments. For example, you might

want to include full versions of JavaScript libraries when you deploy to a test environment, to

support client-side debugging, but use minified versions of the libraries when you deploy to a

staging or production environment. This topic describes how you can exclude specific files and

folders from the package creation process.

 Taking Web Applications Offline with Web Deploy. When you deploy solutions to a staging or

production environment, you'll often want to take your web applications offline for the

duration of the deployment process. This topic describes how you can add an App_offline.htm

file to your web application at the start of the deployment process and remove it at the end.

While the App_offline.htm file is in place, any users who browse to the web application are

automatically redirected to the App_offline.htm file.

 Running Windows PowerShell Scripts from MSBuild. Many deployment scenarios require more

complex post-deployment actions, like adding custom event sources to the registry or

configuring replication between SQL Server instances. These actions are often accomplished

through Windows PowerShell scripts. This topic describes how to run Windows PowerShell

scripts from a Microsoft Build Engine (MSBuild) project file as part of the build and deployment

process.

 Troubleshooting the Packaging Process. The Web Publishing Pipeline (WPP) defines an MSBuild

property named EnablePackageProcessLoggingAndAssert that you can use to generate in-

depth information about the packaging process for web application projects. This topic

describes what the property does and how to use it.

Key Technologies

This tutorial focuses on how to use these products and technologies to support automated build and

web deployment:

 Visual Studio 2010 and Team Foundation Server (TFS) 2010

 MSBuild and TFS Team Build

 Internet Information Services (IIS) 7.5

 IIS Web Deployment Tool (Web Deploy) 2.1

 The VSDBCMD.exe database deployment utility

219

Performing a "What If" Deployment

This topic describes how to perform "what if" (or simulated) deployments using the Internet Information

Services (IIS) Web Deployment Tool (Web Deploy) and VSDBCMD. This lets you determine the effects of

your deployment logic on a particular target environment before you actually deploy your application.

Performing a "What If" Deployment for Web Packages

Web Deploy includes functionality that lets you perform deployments in "what if" (or trial) mode. When

you deploy artifacts in "what if" mode, Web Deploy generates a log file as if you had performed the

deployment, but it doesn't actually change anything on the destination server. Reviewing the log file can

help you to understand what impact your deployment will have on the destination server, in particular:

 What will get added.

 What will get updated.

 What will get deleted.

Because a "what if" deployment doesn't actually change anything on the destination server, what it

can't always do is predict whether a deployment will succeed.

As described in Deploying Web Packages, you can deploy web packages using Web Deploy in two

ways—by using the MSDeploy.exe command-line utility directly or by running the .deploy.cmd file that

the build process generates.

If you're using MSDeploy.exe directly, you can run a "what if" deployment by adding the –whatif flag to

your command. For example, to evaluate what would happen if you deployed the

ContactManager.Mvc.zip package to a staging environment, the MSDeploy command should resemble

this:

MSDeploy.exe

 -whatif

 -source:package="[path]\ContactManager.Mvc.zip"

 -dest:auto,

 computerName="https://stageweb1:8172/MSDeploy.axd?site=DemoSite",

 username="FABRIKAM\stagingdeployer",

 password="Pa$$w0rd",

 authtype="Basic",

 includeAcls="False"

 -verb:sync

 -disableLink:AppPoolExtension

 -disableLink:ContentExtension

 -disableLink:CertificateExtension

 -setParamFile:"[path]\ContactManager.Mvc.SetParameters.xml"

 -allowUntrusted

When you're satisfied with the results of your "what if" deployment, you can remove the –whatif flag to

run a live deployment.

220

Note: For more information on command-line options for MSDeploy.exe, see Web Deploy Operation

Settings.

If you're using the .deploy.cmd file, you can run a "what if" deployment by including the /t flag (trial

mode) flag instead of the /y flag ("yes," or update mode) in your command. For example, to evaluate

what would happen if you deployed the ContactManager.Mvc.zip package by running the .deploy.cmd

file, your command should resemble this:

ContactManager.Mvc.deploy.cmd /t /m:TESTWEB1 /a:NTLM

When you're satisfied with the results of your "trial mode" deployment, you can replace the /t flag with

a /y flag to run a live deployment:

ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /a:NTLM

Note: For more information on command-line options for .deploy.cmd files, see How to: Install a

Deployment Package Using the deploy.cmd File. If you run the .deploy.cmd file without specifying any

flags, the command prompt will display a list of available flags.

Performing a "What If" Deployment for Databases

This section assumes that you're using the VSDBCMD utility to perform incremental, schema-based

database deployment. This approach is described in more detail in Deploying Database Projects. We

recommend that you familiarize yourself with this topic before you apply the concepts described here.

When you use VSDBCMD in Deploy mode, you can use the /dd (or /DeployToDatabase) flag to control

whether VSDBCMD actually deploys the database or just generates a deployment script. If you're

deploying a .dbschema file, this is the behavior:

 If you specify /dd+ or /dd, VSDBCMD will generate a deployment script and deploy the

database.

 If you specify /dd- or omit the switch, VSDBCMD will generate a deployment script only.

Note: If you're deploying a .deploymanifest file rather than a .dbschema file, the behavior of the /dd

switch is a lot more complicated. Essentially, VSDBCMD will ignore the value of the /dd switch if the

.deploymanifest file includes a DeployToDatabase element with a value of True. Deploying Database

Projects describes this behavior in full.

For example, to generate a deployment script for the ContactManager database without actually

deploying the database, your VSDBCMD command should resemble this:

vsdbcmd.exe /a:Deploy

 /manifest:"…\ContactManager.Database.deploymanifest"

 /cs:"Data Source=TESTDB1;Integrated Security=true"

 /p:TargetDatabase=ContactManager

 /dd-

 /script:"…\Publish-ContactManager-Db.sql"

http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

221

VSDBCMD is a differential database deployment tool, and as such the deployment script is dynamically

generated to contain all the SQL commands necessary to update the current database, if one exists, to

the specified schema. Reviewing the deployment script is a useful way to determine what impact your

deployment will have on the current database and the data it contains. For example, you might want to

determine:

 Whether any existing tables will be removed, and whether that will result in data loss.

 Whether the order of operations carries a risk of data loss, for example, if you're splitting or

merging tables.

If you're happy with the deployment script, you can repeat the VSDBCMD with a /dd+ flag to make the

changes. Alternatively, you can edit the deployment script to meet your requirements and then execute

it manually on the database server.

Integrating "What If" Functionality into Custom Project Files

In more complex deployment scenarios, you'll want to use a custom Microsoft Build Engine (MSBuild)

project file to encapsulate your build and deployment logic, as described in Understanding the Project

File. For example, in the Contact Manager sample solution, the Publish.proj file:

 Builds the solution.

 Uses Web Deploy to package and deploy the ContactManager.Mvc application.

 Uses Web Deploy to package and deploy the ContactManager.Service application.

 Deploys the ContactManager database.

When you integrate the deployment of multiple web packages and/or databases into a single-step

process in this way, you may also want the option of performing the entire deployment in a "what if"

mode.

The Publish.proj file demonstrates how you can do this. First, you need to create a property to store the

"what if" value:

XML

<PropertyGroup>

 <WhatIf Condition=" '$(WhatIf)'=='' ">false</WhatIf>

</PropertyGroup>

In this case, you've created a property named WhatIf with a default value of false. Users can override

this value by setting the property to true in a command-line parameter, as you'll see shortly.

The next stage is to parameterize any Web Deploy and VSDBCMD commands so that the flags reflect the

WhatIf property value. For example, the next target (taken from the Publish.proj file and simplified) runs

the .deploy.cmd file to deploy a web package. By default, the command includes a /Y switch ("yes," or

update mode). If WhatIf is set to true, this is replaced by a /T switch (trial, or "what if" mode).

222

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

 <PropertyGroup>

 <_WhatIfSwitch>/Y</_WhatIfSwitch>

 <_WhatIfSwitch Condition=" '$(WhatIf)'=='true' ">/T</_WhatIfSwitch>

 <_Cmd>%(PublishPackages.FullPath) $(_WhatifSwitch)

 /M:$(MSDeployComputerName)

 /U:$(MSDeployUsername)

 /P:$(MSDeployPassword)

 /A:$(MSDeployAuth)

 %(PublishPackages.AdditionalMSDeployParameters)

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

</Target>

Similarly, the next target uses the VSDBCMD utility to deploy a database. By default, a /dd switch is not

included. This means that VSDBCMD will generate a deployment script but will not deploy the

database—in other words, a "what if" scenario. If the WhatIf property is not set to true, a /dd switch is

added and VSDBCMD will deploy the database.

XML

<Target Name="PublishDbPackages" Outputs="%(DbPublishPackages.Identity)">

 <PropertyGroup>

 <_DbDeployOrScript></_DbDeployOrScript>

 <_DbDeployOrScript Condition=" '$(Whatif)'!='true' ">/dd</_DbDeployOrScript>

 <_Cmd>"$(VsdbCmdExe)" /a:Deploy

 /cs:"%(DbPublishPackages.DatabaseConnectionString)"

 /p:TargetDatabase=%(DbPublishPackages.TargetDatabase)

 /manifest:"%(DbPublishPackages.FullPath)"

 /script:"$(_CmDbScriptPath)"

 $(_DbDeployOrScript)

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

</Target>

You can use the same approach to parameterize all the relevant commands in your project file. When

you want to run a "what if" deployment, you can then simply provide a WhatIf property value from the

command line:

MSBuild.exe Publish.proj /p:WhatIf=true;TargetEnvPropsFile=EnvConfig\Env-Dev.proj

In this way, you can run a "what if" deployment for all your project components in a single step.

223

Conclusion

This topic described how to run "what if" deployments using Web Deploy, VSDBCMD, and MSBuild. A

"what if" deployment lets you evaluate the impact of a proposed deployment before you actually make

any changes to the destination environment.

Further Reading

For more information on Web Deploy command-line syntax, see Web Deploy Operation Settings. For

guidance on command-line options when you use the .deploy.cmd file, see How to: Install a Deployment

Package Using the deploy.cmd File. For guidance on VSDBCMD command-line syntax, see Command-

Line Reference for VSDBCMD.EXE (Deployment and Schema Import).

Customizing Database Deployments for Multiple Environments

This topic describes how to tailor the properties of a database to specific target environments as part of

the deployment process.

Note: The topic assumes that you're deploying a Visual Studio 2010 database project using

MSBuild.exe and VSDBCMD.exe. For more information on why you might choose this approach, see

Web Deployment in the Enterprise and Deploying Database Projects.

When you deploy a database project to multiple destinations, you'll often want to customize the

database deployment properties for each target environment. For example, in test environments you'd

typically recreate the database on every deployment, whereas in staging or production environments

you'd be a lot more likely to make incremental updates to preserve your data.

In a Visual Studio 2010 database project, deployment settings are contained within a deployment

configuration (.sqldeployment) file. This topic will show you how to create environment-specific

deployment configuration files and specify the one you want to use as a VSDBCMD parameter.

Task Overview

This topic assumes that:

 You use the split project file approach to solution deployment, as described in Understanding

the Project File.

 You call VSDBCMD from the project file to deploy your database project, as described in

Understanding the Build Process.

To create a deployment system that supports varying the database deployment properties between

target environments, you'll need to:

 Create a deployment configuration (.sqldeployment) file for each target environment.

 Create a VSDBCMD command that specifies the deployment configuration file as a command-

line switch.

http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx

224

 Parameterize the VSDBCMD command in a Microsoft Build Engine (MSBuild) project file, so that

the VSDBCMD options are appropriate to the target environment.

This topic will show you how to perform each of these procedures.

Creating Environment-Specific Deployment Configuration Files

By default, a database project contains a single deployment configuration file named

Database.sqldeployment. If you open this file in Visual Studio 2010, you can see the different

deployment options that are available to you:

 Deployment comparison collation. This lets you choose whether to use the database collation

of your project (the source collation) or the database collation of your destination server (the

target collation). In most cases, you'll want to use the source collation when you deploy to a

development or test environment. When you deploy to a staging or production environment,

you'll usually want to leave the target collation unchanged to avoid any interoperability issues.

 Deploy database properties. This lets you choose whether to apply the database properties, as

defined in the Database.sqlsettings file. When you deploy a database for the first time, you

should deploy the database properties. If you're updating an existing database, the properties

should already be in place, and you shouldn't need to deploy them again.

 Always re-create database. This lets you choose whether to re-create the target database every

time you deploy or make incremental changes to bring the target database up to date with your

schema. If you re-create the database, you'll lose any data in the existing database. As such, you

should usually set this to false for deployments to staging or production environments.

 Block incremental deployment if data loss might occur. This lets you choose whether

deployment should stop if a change to the database schema will cause the loss of data. You

typically set this to true for a deployment to a production environment, to give you the

opportunity to intervene and protect any important data. If you have set Always re-create

database to false, this setting will have no effect.

 Execute deployment in single-user mode. This is not usually an issue in development or test

environments. However, you should typically set this to true for deployments to staging or

production environments. This prevents users from making changes to the database while the

deployment is underway.

 Back up database before deployment. You typically set this to true when you deploy to a

production environment, as a precaution against data loss. You may also want to set it to true

when you deploy to a staging environment, if your staging database contains a lot of data.

 Generate DROP statements for objects that are in the target database but that are not in the

database project. In most cases, this is an integral and essential part of making incremental

changes to a database. If you have set Always re-create database to false, this setting will have

no effect.

225

 Do not use ALTER ASSEMBLY statements to update CLR types. This setting determines how

SQL Server should update common language runtime (CLR) types to newer assembly versions.

This should be set to false in most scenarios.

This table shows typical deployment settings for different destination environments. However, your

settings may be different depending on your exact requirements.

 Developer/Test Staging/Integration Production

Deployment comparison collation Source Target Target

Deploy database

properties

True First time only First time only

Always re-create

database

True False False

Block incremental

deployment if data

loss might occur

False Maybe True

Execute

deployment script

in single-user mode

False True True

Back up database

before deployment

False Maybe True

Generate DROP

statements for

objects that are in

the target database

but that are not in

the database

project

False True True

Do not use ALTER

ASSEMBLY

statements to

update CLR types

False False False

Note: For more information on database deployment properties and environment considerations, see

An Overview of Database Project Settings, How to: Configure Properties for Deployment Details, Build

and Deploy Database to an Isolated Development Environment, and Build and Deploy Databases to a

Staging or Production Environment.

To support the deployment of a database project to multiple destinations, you should create a

deployment configuration file for each target environment.

To create an environment-specific configuration file

http://msdn.microsoft.com/en-us/library/aa833291(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd172125.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx

226

1. In Visual Studio 2010, in the Solution Explorer window, right-click your database project, and

then click Properties.

2. On the database project properties page, on the Deploy tab, in the Deployment configuration

file row, click New.

3. In the New Deployment Configuration File dialog box, give the file a meaningful name (for

example, TestEnvironment.sqldeployment), and then click Save.

4. On the [Filename].sqldeployment page, set the deployment properties to match the

requirements of your destination environment, and then save the file.

5. Notice that the new file is added to the Properties folder in your database project.

227

Specifying the Deployment Configuration File in VSDBCMD

When you use solution configurations (like Debug and Release) within Visual Studio 2010, you can

associate a deployment configuration file with each configuration. When you build a particular

configuration, the build process generates a configuration-specific deployment manifest file that points

to the configuration-specific deployment configuration file. However, one of the main aims of the

approach to deployment described in these tutorials is to give people the ability to control the

deployment process without using Visual Studio 2010 and solution configurations. In this approach, the

solution configuration is the same regardless of the target deployment environment. To tailor your

database deployment to a specific destination environment, you can use the VSDBCMD command-line

options to specify your deployment configuration file.

To specify a deployment configuration file in your VSDBCMD, use the p:/DeploymentConfigurationFile

switch and provide the full path to your file. This will override the deployment configuration file that the

deployment manifest identifies. For example, you could use this VSDBCMD command to deploy the

ContactManager database to a test environment:

vsdbcmd.exe /a:Deploy

 /manifest:"…\ContactManager.Database.deploymanifest"

 /cs:"Data Source=TESTDB1;Integrated Security=true"

 /p:TargetDatabase=ContactManager

 /p:DeploymentConfigurationFile=

 "…\ContactManager.Database_TestEnvironment.sqldeployment"

 /dd+

 /script:"…\Publish-ContactManager-Db.sql"

Note: Note that the build process may rename your .sqldeployment file when it copies the file to the

output directory.

If you use SQL command variables in your pre-deployment or post-deployment SQL scripts, you can use

a similar approach to associate an environment-specific .sqlcmdvars file with your deployment. In this

case, you use the p:/SqlCommandVariablesFile switch to identify your .sqlcmdvars file.

228

Running the VSDBCMD Command from an MSBuild Project File

You can invoke a VSDBCMD command from an MSBuild project file by using an Exec task within an

MSBuild target. In its simplest form, it would look like this:

XML

<Target Name="DeployDatabase">
 <PropertyGroup>

 <_Cmd>

 Add your VSDBCMD command here

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

 </Target>

In practice, to make your project files easy to read and reuse, you'll want to create properties to store

the various command-line parameters. This makes it easier for users to provide property values in an

environment-specific project file or to override default values from the MSBuild command line. If you

use the split project file approach described in Understanding the Project File, you should divide your

build instructions and properties between the two files accordingly:

 Environment-specific settings, like the deployment configuration filename, the database

connection string, and the target database name, should go in the environment-specific project

file.

 The MSBuild target that runs the VSDBCMD command, together with any universal properties

like the location of the VSDBCMD executable, should go in the universal project file.

You should also ensure that you build the database project before you invoke VSDBCMD so that the

.deploymanifest file is created and ready to use. You can see a full example of this approach in the topic

Understanding the Build Process, which walks you through the project files in the Contact Manager

sample solution.

Conclusion

This topic described how you can tailor database properties to different destination environments when

you deploy database projects using MSBuild and VSDBCMD. This approach is useful when you need to

deploy database projects as part of larger, enterprise-scale solutions. These solutions are often deployed

to multiple destinations, like sandboxed development or test environments, staging or integration

platforms, and production or live environments. Each of these target environments typically requires a

unique set of database deployment properties.

Further Reading

For more information on deploying database projects using VSDBCMD.exe, see Deploying Database

Projects. For more information on using custom MSBuild project files to control the deployment

process, see Understanding the Project File and Understanding the Build Process.

229

These articles on MSDN provide more general guidance on database deployment:

 An Overview of Database Project Settings

 How to: Configure Properties for Deployment Details

 Build and Deploy Databases to an Isolated Development Environment

 Build and Deploy Databases to a Staging or Production Environment

Deploying Database Role Memberships to Test Environments

This topic describes how to add user accounts to database roles as part of a solution deployment to a

test environment.

When you deploy a solution containing a database project to a staging or production environment, you

typically don't want the developer to automate the addition of user accounts to database roles. In most

cases, the developer won't know which user accounts need to be added to which database roles, and

these requirements could change at any time. However, when you deploy a solution containing a

database project to a development or test environment, the situation is usually rather different:

 The developer typically re-deploys the solution on a regular basis, often several times a day.

 The database is typically re-created on every deployment, which means that database users

must be created and added to roles after every deployment.

 The developer typically has full control over the target development or test environment.

In this scenario, it's often beneficial to automatically create database users and assign database role

memberships as part of the deployment process.

The key factor is that this operation needs to be conditional based on the target environment. If you're

deploying to a staging or a production environment, you want to skip the operation. If you're deploying

to a developer or test environment, you want to deploy role memberships without further intervention.

This topic describes one approach you can use to address this challenge.

Task Overview

This topic assumes that:

 You use the split project file approach to solution deployment, as described in Understanding

the Project File.

 You call VSDBCMD from the project file to deploy your database project, as described in

Understanding the Build Process.

To create database users and assign role memberships when you deploy a database project to a test

environment, you'll need to:

http://msdn.microsoft.com/en-us/library/aa833291(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd172125.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx

230

 Create a Transact Structured Query Language (Transact-SQL) script that makes the necessary

database changes.

 Create a Microsoft Build Engine (MSBuild) target that uses the sqlcmd.exe utility to run the SQL

script.

 Configure your project files to invoke the target when you're deploying your solution to a test

environment.

This topic will show you how to perform each of these procedures.

Scripting the Database Role Memberships

You can create a Transact-SQL script in a lot of different ways, and in any location you choose. The

easiest approach is to create the script within your solution in Visual Studio 2010.

To create a SQL script

1. In the Solution Explorer window, expand your database project node.

2. Right-click the Scripts folder, point to Add, and then click New Folder.

3. Type Test as the folder name, and then press Enter.

4. Right-click the Test folder, point to Add, and then click Script.

5. In the Add New Item dialog box, give your script a meaningful name (for example,

AddRoleMemberships.sql), and then click Add.

231

6. In the AddRoleMemberships.sql file, add Transact-SQL statements that:

a. Create a database user for the SQL Server login that will access your database.

b. Add the database user to any required database roles.

The file should resemble this:

Transact-SQL

USE $(DatabaseName)

GO

CREATE USER [FABRIKAM\TESTWEB1$] FOR LOGIN[FABRIKAM\TESTWEB1$]

GO

USE [ContactManager]

GO

EXEC sp_addrolemember N'db_datareader', N'FABRIKAM\TESTWEB1$'

GO

USE [ContactManager]

GO

EXEC sp_addrolemember N'db_datawriter', N'FABRIKAM\TESTWEB1$'

GO

7. Save the file.

232

Executing the Script on the Target Database

Ideally, you'd run any required Transact-SQL scripts as part of a post-deployment script when you deploy

your database project. However, post-deployment scripts don't allow you to execute logic conditionally

based on solution configurations or build properties. The alternative is to run your SQL scripts directly

from the MSBuild project file, by creating a Target element that executes a sqlcmd.exe command. You

can use this command to run your script on the target database:

sqlcmd.exe –S [Database server] –d [Database name] –i [SQL script]

Note: For more information on sqlcmd command-line options, see sqlcmd Utility.

Before you embed this command in an MSBuild target, you need to consider under what conditions you

want the script to run:

 The target database must exist before you change its role memberships. As such, you need to

run this script after the database deployment.

 You need to include a condition so that the script is only executed for test environments.

 If you're running a "what if" deployment—in other words, if you're generating deployment

scripts but not actually running them—you shouldn't run the SQL script.

If you're using the split project file approach described in Understanding the Project File, as

demonstrated by the Contact Manager sample solution, you can split the build instructions for your SQL

script like this:

 Any required environment-specific properties, together with the property that determines

whether to deploy permissions, should go in the environment-specific project file (for example,

Env-Dev.proj).

 The MSBuild target itself, together with any properties that will not change between

destination environments, should go in the universal project file (for example, Publish.proj).

In the environment-specific project file, you need to define the database server name, the target

database name, and a Boolean property that lets the user specify whether to deploy role memberships.

XML

<PropertyGroup>

 <CmTargetDatabase Condition=" '$(CmTargetDatabase)'=='' ">

 ContactManager

 </CmTargetDatabase>

 <DatabaseServer Condition=" '$(DatabaseServer)'=='' ">

 TESTDB1

 </DatabaseServer>

 <DeployTestDBRoleMemberships Condition="'$(DeployTestDBRoleMemberships)'==''">

 true

http://msdn.microsoft.com/en-us/library/ms162773.aspx

233

 </DeployTestDBRoleMemberships>

</PropertyGroup>

In the universal project file, you need to provide the location of the sqlcmd executable and the location

of the SQL script you want to run. These properties will remain the same regardless of the destination

environment. You also need to create an MSBuild target to execute the sqlcmd command.

XML

<PropertyGroup>

 <SqlCmdExe Condition=" '$(SqlCmdExe)'=='' ">

 C:\Program Files\Microsoft SQL Server\100\Tools\Binn\sqlcmd.exe

 </SqlCmdExe>

</PropertyGroup>

<Target Name="DeployTestDBPermissions"

 Condition=" '$(DeployTestDBRoleMemberships)'=='true' AND

 '$(Whatif)'!='true' ">

 <PropertyGroup>

 <SqlScript>

 $(SourceRoot)ContactManager.Database\Scripts\Test\AddRoleMemberships.sql

 </SqlScript>

 <_Cmd>"$(SqlCmdExe)" -S "$(DatabaseServer)"

 -d "$(CmTargetDatabase)"

 -i "$(SqlScript)"

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)" ContinueOnError="false" />

</Target>

Notice that you add the location of the sqlcmd executable as a static property, as this could be useful to

other targets. In contrast, you define the location of your SQL script and the syntax of the sqlcmd

command as dynamic properties within the target, as they will not be required before the target is

executed. In this case, the DeployTestDBPermissions target will only be executed if these conditions are

met:

 The DeployTestDBRoleMemberships property is set to true.

 The user hasn't specified a WhatIf=true flag.

Finally, don't forget to invoke the target. In the Publish.proj file, you can do this by adding the target to

the dependency list for the default FullPublish target. You need to ensure that the

DeployTestDBPermissions target is not executed until the PublishDbPackages target has been

executed.

XML

<Project ToolsVersion="4.0"

 DefaultTargets="FullPublish"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

234

 ...

 <PropertyGroup>

 <FullPublishDependsOn>

 Clean;

 BuildProjects;

 GatherPackagesForPublishing;

 PublishDbPackages;

 DeployTestDBPermissions;

 PublishWebPackages;

 </FullPublishDependsOn>

 </PropertyGroup>

 <Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />

</Project>

Conclusion

This topic described one way in which you can add database users and role memberships as a post-

deployment action when you deploy a database project. This is typically useful when you regularly re-

create a database in a test environment, but it should usually be avoided when you deploy databases to

staging or production environments. As such, you should ensure that you use the necessary conditional

logic so that database users and role memberships are only created when it's appropriate to do so.

Further Reading

For more information on using VSDBCMD to deploy database projects, see Deploying Database Projects.

For guidance on customizing database deployments for different target environments, see Customizing

Database Deployments for Multiple Environments. For more information on using custom MSBuild

project files to control the deployment process, see Understanding the Project File and Understanding

the Build Process. For more information on sqlcmd command-line options, see sqlcmd Utility.

Deploying Membership Databases to Enterprise Environments

This topic explains the key considerations and challenges you'll need to overcome when you provision

ASP.NET application services databases (more commonly referred to as membership databases) in test,

staging, or production environments. It also describes approaches you can use to meet these challenges.

What Are the Issues When You Deploy a Membership Database?

In most cases, when you devise a deployment strategy for a database, the first thing you need to

consider is what data you want to deploy. In a development or test environment, you might want to

deploy user account data to facilitate quick and easy testing. In a staging or production environment, it's

very unlikely that you'd want to deploy user account data.

Unfortunately, ASP.NET membership databases introduce some specific challenges that make this

decision a lot more complex:

 A schema-only deployment will leave the membership database in a non-operational state. This

is because the membership database includes some configuration data (in the

http://msdn.microsoft.com/en-us/library/ms162773.aspx

235

aspnet_SchemaVersions table) that the database requires in order to function. As such, if you

perform a schema-only deployment of your membership database in order to exclude user

account data, you'll need to run a post-deployment script to add the essential configuration

data.

 Depending on how your membership database is configured, the membership provider may use

the machine key to encrypt passwords and store them in the database. In this case, any user

account data you deploy with the database will become unusable on the destination server. For

this reason, deploying user account data is not a supported scenario.

Choosing a Membership Database Strategy

Use these guidelines when you choose how to provision a membership database in an enterprise server

environment:

 Wherever possible, do not deploy membership databases. Instead, create the membership

database manually on the target database server. If you haven't customized your membership

database schema, you can simply create a new one in situ at the destination using the ASP.NET

SQL Server Registration Tool (aspnet_regsql.exe).

 If you have no option but to deploy a membership database—for example, if you've made

extensive modifications to the database schema—you should perform a schema-only

deployment of the membership database, to exclude user account data, and then run a post-

deployment script to add any required configuration data. You can find broad guidance on

these approaches in How to: Deploy the ASP.NET Membership Database Without Including User

Accounts.

It's important to remember that the schema of your membership database is likely to be fairly static.

Even if you've customized the membership database, it's unlikely that you'll need to update the schema

on a regular basis—it's not going to change with the same frequency as the code in a web application or

a database project. As such, you shouldn't need to include the membership database in any automated

or single-step deployment processes.

Using VSDBCMD to Update a Membership Database Schema

If you modify the structure of your membership database after your first deployment, you may not want

to use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy) to redeploy the

database. The database deployment functionality in Web Deploy doesn't include the capability to make

differential updates to a destination database—instead, Web Deploy must drop and re-create the

database. This means that you lose any existing user account data, which is typically undesirable in

staging or production environments.

The alternative is to use the VSDBCMD utility to update the schema of your destination database.

VSDBCMD includes two important capabilities. First, it can import the schema of an existing database

into a .dbschema file. Second, it can deploy a .dbschema file to an existing database as a differential

http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx

236

update, which means that it only makes the changes required to bring the target database up to date

and you don't lose any data.

You can use these high-level steps to update a membership database schema:

1. Use the VSDBCMD Import action to generate a .dbschema file for your source membership

database. This procedure is described in How to: Import a Schema from a Command Prompt.

2. Use the VSDBCMD Deploy action to deploy the .dbschema file to your destination membership

database. This procedure is described in Command-Line Reference for VSDBCMD.EXE

(Deployment and Schema Import).

Conclusion

This topic described some of the challenges you may face when you need to provision ASP.NET

membership databases in various target environments. In particular, it explained why schema-only

deployments will leave the membership database in a non-operational state and why deploying user

account data is not supported. The topic also presented guidance on how to provision, deploy, and

update membership databases in different scenarios.

Further Reading

For more guidance and examples of how to use VSDBCMD, see Command-Line Reference for

VSDBCMD.EXE (Deployment and Schema Import) and How to: Import a Schema from a Command

Prompt. For more information on using aspnet_regsql.exe to create membership databases, see

ASP.NET SQL Server Registration Tool (aspnet_regsql.exe). For more general guidance on deploying

membership databases, see How to: Deploy the ASP.NET Membership Database Without Including User

Accounts.

Excluding Files and Folders from Deployment

This topic describes how you can exclude files and folders from a web deployment package when you

build and package a web application project.

Overview

When you build a web application project in Visual Studio 2010, the Web Publishing Pipeline (WPP) lets

you extend this build process by packaging your compiled web application into a deployable web

package. You can then use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy)

to deploy this web package to a remote IIS web server, or import the web package manually through IIS

Manager. This packaging process is explained in Building and Packaging Web Application Projects.

So how do you control what gets included in your web package? The project settings in Visual Studio,

through the underlying project file, provide sufficient control for a lot of scenarios. However, in some

cases you may want to tailor the contents of your web package to specific destination environments. For

example, you might want to include a folder for log files when you deploy your application to a test

http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx

237

environment but exclude the folder when you deploy the application to a staging or production

environment. This topic will show you how to do this.

What Gets Included by Default?

When you configure your web application project properties in Visual Studio, the Items to deploy list on

the Package/Publish Web page lets you specify what you want to include in your web deployment

package. By default, this is set to Only files needed to run this application.

When you choose Only files needed to run this application, the WPP will try to determine which files

should be added to the web package. This includes:

 All the build outputs for the project.

 Any files marked with a build action of Content.

Note: The logic that determines which files to include is contained in this file:

%PROGRAMFILES%\MSBuild\Microsoft\VisualStudio\v10.0\Web\

Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets

Excluding Specific Files and Folders

In some cases, you'll want more fine-grained control over which files and folders are deployed. If you

know which files you want to exclude ahead of time, and the exclusion applies to all destination

environments, you can simply set the Build Action of each file to None.

To exclude specific files from deployment

1. In the Solution Explorer window, right-click the file, and then click Properties.

2. In the Properties window, in the Build Action row, select None.

However, this approach is not always convenient. For example, you may want to vary which files and

folders are included according to your destination environment, and from outside Visual Studio. For

example, in the Contact Manager sample solution, take a look at the contents of the

ContactManager.Mvc project:

238

 The Internal folder contains some SQL scripts that the developer uses to create, drop, and

populate local databases for development purposes. Nothing in this folder should be deployed

to a staging or production environment.

 The Scripts folder contains several JavaScript files. A lot of these files are included purely to

support debugging or provide IntelliSense in Visual Studio. Some of these files should not be

deployed to staging or production environments. However, you may want to deploy them to a

developer test environment to facilitate troubleshooting.

239

Although you could manipulate your project files to exclude specific files and folders, there is an easier

way. The WPP includes a mechanism to exclude files and folders by building item lists named

ExcludeFromPackageFolders and ExcludeFromPackageFiles. You can extend this mechanism by adding

your own items to these lists. To do this, you need to complete these high-level steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your

project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project

file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom

project files you use to control the build and deployment process.

2. In the .wpp.targets file, add an ItemGroup element.

3. In the ItemGroup element, add ExcludeFromPackageFolders and ExcludeFromPackageFiles

items to exclude specific files and folders as required.

This is the basic structure of this .wpp.targets file:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 <ExcludeFromPackageFolders Include="[semi-colon-separated folder list]">

 <FromTarget>[arbitrary metadata value]</FromTarget>

 </ExcludeFromPackageFolders>

 <ExcludeFromPackageFiles Include="[semi-colon-separated file list]">

 <FromTarget>[arbitrary metadata value]</FromTarget>

 </ExcludeFromPackageFiles>

 </ItemGroup>

</Project>

Note that each item includes an item metadata element named FromTarget. This is an optional value

that doesn't affect the build process; it simply serves to indicate why particular files or folders were

omitted if someone reviews the build logs.

Excluding Files and Folders from a Web Package

The next procedure shows you how to add a .wpp.targets file to a web application project and how to

use the file to exclude specific files and folders from the web package when you build your project.

To exclude files and folders from a web deployment package

1. Open your solution in Visual Studio 2010.

2. In the Solution Explorer window, right-click your web application project node (for example,

ContactManager.Mvc), point to Add, and then click New Item.

3. In the Add New Item dialog box, select the XML File template.

240

4. In the Name box, type [project name].wpp.targets (for example,

ContactManager.Mvc.wpp.targets), and then click Add.

Note: If you add a new item to the root node of a project, the file is created in the same folder

as the project file. You can verify this by opening the folder in Windows Explorer.

5. In the file, add a Project element and an ItemGroup element:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 </ItemGroup>

</Project>

6. If you want to exclude folders from the web package, add an ExcludeFromPackageFolders

element to the ItemGroup element:

a. In the Include attribute, provide a semicolon-separated list of the folders you want to

exclude.

b. In the FromTarget metadata element, provide a meaningful value to indicate why the

folders are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFolders Include="Internal">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

</ExcludeFromPackageFolders>

7. If you want to exclude files from the web package, add an ExcludeFromPackageFiles element to

the ItemGroup element:

241

a. In the Include attribute, provide a semicolon-separated list of the files you want to

exclude.

b. In the FromTarget metadata element, provide a meaningful value to indicate why the

files are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-

vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-

ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-

vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr

ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

</ExcludeFromPackageFiles>

8. The [project name].wpp.targets file should now resemble this:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 <ExcludeFromPackageFolders Include="Internal">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

 </ExcludeFromPackageFolders>

 <ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-

vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-

ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-

vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr

ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

 </ExcludeFromPackageFiles>

 </ItemGroup>

</Project>

9. Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect

the .wpp.targets file. Any files and folders you specified will not be included in the web package.

Conclusion

This topic described how to exclude specific files and folders when you build a web package, by creating

a custom .wpp.targets file in the same folder as your web application project file.

Further Reading

For more information on using custom Microsoft Build Engine (MSBuild) project files to control the

deployment process, see Understanding the Project File and Understanding the Build Process. For more

242

information on the packaging and deployment process, see Building and Packaging Web Application

Projects, Configuring Parameters for Web Package Deployment, and Deploying Web Packages.

Excluding Files and Folders from Deployment

This topic describes how you can exclude files and folders from a web deployment package when you

build and package a web application project.

Overview

When you build a web application project in Visual Studio 2010, the Web Publishing Pipeline (WPP) lets

you extend this build process by packaging your compiled web application into a deployable web

package. You can then use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy)

to deploy this web package to a remote IIS web server, or import the web package manually through IIS

Manager. This packaging process is explained in Building and Packaging Web Application Projects.

So how do you control what gets included in your web package? The project settings in Visual Studio,

through the underlying project file, provide sufficient control for a lot of scenarios. However, in some

cases you may want to tailor the contents of your web package to specific destination environments. For

example, you might want to include a folder for log files when you deploy your application to a test

environment but exclude the folder when you deploy the application to a staging or production

environment. This topic will show you how to do this.

What Gets Included by Default?

When you configure your web application project properties in Visual Studio, the Items to deploy list on

the Package/Publish Web page lets you specify what you want to include in your web deployment

package. By default, this is set to Only files needed to run this application.

When you choose Only files needed to run this application, the WPP will try to determine which files

should be added to the web package. This includes:

 All the build outputs for the project.

 Any files marked with a build action of Content.

243

Note: The logic that determines which files to include is contained in this file:

%PROGRAMFILES%\MSBuild\Microsoft\VisualStudio\v10.0\Web\

Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets

Excluding Specific Files and Folders

In some cases, you'll want more fine-grained control over which files and folders are deployed. If you

know which files you want to exclude ahead of time, and the exclusion applies to all destination

environments, you can simply set the Build Action of each file to None.

To exclude specific files from deployment

1. In the Solution Explorer window, right-click the file, and then click Properties.

2. In the Properties window, in the Build Action row, select None.

However, this approach is not always convenient. For example, you may want to vary which files and

folders are included according to your destination environment, and from outside Visual Studio. For

example, in the Contact Manager sample solution, take a look at the contents of the

ContactManager.Mvc project:

244

 The Internal folder contains some SQL scripts that the developer uses to create, drop, and

populate local databases for development purposes. Nothing in this folder should be deployed

to a staging or production environment.

 The Scripts folder contains several JavaScript files. A lot of these files are included purely to

support debugging or provide IntelliSense in Visual Studio. Some of these files should not be

deployed to staging or production environments. However, you may want to deploy them to a

developer test environment to facilitate troubleshooting.

245

Although you could manipulate your project files to exclude specific files and folders, there is an easier

way. The WPP includes a mechanism to exclude files and folders by building item lists named

ExcludeFromPackageFolders and ExcludeFromPackageFiles. You can extend this mechanism by adding

your own items to these lists. To do this, you need to complete these high-level steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your

project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project

file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom

project files you use to control the build and deployment process.

2. In the .wpp.targets file, add an ItemGroup element.

3. In the ItemGroup element, add ExcludeFromPackageFolders and ExcludeFromPackageFiles

items to exclude specific files and folders as required.

This is the basic structure of this .wpp.targets file:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 <ExcludeFromPackageFolders Include="[semi-colon-separated folder list]">

 <FromTarget>[arbitrary metadata value]</FromTarget>

 </ExcludeFromPackageFolders>

 <ExcludeFromPackageFiles Include="[semi-colon-separated file list]">

 <FromTarget>[arbitrary metadata value]</FromTarget>

 </ExcludeFromPackageFiles>

 </ItemGroup>

</Project>

Note that each item includes an item metadata element named FromTarget. This is an optional value

that doesn't affect the build process; it simply serves to indicate why particular files or folders were

omitted if someone reviews the build logs.

Excluding Files and Folders from a Web Package

The next procedure shows you how to add a .wpp.targets file to a web application project and how to

use the file to exclude specific files and folders from the web package when you build your project.

To exclude files and folders from a web deployment package

1. Open your solution in Visual Studio 2010.

2. In the Solution Explorer window, right-click your web application project node (for example,

ContactManager.Mvc), point to Add, and then click New Item.

3. In the Add New Item dialog box, select the XML File template.

246

4. In the Name box, type [project name].wpp.targets (for example,

ContactManager.Mvc.wpp.targets), and then click Add.

Note: If you add a new item to the root node of a project, the file is created in the same folder

as the project file. You can verify this by opening the folder in Windows Explorer.

5. In the file, add a Project element and an ItemGroup element:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 </ItemGroup>

</Project>

6. If you want to exclude folders from the web package, add an ExcludeFromPackageFolders

element to the ItemGroup element:

a. In the Include attribute, provide a semicolon-separated list of the folders you want to

exclude.

b. In the FromTarget metadata element, provide a meaningful value to indicate why the

folders are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFolders Include="Internal">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

</ExcludeFromPackageFolders>

7. If you want to exclude files from the web package, add an ExcludeFromPackageFiles element to

the ItemGroup element:

247

a. In the Include attribute, provide a semicolon-separated list of the files you want to

exclude.

b. In the FromTarget metadata element, provide a meaningful value to indicate why the

files are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-

vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-

ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-

vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr

ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

</ExcludeFromPackageFiles>

8. The [project name].wpp.targets file should now resemble this:

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

 <ExcludeFromPackageFolders Include="Internal">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

 </ExcludeFromPackageFolders>

 <ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-

vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-

ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-

vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr

ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

 <FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>

 </ExcludeFromPackageFiles>

 </ItemGroup>

</Project>

9. Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect

the .wpp.targets file. Any files and folders you specified will not be included in the web package.

Conclusion

This topic described how to exclude specific files and folders when you build a web package, by creating

a custom .wpp.targets file in the same folder as your web application project file.

Further Reading

For more information on using custom Microsoft Build Engine (MSBuild) project files to control the

deployment process, see Understanding the Project File and Understanding the Build Process. For more

248

information on the packaging and deployment process, see Building and Packaging Web Application

Projects, Configuring Parameters for Web Package Deployment, and Deploying Web Packages.

Taking Web Applications Offline with Web Deploy

This topic describes how to take a web application offline for the duration of an automated deployment

using the Internet Information Services (IIS) Web Deployment Tool (Web Deploy). Users who browse to

the web application are redirected to an App_offline.htm file until the deployment is complete.

Task Overview

In a lot of scenarios, you'll want to take a web application offline while you make changes to related

components, like databases or web services. Typically, in IIS and ASP.NET, you accomplish this by placing

a file named App_offline.htm in the root folder of the IIS website or web application. The

App_offline.htm file is a standard HTML file and will usually contain a simple message advising the user

that the site is temporarily unavailable due to maintenance. While the App_offline.htm file exists in the

root folder of the website, IIS will automatically redirect any requests to the file. When you've finished

making updates, you remove the App_offline.htm file and the website resumes serving requests as

usual.

When you use Web Deploy to perform automated or single-step deployments to a target environment,

you may want to incorporate adding and removing the App_offline.htm file into your deployment

process. To do this, you'll need to complete these high-level tasks:

 In the Microsoft Build Engine (MSBuild) project file that you use to control the deployment

process, create an MSBuild target that copies an App_offline.htm file to the destination server

before any deployment tasks begin.

 Add another MSBuild target that removes the App_offline.htm file from the destination server

when all deployment tasks are complete.

 In the web application project, create a .wpp.targets file that ensures that an App_offline.htm

file is added to the deployment package when Web Deploy is invoked.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic

assume that you've already created a solution that contains at least one web application project, and

that you use a custom project file to control the deployment process as described in Web Deployment in

the Enterprise. Alternatively, you can use the Contact Manager sample solution to follow the examples

in the topic.

Adding an App_Offline File to a Web Application Project

The first task you need to complete is to add an App_offline file to your web application project:

 To prevent the file from interfering with the development process (you don't want your

application to be permanently offline), you should call it something other than App_offline.htm.

For example, you could name the file App_offline-template.htm.

249

 To prevent the file from being deployed as-is, you should set the build action to None.

To add an App_offline file to a web application project

1. Open your solution in Visual Studio 2010.

2. In the Solution Explorer window, right-click your web application project, point to Add, and

then click New Item.

3. In the Add New Item dialog box, select HTML Page.

4. In the Name box, type App_offline-template.htm, and then click Add.

5. Add some simple HTML to inform users that the application is unavailable, and then save the

file. Do not include any server-side tags (for example, any tags that are prefixed with "asp:").

6. In the Solution Explorer window, right-click the new file, and then click Properties.

7. In the Properties window, in the Build Action row, select None.

250

Deploying and Deleting an App_Offline File

The next step is to modify your deployment logic to copy the file to the destination server at the start of

the deployment process and remove it at the end.

Note: The next procedure assumes that you're using a custom MSBuild project file to control your

deployment process, as described in Understanding the Project File. If you're deploying direct from

Visual Studio, you'll need to use a different approach. Sayed Ibrahim Hashimi describes one such

approach in How to Take Your Web App Offline During Publishing.

To deploy an App_offline file to a destination IIS website, you need to invoke MSDeploy.exe using the

Web Deploy contentPath provider. The contentPath provider supports both physical directory paths

and IIS website or application paths, which makes it the ideal choice for synchronizing a file between a

Visual Studio project folder and an IIS web application. To deploy the file, your MSDeploy command

should resemble this:

msdeploy.exe –verb:sync

 -source:contentPath="[Project folder]\App_offline.template.htm"

 -dest:contentPath="[IIS application path]/App_offline.htm",

 computerName="[Destination web server]"

To remove the file from the destination site at the end of the deployment process, your MSDeploy

command should resemble this:

msdeploy.exe –verb:delete

 -dest:contentPath="[IIS application path]/App_offline.htm",

 computerName="[Destination web server]"

To automate these commands as part of a build and deployment process, you need to integrate them

into your custom MSBuild project file. The next procedure describes how to do this.

http://sedodream.com/2012/01/08/HowToTakeYourWebAppOfflineDuringPublishing.aspx
http://technet.microsoft.com/en-us/library/dd569034(WS.10).aspx

251

To deploy and delete an App_offline file

1. In Visual Studio 2010, open the MSBuild project file that controls your deployment process. In

the Contact Manager sample solution, this is the Publish.proj file.

2. In the root Project element, create a new PropertyGroup element to store variables for the

App_offline deployment:

XML

<PropertyGroup>

 <AppOfflineTemplateFilename

 Condition=" '$(AppOfflineTemplateFilename)'=='' ">

 app_offline-template.htm

 </AppOfflineTemplateFilename>

 <AppOfflineSourcePath

 Condition=" '$(AppOfflineSourcePath)'==''">

 $(SourceRoot)ContactManager.Mvc\$(AppOfflineTemplateFilename)

 </AppOfflineSourcePath>

</PropertyGroup>

The SourceRoot property is defined elsewhere in the Publish.proj file. It indicates the location of

the root folder for the source content relative to the current path—in other words, relative to

the location of the Publish.proj file.

The contentPath provider will not accept relative file paths, so you need to get an absolute path

to your source file before you can deploy it. You can use the ConvertToAbsolutePath task to do

this.

3. Add a new Target element named GetAppOfflineAbsolutePath. Within this target, use the

ConvertToAbsolutePath task to get an absolute path to the App_offline-template file in your

project folder.

XML

<Target Name="GetAppOfflineAbsolutePath" BeforeTargets="DeployAppOffline">

 <ConvertToAbsolutePath Paths="$(AppOfflineSourcePath)">

 <Output TaskParameter="AbsolutePaths"

 PropertyName="AppOfflineAbsoluteSourcePath" />

 </ConvertToAbsolutePath>

</Target>

This target takes the relative path to the App_offline-template file in your project folder and

saves it to a new property as an absolute file path. The BeforeTargets attribute specifies that

you want this target to execute before the DeployAppOffline target, which you'll create in the

next step.

4. Add a new target named DeployAppOffline. Within this target, invoke the MSDeploy.exe

command that deploys your App_offline file to the destination web server.

XML

http://msdn.microsoft.com/en-us/library/bb882668.aspx

252

<Target Name="DeployAppOffline"

 Condition=" '$(EnableAppOffline'!='false' ">

 <PropertyGroup>

 <_Cmd>"$(MSDeployPath)\msdeploy.exe" -verb:sync

 -source:contentPath="$(AppOfflineAbsoluteSourcePath)"

 -dest:contentPath="$(ContactManagerIisPath)/App_offline.htm",

 computerName="$(MSDeployComputerName)"

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

</Target>

In this example, the ContactManagerIisPath property is defined elsewhere in the project file.

This is simply an IIS application path, in the form [IIS Website Name]/[Application Name].

Including a condition in the target enables users to switch the App_offline deployment on or off

by changing a property value or providing a command-line parameter.

5. Add a new target named DeleteAppOffline. Within this target, invoke the MSDeploy.exe

command that removes your App_offline file from the destination web server.

XML

<Target Name="DeleteAppOffline"

 Condition=" '$(EnableAppOffline'!='false' ">

 <PropertyGroup>

 <_Cmd>"$(MSDeployPath)\msdeploy.exe" -verb:delete

 -dest:contentPath="$(ContactManagerIisPath)/App_offline.htm",

 computerName="$(MSDeployComputerName)"

 </_Cmd>

 </PropertyGroup>

 <Exec Command="$(_Cmd)"/>

</Target>

The final task is to invoke these new targets at appropriate points during the execution of your

project file. You can do this in various ways. For example, in the Publish.proj file, the

FullPublishDependsOn property specifies a list of targets that must be executed in order when

the FullPublish default target is invoked.

6. Modify your MSBuild project file to invoke the DeployAppOffline and DeleteAppOffline targets

at appropriate points in the publishing process.

XML

<PropertyGroup>

 <FullPublishDependsOn>

 Clean;

 BuildProjects;

 DeployAppOffline;

 GatherPackagesForPublishing;

 PublishDbPackages;

 DeployTestDBPermissions;

253

 PublishWebPackages;

 DeleteAppOffline;

 </FullPublishDependsOn>

</PropertyGroup>

<Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />

When you run your custom MSBuild project file, the App_offline file will be deployed to the server

immediately after a successful build. It will then be deleted from the server once all the deployment

tasks are complete.

Adding an App_Offline File to Deployment Packages

Depending on how you configure your deployment, any existing content at the destination IIS web

application—like the App_offline.htm file—may be deleted automatically when you deploy a web

package to the destination. To ensure that the App_offline.htm file remains in place for the duration of

the deployment, you need to include the file within the web deployment package itself in addition to

deploying the file directly at the start of the deployment process.

If you've followed the previous tasks in this topic, you'll have added the App_offline.htm file to your web

application project under a different filename (we used App_offline-template.htm) and you'll have set

the build action to None. These changes are necessary to prevent the file from interfering with

development and debugging. As a result, you need to customize the packaging process to ensure that

the App_offline.htm file is included in the web deployment package.

The Web Publishing Pipeline (WPP) uses an item list named FilesForPackagingFromProject to build a list

of files that should be included in the web deployment package. You can customize the contents of your

web packages by adding your own items to this list. To do this, you need to complete these high-level

steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your

project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project

file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom

project files you use to control the build and deployment process.

2. In the .wpp.targets file, create a new MSBuild target that executes before the

CopyAllFilesToSingleFolderForPackage target. This is the WPP target that builds a list of things

to include in the package.

3. In the new target, create an ItemGroup element.

4. In the ItemGroup element, add a FilesForPackagingFromProject item and specify the

App_offline.htm file.

The .wpp.targets file should resemble this:

254

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="AddAppOfflineToPackage"

 BeforeTargets="CopyAllFilesToSingleFolderForPackage">

 <ItemGroup>

 <FilesForPackagingFromProject Include="App_offline-template.htm">

 <DestinationRelativePath>App_offline.htm</DestinationRelativePath>

 </FilesForPackagingFromProject>

 </ItemGroup>

 </Target>

</Project>

These are the key points of note in this example:

 The BeforeTargets attribute inserts this target into the WPP by specifying that it should be

executed immediately before the CopyAllFilesToSingleFolderForPackage target.

 The FilesForPackagingFromProject item uses the DestinationRelativePath metadata value to

rename the file from App_offline-template.htm to App_offline.htm as it's added to the list.

The next procedure shows you how to add this .wpp.targets file to a web application project.

To add a .wpp.targets file to a web deployment package

1. Open your solution in Visual Studio 2010.

2. In the Solution Explorer window, right-click your web application project node (for example,

ContactManager.Mvc), point to Add, and then click New Item.

3. In the Add New Item dialog box, select the XML File template.

4. In the Name box, type [project name].wpp.targets (for example,

ContactManager.Mvc.wpp.targets), and then click Add.

255

Note: If you add a new item to the root node of a project, the file is created in the same folder

as the project file. You can verify this by opening the folder in Windows Explorer.

5. In the file, add the MSBuild markup described previously.

XML

<Project ToolsVersion="4.0"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="AddAppOfflineToPackage"

 BeforeTargets="CopyAllFilesToSingleFolderForPackage">

 <ItemGroup>

 <FilesForPackagingFromProject Include="App_offline-template.htm">

 <DestinationRelativePath>App_offline.htm</DestinationRelativePath>

 </FilesForPackagingFromProject>

 </ItemGroup>

 </Target>

</Project>

6. Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect

the .wpp.targets file. The App_offline-template.htm file will be included in the resulting web deployment

package as App_offline.htm.

Note: If your deployment fails, the App_offline.htm file will remain in place and your application will

remain offline. This is typically the desired behavior. To bring your application back online, you can

delete the App_offline.htm file from your web server. Alternatively, if you correct any errors and run a

successful deployment, the App_offline.htm file will be removed.

256

Conclusion

This topic described how to take a web application offline for the duration of a deployment, by

publishing an App_offline.htm file to the destination server at the start of the deployment process and

removing it at the end. It also covered how to include an App_offline.htm file in a web deployment

package.

Further Reading

For more information on the packaging and deployment process, see Building and Packaging Web

Application Projects, Configuring Parameters for Web Package Deployment, and Deploying Web

Packages.

If you publish your web applications directly from Visual Studio, rather than using the custom MSBuild

project file approach described in these tutorials, you'll need to use a slightly different approach to take

your application offline during the publishing process. For more information, see How to take your web

app offline during publishing (blog post).

Running Windows PowerShell Scripts from MSBuild Project Files

This topic describes how to run a Windows PowerShell script as part of a build and deployment process.

You can run a script locally (in other words, on the build server) or remotely, like on a destination web

server or database server.

There are lots of reasons why you might want to run a post-deployment Windows PowerShell script. For

example, you might want to:

 Add a custom event source to the registry.

 Generate a file system directory for uploads.

 Clean up build directories.

 Write entries to a custom log file.

 Send emails inviting users to a newly provisioned web application.

 Create user accounts with the appropriate permissions.

 Configure replication between SQL Server instances.

This topic will show you how to run Windows PowerShell scripts both locally and remotely from a

custom target in a Microsoft Build Engine (MSBuild) project file.

Task Overview

To run a Windows PowerShell script as part of an automated or single-step deployment process, you'll

need to complete these high-level tasks:

 Add the Windows PowerShell script to your solution and to source control.

http://go.microsoft.com/?linkid=9805135
http://go.microsoft.com/?linkid=9805135

257

 Create a command that invokes your Windows PowerShell script.

 Escape any reserved XML characters in your command.

 Create a target in your custom MSBuild project file and use the Exec task to run your command.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic

assume that you're already familiar with MSBuild targets and properties, and that you understand how

to use a custom MSBuild project file to drive a build and deployment process. For more information, see

Understanding the Project File and Understanding the Build Process.

Creating and Adding Windows PowerShell Scripts

The tasks in this topic use a sample Windows PowerShell script named LogDeploy.ps1 to illustrate how

to run scripts from MSBuild. The LogDeploy.ps1 script contains a simple function that writes a single-line

entry to a log file:

Windows PowerShell

function LogDeployment

{

 param([string]$filepath,[string]$deployDestination)

 $datetime = Get-Date

 $filetext = "Deployed package to " + $deployDestination + " on " + $datetime

 $filetext | Out-File -filepath $filepath -Append

}

LogDeployment $args[0] $args[1]

The LogDeploy.ps1 script accepts two parameters. The first parameter represents the full path to the

log file to which you want to add an entry, and the second parameter represents the deployment

destination that you want to record in the log file. When you run the script, it adds a line to the log file in

this format:

Deployed package to TESTWEB1 on 02/11/2012 09:28:18

To make the LogDeploy.ps1 script available to MSBuild, you need to:

 Add the script to source control.

 Add the script to your solution in Visual Studio 2010.

You don't need to deploy the script with your solution content, regardless of whether you plan to run

the script on the build server or on a remote computer. One option is to add the script to a solution

folder. In the Contact Manager example, because you want to use the Windows PowerShell script as

part of the deployment process, it makes sense to add the script to the Publish solution folder.

258

The contents of solution folders are copied to build servers as source material. However, they form no

part of any project output.

Executing a Windows PowerShell Script on the Build Server

In some scenarios, you may want to run Windows PowerShell scripts on the computer that builds your

projects. For example, you might use a Windows PowerShell script to clean up build folders or write

entries to a custom log file.

In terms of syntax, running a Windows PowerShell script from an MSBuild project file is the same as

running a Windows PowerShell script from a regular command prompt. You need to invoke the

powershell.exe executable and use the –command switch to provide the commands you want Windows

PowerShell to run. (In Windows PowerShell v2, you can also use the –file switch). The command should

take this format:

powershell.exe –command "& { [Path to script] 'parameter1' 'parameter2' ... }"

For example:

powershell.exe –command

 "& { C:\LogDeploy.ps1 'C:\DeployLogs\log.txt' 'TESTWEB1' }"

If the path to your script includes spaces, you need to enclose the file path in single quotes preceded by

an ampersand. You can't use double quotes, because you've already used them to enclose the

command:

powershell.exe –command

 "& { &'C:\Path With Spaces\LogDeploy.ps1'

 'C:\Path With Spaces\log.txt'

 'TESTWEB1' }"

There are a few additional considerations when you invoke this command from MSBuild. First, you

should include the –NonInteractive flag to ensure that the script executes quietly. Next, you should

include the –ExecutionPolicy flag with an appropriate argument value. This specifies the execution

policy that Windows PowerShell will apply to your script and allows you to override the default

259

execution policy, which may prevent execution of your script. You can choose from these argument

values:

 A value of Unrestricted will allow Windows PowerShell to execute your script, regardless of

whether the script is signed.

 A value of RemoteSigned will allow Windows PowerShell to execute unsigned scripts that were

created on the local machine. However, scripts that were created elsewhere must be signed. (In

practice, you're very unlikely to have created a Windows PowerShell script locally on a build

server).

 A value of AllSigned will allow Windows PowerShell to execute signed scripts only.

The default execution policy is Restricted, which prevents Windows PowerShell from running any script

files.

Finally, you need to escape any reserved XML characters that occur in your Windows PowerShell

command:

 Replace single quotes with '

 Replace double quotes with "

 Replace ampersands with &

When you make these changes, your command will resemble this:

powershell.exe –NonInteractive –ExecutionPolicy Unrestricted

 –command "& { &'[Path to script]'

 '[parameter1]'

 '[parameter2]' } "

Within your custom MSBuild project file, you can create a new target and use the Exec task to run this

command:

XML

<Target Name="WriteLogEntry" Condition=" '$(WriteLogEntry)'!='false' ">

 <PropertyGroup>

 <PowerShellExe Condition=" '$(PowerShellExe)'=='' ">

 %WINDIR%\System32\WindowsPowerShell\v1.0\powershell.exe

 </PowerShellExe>

 <ScriptLocation Condition=" '$(ScriptLocation)'=='' ">

 C:\Path With Spaces\LogDeploy.ps1

 </ScriptLocation>

 <LogFileLocation Condition=" '$(LogFileLocation)'=='' ">

 C:\Path With Spaces\ContactManagerDeployLog.txt

 </LogFileLocation>

 </PropertyGroup>

 <Exec Command="$(PowerShellExe) -NonInteractive -executionpolicy Unrestricted

260

 -command "& {

 &'$(ScriptLocation)'

 '$(LogFileLocation)'

 '$(MSDeployComputerName)'} "" />

</Target>

In this example, note that:

 Any variables, like parameter values and the location of the Windows PowerShell executable,

are declared as MSBuild properties.

 Conditions are included to enable users to override these values from the command line.

 The MSDeployComputerName property is declared elsewhere in the project file.

When you execute this target as part of your build process, Windows PowerShell will run your command

and write a log entry to the file you specified.

Executing a Windows PowerShell Script on a Remote Computer

Windows PowerShell is capable of running scripts on remote computers through Windows Remote

Management (WinRM). To do this, you need to use the Invoke-Command cmdlet. This lets you execute

your script against one or more remote computers without copying the script to the remote computers.

Any results are returned to the local computer from which you ran the script.

Note: Before you use the Invoke-Command cmdlet to execute Windows PowerShell scripts on a

remote computer, you need to configure a WinRM listener to accept remote messages. You can do

this by running the command winrm quickconfig on the remote computer. For more information, see

Installation and Configuration for Windows Remote Management.

From a Windows PowerShell window, you'd use this syntax to run the LogDeploy.ps1 script on a remote

computer:

Windows PowerShell

Invoke-Command –ComputerName 'REMOTESERVER1'

 –ScriptBlock { &"C:\Path With Spaces\LogDeploy.ps1"

 'C:\Path With Spaces\Log.txt'

 'TESTWEB1' }

Note: There are various other ways of using Invoke-Command to run a script file, but this approach is

the most straightforward when you need to provide parameter values and manage paths with spaces.

When you run this from a command prompt, you need to invoke the Windows PowerShell executable

and use the –command parameter to provide your instructions:

powershell.exe –command

 "& {Invoke-Command –ComputerName 'REMOTESERVER1'

 –ScriptBlock { &'C:\Path With Spaces\LogDeploy.ps1'

 'C:\Path With Spaces\Log.txt'

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384426.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384426.aspx
http://technet.microsoft.com/en-us/library/dd347578.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384372(v=vs.85).aspx

261

 'TESTWEB1' } "

As before, you need to provide some additional switches and escape any reserved XML characters when

you run the command from MSBuild:

powershell.exe -NonInteractive -executionpolicy Unrestricted

 -command "& Invoke-Command

 –ComputerName 'REMOTESERVER1'

 -ScriptBlock { &'C:\Path With Spaces\LogDeploy.ps1'

 ' C:\Path With Spaces\Log.txt '

 'TESTWEB1' } "

Finally, as before, you can use the Exec task within a custom MSBuild target to execute your command:

XML

<Target Name="WriteLogEntry" Condition=" '$(WriteLogEntry)'!='false' ">

 <PropertyGroup>

 <PowerShellExe Condition=" '$(PowerShellExe)'=='' ">

 %WINDIR%\System32\WindowsPowerShell\v1.0\powershell.exe

 </PowerShellExe>

 <ScriptLocation Condition=" '$(ScriptLocation)'=='' ">

 C:\Path With Spaces\LogDeploy.ps1

 </ScriptLocation>

 <LogFileLocation Condition=" '$(LogFileLocation)'=='' ">

 C:\Path With Spaces\ContactManagerDeployLog.txt

 </LogFileLocation>

 </PropertyGroup>

 <Exec Command="$(PowerShellExe) -NonInteractive -executionpolicy Unrestricted

 -command "& invoke-command -scriptblock {

 &'$(ScriptLocation)'

 '$(LogFileLocation)'

 '$(MSDeployComputerName)'}

 ""/>

</Target>

When you execute this target as part of your build process, Windows PowerShell will run your script on

the computer you specified in the –computername argument.

Conclusion

This topic described how to run a Windows PowerShell script from an MSBuild project file. You can use

this approach to run a Windows PowerShell script, either locally or on a remote computer, as part of an

automated or single-step build and deployment process.

Further Reading

For guidance on signing Windows PowerShell scripts and managing execution policies, see Running

Windows PowerShell Scripts. For guidance on running Windows PowerShell commands from a remote

computer, see Running Remote Commands.

http://technet.microsoft.com/en-us/library/ee176949.aspx
http://technet.microsoft.com/en-us/library/ee176949.aspx
http://technet.microsoft.com/en-us/library/dd819505.aspx

262

For more information on using custom MSBuild project files to control the deployment process, see

Understanding the Project File and Understanding the Build Process.

Troubleshooting the Packaging Process

This topic describes how you can collect detailed information about the packaging process by using the

EnablePackageProcessLoggingAndAssert property in the Microsoft Build Engine (MSBuild).

When you set the EnablePackageProcessLoggingAndAssert property to true, MSBuild will:

 Add additional information about the packaging process to the build logs.

 Log errors under certain conditions, for example, if duplicate files are found in the packaging

list.

 Create a Log directory in the ProjectName_Package folder and use it to record information

about the files you're packaging.

If the packaging process is failing, or your web deployment packages don't contain the files that you

expect, you can use this information to troubleshoot the process and pinpoint where things are going

wrong.

Note: The EnablePackageProcessLoggingAndAssert property only works if you build your project using

the Debug configuration. The property is ignored in other configurations.

Understanding the EnablePackageProcessLoggingAndAssert Property

Building and Packaging Web Application Projects described how the Web Publishing Pipeline (WPP)

provides a set of MSBuild targets that extend the functionality of MSBuild and enable it to integrate with

the Internet Information Services (IIS) Web Deployment Tool (Web Deploy). When you package a web

application project, you're invoking WPP targets.

Lots of these WPP targets include conditional logic that logs additional information when the

EnablePackageProcessLoggingAndAssert property is set to true. For example, if you review the Package

target, you can see that it creates an additional log directory and writes a list of files to a text file if

EnablePackageProcessLoggingAndAssert is equal to true.

XML

<Target Name="Package"

 Condition="$(_CreatePackage)"

 DependsOnTargets="$(PackageDependsOn)">

 <!--Log the information Set $(EnablePackageProcessLoggingAndAssert) to True

 if you want to see this information-->
 <MakeDir Condition="$(EnablePackageProcessLoggingAndAssert) And

 !Exists('$(PackageLogDir)')"

 Directories="$(PackageLogDir)" />

 <WriteLinesToFile Condition="$(EnablePackageProcessLoggingAndAssert)"

263

 Encoding="utf-8"

 File="$(PackageLogDir)\Prepackage.txt"

 Lines="@(FilesForPackagingFromProject->'

 From:%(Identity)

 DestinationRelativePath:%(DestinationRelativePath)

 Exclude:%(Exclude)

 FromTarget:%(FromTarget)

 Category:%(Category)

 ProjectFileType:%(ProjectFileType)')"

 Overwrite="True" />

Note: The WPP targets are defined in the Microsoft.Web.Publishing.targets file in the

%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder. You can open this file and

review the targets in Visual Studio 2010 or any XML editor. Take care not to modify the contents of the

file.

Enabling the Additional Logging

You can supply a value for the EnablePackageProcessLoggingAndAssert property in various ways,

depending on how you build your project.

If you build your project from the command line, you can supply a value for the

EnablePackageProcessLoggingAndAssert property as a command-line argument:

MSBuild.exe /t:Build

 /p:Configuration=DEBUG

 /p:DeployOnBuild=true

 /p:DeployTarget=Package

 /p:EnablePackageProcessLoggingAndAssert=true

 [Your project].csproj

If you're using a custom project file to build your projects, you can include the

EnablePackageProcessLoggingAndAssert value in the Properties attribute of the MSBuild task:

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!='true' ">

 <MSBuild Projects="@(ProjectsToBuild)"

 Properties="OutDir=$(OutputRoot);

 Configuration=$(Configuration);

 DeployOnBuild=true;

 DeployTarget=Package;

 EnablePackageProcessLoggingAndAssert=true"

 Targets="Build" />

 </Target>

264

If you're using a Team Foundation Server (TFS) build definition to build your projects, you can supply a

value for the EnablePackageProcessLoggingAndAssert property in the MSBuild Arguments row:

Note: For more information on creating and configuring build definitions, see Creating a Build

Definition That Supports Deployment.

Alternatively, if you want to include the package in every build, you can modify the project file for your

web application project to set the EnablePackageProcessLoggingAndAssert property to true. You

should add the property to the first PropertyGroup element within your .csproj or .vbproj file.

XML

<Project ToolsVersion="4.0" DefaultTargets="Build" xmlns="...">

 <PropertyGroup>

 <EnablePackageProcessLoggingAndAssert

 Condition=" '$(EnablePackageProcessLoggingAndAssert)' == '' ">

 true

 </EnablePackageProcessLoggingAndAssert>

 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>

 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>

265

Reviewing the Log Files

When you build and package a web application project with EnablePackageProcessLoggingAndAssert

set to true, MSBuild creates an additional folder named Log in the ProjectName_Package folder. The Log

folder contains various files:

The list of files that you see will vary according to the things in your project and your build process.

However, these files are typically used to record the list of files that the WPP is collecting for packaging,

at various stages of the process:

 The PreExcludePipelineCollectFilesPhaseFileList.txt file lists the files that MSBuild collects for

packaging before any files that are specified for exclusion are removed.

 The AfterExcludeFilesFilesList.txt file contains the modified file list after any files that are

specified for exclusion are removed.

Note: For more information on excluding files and folders from the packaging process, see

Excluding Files and Folders from Deployment.

 The AfterTransformWebConfig.txt file lists the files collected for packaging after any Web.config

transforms have been performed. In this list, any configuration-specific Web.config transform

files, like Web.Debug.config and Web.Release.config, are excluded from the list of files for

packaging. A single transformed Web.config is included in their place.

 The PostAutoParameterizationWebConfigConnectionStrings.txt file contains the list of files after

the connection strings in the Web.config file have been parameterized. This is the process that

lets you replace your connection strings with the right settings for your target environment

when you deploy the package.

 The Prepackage.txt file contains the finalized pre-build list of files to be included in the package.

Note: The names of the additional log files typically correspond to WPP targets. You can review these

targets by examining the Microsoft.Web.Publishing.targets file in the

%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder.

266

If the contents of your web package aren't what you expected, reviewing these files can be a useful way

to identify at what point in the process things went wrong.

Conclusion

This topic described how you can use the EnablePackageProcessLoggingAndAssert property in MSBuild

to troubleshoot the packaging process. It explained the different ways in which you can supply the

property value to the build process, and it described the additional information that is recorded when

you set the property to true.

Further Reading

For more information on using custom MSBuild project files to control the deployment process, see

Understanding the Project File and Understanding the Build Process. For more information on the WPP

and how it manages the packaging process, see Building and Packaging Web Application Projects. For

guidance on how to exclude specific files and folders from web deployment packages, see Excluding

Files and Folders from Deployment.

