Deploying Web Applications in
Enterprise Scenarios

Note: This PDF was created from a
series of web-based tutorials, the first
of which is located at the following
URL:

http://www.asp.net/web-

forms/tutorials/deployment/deployin

g-web-applications-in-enterprise-

scenarios/deploying-web-

applications-in-enterprise-scenarios

Each tutorial includes hyperlinks to
others in the series, and those links
still go to the web page tutorials, not
to pages in this PDF. To go quickly to
specific sections of this PDF, use the
links in the Table of Contents.

http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-applications-in-enterprise-scenarios/deploying-web-applications-in-enterprise-scenarios

Table of Contents

T 1 ageTe [V AT] o HUUT TP U S PUTTOUPRI 1
ADOUE the AUTNOIS ..ttt et e st e ab e st e e s sbeeesabe e e sabeesaseesneeesareeeans 1
I L XU T 1T o ol YRR 1
=To U1 =T g aT=T 0 KPP PPPPPTPPPPPPPPINS 2
SEIIES CONTENTS Leeiiiiiiiii it b e ba e s b e e s ba e e e s ebbe e e ssaraeeesas 2
WHEIE £ ST . .eeieiieiee ettt et e s bt e e st e st e e s be e e s bt e s nb e e sabeesabeeesabeesaseeeanseesaneeesanes 3
SCENATIO OVEIVIEW ...iiiiieiie ettt ee ettt ettt e ettt e s et e e s b et e e s se et e e s ne et e e s n s et e e snseeeesnraeeesnnneeesansreeesannnneenan 3
(DL=T o] (o]Y 0 0 =T oL A I TSRS 6
Application Lifecycle Management: From Development to Productioncccccceeeeciieeeicieeecciiee e, 9
Web Deployment in the ENTEIPIISEciiii ettt e eete e e e etae e e e erae e e s e baeeesaasseeeeensseeesannsneenan 20
Enterprise Deployment Chall@Nges.........ooo ittt e e et e e e e sate e e e eara e e e enraeeesanes 20
(O VTN YA o Y o] o] o - ol TP PP 20
(60e] 1 d=T0 1 011V, =T« B T T T T T O T T U T PP P TP PP 21
NGV =Tl 0] o] Lo = =T RPN 22
The Contact Manager SOIUTIONeii ittt e e e ette e e e et e e e e eate e e e saraeeesntaeeesanraeaeannes 22
Setting Up the Contact Manager SOIUTIONuiii ettt e e tree e e e e e e e sabe e e e enbeee e eeareeas 25
Understanding the ProJECE FilEooo ittt ettt e e e e ate e e e e sate e e e saraeaeenraaaesanes 31
Understanding the BUild PrOCESS.......ccuuiiiiiiiiieiciieee ettt ettt e sttt e e e sttt e e e sate e e s ssatr e e e ssstaeeesrtaeesssreeessanes 41
Building and Packaging Web Application Projects......ccccvieciiii ittt 50
Configuring Parameters for Web Package Deploymentcc.ueieiiiiiieciiiee et 55
DEPlOYIiNG WED PaCKAZESuveiiieieee ettt ettt ettt e e e et e e e e et e e e e e bte e e e ebteeeesstaeeesnteneesanes 61
DepPloying Database PrOJECEScccuuiieicciieiecciieee ettt e ettt e ettt e e e et e e e e ette e e e eeate e e e eateeeesestaeeesssaeassnssenassnnes 69
Creating and Running a Deployment Command File..........cooouiiiiiiiiiie e 76
Manually InStalling Web Packages........uuiiiiiiiiiiciiiie sttt e e st e e e s satae e e sata e e e saraeeesanes 79
Configuring Server Environments for Web Deploymentc.ueeiiciiie it e s 88
HOW t0 USE ThiS TULOIIAI...ceiiiieeiiieiie ettt sttt e s e e e e e eme e e sane e e snnes 88
NNV =Tel Y o [=41 ERRROt 88
Choosing the Right Approach to Web Deployment.........uoiiiiiee et e e 89
Scenario: Configuring a Test Environment for Web Deploymentcccovvviiiiiiiciiee e, 93

Scenario: Configuring a Staging Environment for Web Deploymentcccoocvveeiiiiiee e, 96

Scenario: Configuring a Production Environment for Web Deploymentccccovieiveeiiecccinieeee e, 98

Configuring a Web Server for Web Deploy Publishing (Remote Agent)........cccccccveeecvievieeccieeeivee e, 100
Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler)cccoccvveeiiiieeeennneen. 110
Configuring a Web Server for Web Deploy Publishing (Offline Deployment)ccccceecieeeeccieeeennen. 126
Configuring a Database Server for Web Deploy Publishing..........ccccceeiiiiiiiciiiie e, 136
Creating a Server Farm with the Web Farm FrameWor kKccceiiievieiiiriiee it eseee e 150
Configuring Deployment Properties for a Target ENVironment........cccooeceeeiieiieeecciiee e eeeee e 165
Configuring Team Foundation Server for Web Deploymentcoccuviiiiciiiiiiiiieeeerieec e 171
2T oY g I Lo TV =TT o VS 171
SCENAMIO OVEIVIEW ...eiiiiiiiiii ittt ettt st e s s e e e s s e e e s s er e s s sre e e s s srenessenrenas 171
HOW £0 USE ThiS TULOIAl ... eieiiiiieeiieee ettt sttt e b e s e s 171
NCEAY A I=Te] o] o] Lo = =T3RS 172
Creating @ TEam ProjEC iN TFS ..ottt e s s st e e e e s s s bbbt e e e e e e s s ssaasrbeaeeeessanan 172
Adding Content to SOUICE CONTIOl......uiiiiiciiiee ittt ete e e etre e e e eate e e e seata e e e erteeeeentaeaesanes 184
Configuring a TFS Build Server for Web Deploymentcoocvieiiieiiec it 194
Creating a Build Definition That SUpPOrts DEPIOYMENT.......ccccuviiiiiiiie et e 198
D LT o] Loy YT oY= Y o 1= Lol 7 ol = TU T [USSP 207
Configuring Permissions for Team Build Deploymentcoccveiiiiiieiiciiie et ree e 214
Advanced Enterprise Web DeploymMENTcooiiiiiiiiiiiiccctee ettt e et e e s e e s sabae e e s sabae e s e sareeas 217
SCENATMIO OVEIVIEW ...eiiiiiiiiii ittt ettt et e e s s b e e s s e e e s s eren e s ssmreresesnnenesssnrenas 217
HOW £0 USE ThiS TULOIAl.....eeeeieiieiieee ettt ettt st sttt e sbe e saee e 217
AV =Tl o] o] Lo = =TI 218
Performing a "What [f" DeplOYMENTcooiiiiiieeeee et e e s e e e e areeeeas 219
Customizing Database Deployments for Multiple ENVIronments........cccveveieviieeeicciee e e 223
Deploying Database Role Memberships to Test ENVironmentscccceeveiveeeeiieeeciieee e 229
Deploying Membership Databases to Enterprise Environments........ccccceeeveccciiiiiee e 234
Excluding Files and Folders from DeploymMENt..........cocuviiieiiiieeecieec ettt et e e aree e 236
Excluding Files and Folders from DeploymMENt..........cocuuiiieiiiie ettt e e e 242
Taking Web Applications Offline with Web Deploy........ccoucuviiiiciiiiciiiiee ettt 248
Running Windows PowerShell Scripts from MSBuUild Project Files.........ccovcuieeeviiieeeciieeeccieee e 256

Troubleshooting the Packaging ProCeSSuuiiiciiieiiciiie et e ettt e e e sae e e e sabe e e s saaeeeeas 262

Introduction

This set of tutorials describes tools and techniques you can use to deploy web applications in various
enterprise scenarios. It explains how to make best use of technologies like Visual Studio 2010, the
Microsoft Build Engine (MSBuild), Internet Information Services (lIS) 7.5, the IS Web Deployment Tool
(Web Deploy), the Web Farm Framework (WFF), and utilities like VSDBCMD.exe to simplify and manage
the deployment process. It includes conceptual overviews and task-oriented guidance that will help you
to:

e Review and establish the deployment requirements for an enterprise-scale web application.
e Configure test, staging, and production web server environments to support web deployment.

e Configure Team Foundation Server (TFS) continuous integration (Cl) processes to support
automated web deployment.

e Deploy enterprise-scale web applications to different server environments with varying
requirements and restrictions.

e Deploy changes to web applications that are running in different server environments.

Note: While these tutorials describe the use of TFS as a Cl server, the guidance is easily adapted to any
Cl server. You don't need a detailed knowledge of TFS to understand and leverage the tutorials.

About the Authors

Jason Lee is a principal technologist with Content Master where he has been working with Microsoft
products and technologies, especially SharePoint and ASP.NET, for several years. Jason holds a PhD in
computing and is currently MCPD and MCTS certified. You can read Jason's technical blog at

www.jrilee.com.

Benjamin Curry is a principal technologist with Content Master who has written whitepapers, SDK
documentation, PowerPoint presentations, and instructor-led and online training courses during his
career. An original member of the ASP.NET documentation team, he has worked with Microsoft’'s web
technologies for over a decade.

Target Audience

This set of tutorials is for ASP.NET web application developers and solution architects who use Visual
Studio 2010 to create enterprise-scale web applications. To get the most value from the content, you
should be comfortable using Visual Studio 2010 and have a basic familiarity with TFS, together with an
awareness of Microsoft web platform technologies like ASP.NET MVC 3, Windows Communication
Foundation (WCF), IIS, SQL Server, and Visual Studio database projects. However, you do not need to be
familiar with deployment tools and technologies or need to know how to set up Cl systems.

http://www.contentmaster.com/
http://www.jrjlee.com/
http://www.contentmaster.com/

Requirements

To follow the walkthroughs and perform the tasks that these tutorials describe, you'll need to install this
software on your development computer:

Visual Studio 2010 Premium or Ultimate Edition with Service Pack 1
.NET Framework 4.0

.NET Framework 3.5 with Service Pack 1

ASP.NET MVC 3.0

IIS 7.5 Express

SQL Server Express 2008 R2

To perform the deployment steps described throughout these walkthroughs, you'll need to have access

to sample Web application deployment environments. For best results, these environments should
reflect your organization’s enterprise deployment pattern. You can then modify the walkthroughs
provided in this documentation to reflect the deployment environments and requirements of your own

organization.

Series Contents

This introductory section consists of two further topics. These are designed to provide some broader

context for the tutorials that follow:

Enterprise Web Deployment: Scenario Overview. This topic describes the scenario that

underpins each of the tutorials in this series. The scenario focuses on the Application Lifecycle
Management (ALM) requirements of a fictional company named Fabrikam, Inc. as it develops an
enterprise-scale web application.

Application Lifecycle Management: From Development to Production. This topic provides a

high-level, end-to-end overview of a deployment process. It illustrates how Fabrikam,Inc. moves
an enterprise-scale ASP.NET web application through test, staging, and production
environments as part of a continuous development process.

The series includes four tutorial sets besides these introductory tutorials. Each focuses on different
aspects of web deployment:

Web Deployment in the Enterprise. This tutorial provides a conceptual introduction to MSBuild

project files, the Web Publishing Pipeline, Web Deploy, and other related technologies. It
explains how you can use these tools together to manage complex deployment processes.

Configuring Server Environments for Web Deployment. This tutorial describes how to configure

Windows servers to support various deployment scenarios, including remote web package
deployment using the Web Deployment Agent Service (the "remote agent") or the Web Deploy

2

Handler and remote database deployment. It provides guidance on choosing the appropriate
deployment method for your own environment, and it describes how to use the WFF to
replicate deployed web applications across all the web servers in a server farm.

e Configuring Team Foundation Server for Web Deployment. This tutorial describes how to

configure TFS to support various deployment scenarios, including automated deployment as
part of a Cl process and manually triggered deployments of specific builds.

e Advanced Enterprise Web Deployment. This tutorial describes how to accomplish various more

advanced deployment tasks, like customizing database deployments for multiple environments,
excluding files and folders from deployment, and taking web applications offline during the
deployment process.

Where to Start

This set of tutorials uses a sample solution with a realistic level of complexity, together with a fictional
enterprise deployment scenario, to provide a reference implementation and to give the tasks and
walkthroughs a common context. The next section introduces the scenario and the sample solution.
From there you can work through the tutorials and topics that most closely match your needs.

Scenario Overview

This set of tutorials uses a sample solution with a realistic level of complexity, together with a fictional
enterprise deployment scenario, to provide a reference implementation and to give the tasks and
walkthroughs a common context. This topic describes the tutorial scenario and introduces the sample
solution.

Fabrikam, Inc., a fictitious company, is creating a solution that lets remote sales teams store and retrieve
contact information from a web interface.

The Application Lifecycle Management (ALM) processes at Fabrikam, Inc. require the solution to be
deployed to three server environments at various stages of the software development process:

e Adeveloper test or "sandbox" environment.
e Anintranet-based staging environment.

e An Internet-facing production environment.

Each of these environments has different configuration and security requirements, and each poses
unique deployment challenges.

The Fabrikam, Inc. Server Infrastructure

This is the high-level development and deployment infrastructure at Fabrikam, Inc.

Intranet Network | Perimeter Network

.........

Developer Workstation TFS Server Build Server
Web Server WEF Controller ‘ WEFF Controller
Ve
Secondary Web % Primary Web Secondary Web Primary Web
Server._ Server Server Server

Database Server N ~
0 o
S S

Deve|°per Test Database Server Database Server
Environment Staging Environment Production Environment

The developer workstations, the source control infrastructure, the developer test environment, and the
staging environment all reside on the intranet network within the Fabrikam.net domain. The production
environment resides on a perimeter network (also known as DMZ, demilitarized zone, and screened
subnet), which is isolated from the intranet network by a firewall. This is a common deployment
scenario: you typically isolate your Internet-facing web servers from your internal server infrastructure
through the use of firewalls or gateway servers.

In this example:

e A Team Foundation Server (TFS) 2010 server with a separate build server provides source
control and continuous integration (Cl) functionality.

e The developer test environment includes an Internet Information Services (1IS) 7.5 web server
and a SQL Server 2008 R2 database server.

e The production environment includes multiple 1IS 7.5 web servers synchronized by a Web Farm
Framework (WFF) controller server, together with a SQL Server 2008 R2 database server. In
practice, the database server may use clustering or mirroring to improve scalability and
availability.

The staging environment is designed to replicate the configuration of the production
environment as closely as possible.

The firewall and network isolation policies do not permit direct, automated deployment from
the intranet to the perimeter network.

The configuration of each of these environments is described in more detail in the second tutorial,

Configuring Server Environments for Web Deployment.

Team Roles for ALM

These users are involved in creating, managing, building, and publishing the Contact Manager solution:

Matt Hink is a web application developer at Fabrikam, Inc. He is part of the team who
developed the Contact Manager solution by using Visual Studio 2010. Matt has full
administrator rights on the servers in the developer test environment, which lets him configure
the environment to meet his needs. He also has user access to the Visual Studio 2010 TFS
instance where he stores the source code for the Contact Manager solution.

Rob Walters is a server administrator for the Fabrikam, Inc. development team. Rob has
administrative access on the TFS server so that he can configure all aspects of TFS and Team
Build. Rob also has administrative access to the test and staging web servers and acts as the
database administrator (DBA) for the database servers in the test and staging environments.
Rob has configured Team Build on the TFS server to carry out these tasks:

o Build and run unit tests on the application whenever a user checks in a file to TFS. This is
called Cl.

o Deploy the Contact Manager application to the test environment automatically once the
application passes unit tests. This includes publishing the database to the test servers on
initial deployment and any updates to the database after initial deployment.

o Deploy the Contact Manager application to the staging environment in a single-step
process.

o Create a Web package that a Web server administrator and a DBA can use to publish the
application to the production environment.

Lisa Andrews is a server administrator responsible for deploying applications to the Fabrikam,
Inc. production servers. She has read access to the share where the TFS Team Build stores the
web deployment package once it builds the Contact Manager application. She also has
administrative access to the production web servers so that she can deploy the application to
production. Additionally, she acts as the DBA who deploys databases and database updates to
the database server in the production environment.

The Contact Manager Solution

The Contact Manager solution is designed to let registered, logged-in users add and edit contact
information through a web interface. The Contact Manager solution consists of four individual projects:

Solution Explorer *Ox

= | =
_3 Solution 'ContactManaaer' (4 projects)
ik Publish
,E ContactManager. Comman
_:] ContactManager.Database
% ContactManager.Mvc

5 ContactManager. Service

HHEEE

W% Team Explorer B Server Explorer

r.l
&l

d Solution Explo...

e ContactManager.Mvc. This is an ASP.NET MVC3 web application project that represents the
entry point for the solution. It offers some basic web application functionality, like providing
users with the ability to create and view contact details. The application relies on a Windows
Communication Foundation (WCF) service to manage contacts and an ASP.NET application
services database to manage authentication and authorization.

e ContactManager.Database. This is a Visual Studio 2010 database project. The project defines
the schema for a database that stores contact details.

e ContactManager.Service. This is a WCF web service project. The WCF exposes an endpoint that
allows callers to perform create, retrieve, update, and delete (CRUD) operations on the Contact
Manager database. The service relies on the Contact Manager database and the
ContactManager.Common.dll assembly.

e ContactManager.Common. This is a class library project. The WCF service relies on types
defined in this assembly.

A complete review of the solution and its deployment requirements is provided in the first tutorial in
this series, Web Deployment in the Enterprise.

Deployment Tasks

There are several distinct tasks involved in deploying applications to different environments in a large
organization. These are the key tasks that the tutorials cover:

Developer Test
Environment } Staging Environment Production Environment

TFS Server Build Server

Web Package

Here is a list of each step in the deployment process from the perspective of the users described earlier
in this document:

1.

All members of the team review the Contact Manager solution in Visual Studio 2010 to
determine key deployment requirements and issues.

Matt Hink may deploy the Contact Manager solution directly from the developer workstation to
the developer test environment, to conduct an initial test of the deployment logic.

Matt Hink adds the application to source control in TFS.

Rob Walters creates various build definitions for the Contact Manager solution in Team Build.
One build definition uses Cl to deploy the solution to the developer test environment whenever
a user checks in new code. Another build definition lets users trigger deployments to the staging
environment as required.

Every time a user checks in new code, Team Build automatically builds the solution
components, runs unit tests, and deploys the solution to the developer test environment if the
build was successful and the unit tests pass.

When a user triggers a deployment to the staging environment, the solution is packaged and
deployed in a single-step process. This process also generates a package for manual deployment
to the production environment.

Lisa Andrews deploys the application to the production environment by manually importing the
web package created in step 6.

Key Deployment Issues

The Contact Manager solution and the Fabrikam, Inc. scenario highlight various common issues and

challenges that you may encounter when you deploy complex, enterprise-scale solutions. For example:

You need to be able to deploy projects to multiple environments, like developer or test
environments, staging platforms, and production servers. The solution needs to be deployed
with different configuration settings for each environment.

You need to deploy multiple dependent projects simultaneously as part of a single-step or
automated build and deployment process.

You need to be able to drive deployment from an automated process. For example, you want to
use a Cl process to deploy web applications to a staging environment when new code is checked
in.

You need to be able to control the deployment process and set deployment variables from

outside Visual Studio, as developers are unlikely to have the correct configuration settings or
the necessary credentials for every target environment.

You need to deploy schema-based database projects and preserve existing data on subsequent
deployments.

You need to deploy membership databases on an ad hoc basis without deploying user account
data. You may also need to update the schema of deployed membership databases without
losing existing user account data.

You need to exclude certain files or folders when you deploy content to various target
environments.

In addition, managing deployment when updates are frequent and incremental throws up some

additional challenges. For example:

You run unit tests every time a developer checks in new code. You only want to deploy the
solution if the code passes the unit tests.

When you deploy a web application to a staging or production environment, you want to
redirect users to an app_offline.htm file for the duration of the deployment process.

You want to log deployment activities. The deployment process should send email notifications
of successful or failed deployments to designated recipients.
8

e If an automated deployment fails, the deployment process should retry the current deployment
or deploy the previous web package instead.

The next section provides a more detailed look at how Fabrikam, Inc. manages the deployment of the
Contact Manager solution to various representative target environments.

Application Lifecycle Management: From Development to Production

This topic illustrates how a fictional company manages the deployment of an ASP.NET web application
through test, staging, and production environments as part of a continuous development process.
Throughout the topic, links are provided to further information and walkthroughs on how to perform
specific tasks.

The topic is designed to provide a high-level overview for a series of tutorials on web deployment in the

enterprise. Don't worry if you're not familiar with some of the concepts described here—the tutorials
that follow provide detailed information on all of these tasks and techniques.

Note: For the sake of simplicity, this topic doesn't discuss updating databases as part of the
deployment process. However, making incremental updates to databases features is a requirement of
many enterprise deployment scenarios, and you can find guidance on how to accomplish this later in
this tutorial series. For more information, see Deploying Database Projects.

Overview

The deployment process illustrated here is based on the Fabrikam, Inc. deployment scenario described
in Enterprise Web Deployment: Scenario Overview. You should read the scenario overview before you

study this topic. Essentially, the scenario examines how an organization manages the deployment of a
reasonably complex web application, the Contact Manager solution, through various phases in a typical

enterprise environment.

At a high level, the Contact Manager solution goes through these stages as part of the development and
deployment process:

1. A developer checks some code into Team Foundation Server (TFS) 2010.

2. TFS builds the code and runs any unit tests associated with the team project.

3. TFS deploys the solution to the test environment.

4. The developer team verifies and validates the solution in the test environment.

5. The staging environment administrator performs a "what if" deployment to the staging
environment, to establish whether the deployment will cause any problems.

6. The staging environment administrator performs a live deployment to the staging environment.
7. The solution undergoes user acceptance testing in the staging environment.

8. The web deployment packages are manually imported into the production environment.

9

These stages form part of a continuous development cycle.

Continuous Development

Develop

Create Team . Initial

Project | Configuration Check In

¥

v
< Pass? No

Yes
Deploy to
Test

v

< Pass? ~No

Yes
L

Deploy to
Staging

No

Deploy to
Production

In practice, the process is slightly more complicated than this, as you'll see when we look at each stage
in more detail. Fabrikam, Inc. uses a different approach to deployment for each target environment.

10

Selected builds are

Build Server deployed to the staging
environment after

validation and verification

Build 1 /
Build 2 ' r\> >taging
— V Environment

Build 3

Build n

|

|

|

|

|

|

|

I

1 |
All builds are i
automatically deployed 1
to the test environment :
|

|

|

|

|

-

[———

Selected build is manually
deployed to production if
staging is successful

A4

Developer Test L X\ Production
Environment "--",I’ Environment

The rest of this topic examines these key stages of this deployment lifecycle:

e Prerequisites: How you need to configure your server infrastructure before you put your
deployment logic in place.

e Initial development and deployment: What you need to do before you deploy your solution for
the first time.

e Deployment to test: How to package and deploy content to a test environment automatically
when a developer checks in new code.

e Deployment to staging: How to deploy specific builds to a staging environment and how to
perform "what if" deployments to ensure that a deployment won't cause any problems.

o Deployment to production: How to import web packages into a production environment when
network infrastructure prevents remote deployment.

Prerequisites

The first task in any deployment scenario is to ensure that your server infrastructure meets the
requirements of your deployment tools and techniques. In this case, Fabrikam, Inc. has configured its
server infrastructure like this:

e TFSis configured to include a team project collection, build controllers, and build agents. See
Configuring Team Foundation Server for Automated Web Deployment for more information.
11

e The test environment is configured to accept remote deployments using the Web Deployment
Agent Service (the "remote agent"), as described in Scenario: Configuring a Test Environment
for Web Deployment and Configure a Web Server for Web Deploy Publishing (Remote Agent).

e The staging environment is configured to accept remote deployments using the Web Deploy
Handler endpoint, as described in Scenario: Configuring a Staging Environment for Web
Deployment and Configure a Web Server for Web Deploy Publishing (Web Deploy Handler).

e The production environment is configured to allow an administrator to manually import web
deployment packages into Internet Information Services (11S), as described in Scenario:
Configuring a Production Environment for Web Deployment and Configure a Web Server for
Web Deploy Publishing (Offline Deployment).

Initial Development and Deployment

Before the Fabrikam, Inc. development team can deploy the Contact Manager solution for the first time,
it needs to perform these tasks:

e (Create a new team project in TFS.
e Create the Microsoft Build Engine (MSBuild) project files that contain the deployment logic.

e Create the TFS build definitions that trigger the deployment processes.

Create a New Team Project

The TFS administrator, Rob Walters, creates a new team project for the application, as described in
Creating a Team Project in TFS. Next, the lead developer, Matt Hink, creates a skeleton solution. He
checks his files into the new team project in TFS, as described in Adding Content to Source Control.

Create the Deployment Logic

Matt Hink creates various custom MSBuild project files, using the split project file approach described in
Understanding the Project File. Matt creates:

e A project file named Publish.proj that runs the deployment process. This file contains MSBuild
targets that build the projects in the solution, create web packages, and deploy the packages to
a destination server environment.

e Environment-specific project files named Env-Dev.proj and Env-Stage.proj. These contain
settings that are specific to the test environment and the staging environment respectively, like
connection strings, service endpoints, and the details of the remote service that will receive the
web package. For guidance on choosing the right settings for specific destination environments,
see Configure Deployment Properties for a Target Environment.

To run the deployment, a user executes the Publish.proj file using MSBuild or Team Build and specifies
the location of the relevant environment-specific project file (Env-Dev.proj or Env-Stage.proj) as a
12

command-line argument. The Publish.proj file then imports the environment-specific project file to
create a complete set of publishing instructions for each target environment.

Note: The way these custom project files work is independent of the mechanism you use to invoke
MSBuild. For example, you can use the MSBuild command line directly, as described in Understanding
the Project File. You can run the project files from a command file, as described in Create and Run a
Deployment Command File. Alternatively, you can run the project files from a build definition in TFS, as

described in Creating a Build Definition that Supports Deployment.

In each case the end result is the same—MSBuild executes the merged project file and deploys your
solution to the target environment. This provides you with a great deal of flexibility in how you trigger
your publishing process.

Once he has created the custom project files, Matt adds them to a solution folder and checks them into
source control.
Create Build Definitions

As a final preparation task, Matt and Rob work together to create three build definitions for the new
team project:

o DeployToTest. This builds the Contact Manager solution and deploys it to the test environment
every time a check-in occurs.

o DeployToStaging. This deploys resources from a specified previous build to the staging
environment when a developer queues the build.

o DeployToStaging-Whatlf. This performs a "what if" deployment to the staging environment
when a developer queues the build.

The sections that follow provide more detail on each of these build definitions.

Deployment to Test

The development team at Fabrikam, Inc. maintains test environments to conduct a variety of software
testing activities, like verification and validation, usability testing, compatibility testing, and ad hoc or
exploratory testing.

The development team has created a build definition in TFS named DeployToTest. This build definition
uses a continuous integration trigger, which means the build process runs every time a member of the
Fabrikam, Inc. development team performs a check-in. When a build is triggered, the build definition
will:

e Build the ContactManager.sIn solution. This in turn builds every project within the solution.
e Run any unit tests in the solution folder structure (if the solution builds successfully).

e Run the custom project files that control the deployment process (if the solution builds
successfully and passes any unit tests).
13

The end result is that if the solution builds successfully and passes unit tests, the web packages and any
other deployment resources are deployed to the test environment.

Fabrikam.net Domain

...

Test Environment
Developer

Workstation

TESTWEBI1.

Code check-in fabrikam.net

Team Build Server

(Build process account) TESTDB1.

fabrikam.net

How Does the Deployment Process Work?
The DeployToTest build definition supplies these arguments to MSBuild:
/p:DeployOnBuild=true;DeployTarget=package;TargetEnvPropsFile=[path]\Env-Dev.proj

The DeployOnBuild=true and DeployTarget=package properties are used when Team Build builds the
projects within the solution. When the project is a web application project, these properties instruct
MSBuild to create a web deployment package for the project. The TargetEnvPropsFile property tells the
Publish.proj file where to find the environment-specific project file to import.

Note: For a detailed walkthrough on how to create a build definition like this, see Creating a Build
Definition that Supports Deployment.

The Publish.proj file contains targets that build each project in the solution. However, it also includes
conditional logic that skips these build targets if you're executing the file in Team Build. This lets you
take advantage of the additional build functionality that Team Build offers, like the ability to run unit

14

tests. If the solution build or the unit tests fail, the Publish.proj file will not be executed and the
application will not be deployed.

The conditional logic is accomplished by evaluating the BuildingInTeamBuild property. This is an
MSBuild property that is automatically set to true when you use Team Build to build your projects.

Deployment to Staging

When a build meets all of the requirements of the developer team in the test environment, the team
may want to deploy the same build to a staging environment. Staging environments are typically
configured to match the characteristics of the production or "live" environment as closely as possible,
for example, in terms of server specifications, operating systems and software, and network
configuration. Staging environments are often used for load testing, user acceptance testing, and
broader internal reviews. Builds are deployed to the staging environment directly from the build server.

Fabrikam.net Domain
Staging Environment
Administrator: Rob Walters

STAGEWEB]. STAGEWEB2.
fabrikam.net fabrikam.net

Team Build Server

Deploy specific build

¥

STAGEDBI. :
fabrikam.net

The build definitions used to deploy the solution to the staging environment, DeployToStaging-Whatlf
and DeployToStaging, share these characteristics:

e They don't actually build anything. When Rob deploys the solution to the staging environment,
he wants to deploy a specific, existing build that's already been verified and validated in the test

15

environment. The build definitions just need to run the custom project files that control the
deployment process.

e When Rob triggers a build, he uses the build parameters to specify which build contains the
resources he wants to deploy from the build server.

e The build definitions are not triggered automatically. Rob manually queues a build when he
wants to deploy the solution to the staging environment.

This is the high-level process for a deployment to the staging environment:

1. The staging environment administrator, Rob Walters, queues a build using the
DeployToStaging-Whatlf build definition. Rob uses the build definition parameters to specify
which build he wants to deploy.

2. The DeployToStaging-Whatlf build definition runs the custom project files in "what if" mode.
This generates log files as if Rob was performing a live deployment, but it doesn't actually make
any changes to the destination environment.

3. Robreviews the log files to ascertain the effects of the deployment on the staging environment.
In particular, Rob wants to check what will be added, what will be updated, and what will be
deleted.

4. |If Rob is satisfied that the deployment won't make any undesirable changes to existing
resources or data, he queues a build using the DeployToStaging build definition.

5. The DeployToStaging build definition runs the custom project files. These publish the
deployment resources to the primary web server in the staging environment.

6. The Web Farm Framework (WFF) controller synchronizes the web servers in the staging
environment. This makes the application available on all the web servers in the server farm.

How Does the Deployment Process Work?

The DeployToStaging build definition supplies these arguments to MSBuild:

/p:TargetEnvPropsFile=[path]\Env-Stage.proj;0utputRoot=[path to build folder]

The TargetEnvPropsFile property tells the Publish.proj file where to find the environment-specific
project file to import. The OutputRoot property overrides the built-in value and indicates the location of
the build folder that contains the resources you want to deploy. When Rob queues the build, he uses
the Parameters tab to provide an updated value for the OutputRoot property.

16

Queue Build "ContactManager” 21X

General Parameters

Build process parameters:

E 1. Basic
Clean Workspace All
Logaing Verbosity Maormal
Perform Code Analysis AsConfigured
Source And Symbal Server Setting Index Sources
= 2. Advanced
Agent Settings IUse agent where Mame="and Tags is e
Analyze Test Impact True

Assodate Changesets and Work I True
Copy Outputs to Drop Folder True

Create Work Item on Failure True
Disable Tests False
Get Version

Label Sources True

MSBuild Arguments ployToTest\DeployToTest_20120228.3

Private Drop Location

MSBuild Arguments
Spedify any additional command line arguments to pass to MSBuild. exe.

Queue I Cancel

Note: For more information on how to create a build definition like this, see Deploy a Specific Build.

The DeployToStaging-Whatlf build definition contains the same deployment logic as the
DeployToStaging build definition. However, it includes the additional argument Whatlf=true:

/p:TargetEnvPropsFile=[path]\Env-Stage.proj;
OutputRoot=[path to build folder];
WhatIf=true

Within the Publish.proj file, the Whatlf property indicates that all deployment resources should be
published in "what if" mode. In other words, log files are generated as if the deployment had gone
ahead, but nothing is actually changed in the destination environment. This lets you evaluate the impact
of a proposed deployment—in particular, what will get added, what will get updated, and what will get
deleted—before you actually make any changes.

17

Note: For more information on how to configure "what if" deployments, see Performing a "What If"
Deployment.

Once you've deployed your application to the primary web server in the staging environment, the WFF
will automatically synchronize the application across all the servers in the server farm.

Note: For more information on configuring the WFF to synchronize web servers, see Create a Server
Farm with the Web Farm Framework.

Deployment to Production

When a build has been approved in the staging environment, the Fabrikam, Inc. team can publish the
application to the production environment. The production environment is where the application goes
"live" and reaches its target audience of end users.

The production environment is in an Internet-facing perimeter network. This is isolated from the
internal network that contains the build server. The production environment administrator, Lisa
Andrews, must manually copy the web deployment packages from the build server and import them
into 1IS on the primary production web server.

Perimeter Network

Production Environment
Administrator: Lisa Andrews

Internal Network

PROWEB1. PROWEB2.

Build application A >
fabrikam.net fabrikam.net

and create web
package

Team Build Server

(Build process account) P —

and import web
package

PRODB1.
fabrikam.net

This is the high-level process for a deployment to the production environment:

1. The developer team advises Lisa that a build is ready for deployment to production. The team
advises Lisa of the location of the web deployment packages within the drop folder on the build
server.

18

Lisa collects the web packages from the build server and copies them to the primary web server
in the production environment.

Lisa uses 1IS Manager to import and publish the web packages on the primary web server.

The WFF controller synchronizes the web servers in the production environment. This makes
the application available on all the web servers in the server farm.

How Does the Deployment Process Work?

[IS Manager includes an Import Application Package Wizard that makes it easy to publish web packages

to an IS website. For a walkthrough on how to perform this procedure, see Manually Installing Web
Packages.

Conclusion

This section provided an illustration of the deployment lifecycle for a typical enterprise-scale web

application. There are four chapters (each one is a set of tutorials) in the remainder of this book:

Web Deployment in the Enterprise. This tutorial provides a conceptual introduction to
Microsoft Build Engine (MSBuild) project files, the Web Publishing Pipeline, Web Deploy, and
other related technologies. It explains how you can use these tools together to manage complex

deployment processes.

Configuring Server Environments for Web Deployment. This tutorial describes how to configure

Windows servers to support various deployment scenarios, including remote web package
deployment using the Web Deployment Agent Service (the remote agent) or the Web Deploy
Handler and remote database deployment. It provides guidance on choosing the appropriate
deployment method for your own environment, and it describes how to use the Web Farm
Framework (WFF) to replicate deployed web applications across all the web servers in a server
farm.

Configuring Team Foundation Server for Web Deployment. This tutorial describes how to

configure TFS to support various deployment scenarios, including automated deployment as
part of a Cl process and manually triggered deployments of specific builds.

Advanced Enterprise Web Deployment. This tutorial describes how to accomplish various more

advanced deployment tasks, like customizing database deployments for multiple environments,
excluding files and folders from deployment, and taking web applications offline during the
deployment process.

19

Web Deployment in the Enterprise

This tutorial describes how to meet lots of the challenges you'll encounter when you manage the
deployment of enterprise-scale web applications to development, test, staging, and production
environments. The tutorial includes a reference solution together with a mixture of conceptual and task-
oriented content to guide you through various common tasks and procedures.

Enterprise Deployment Challenges

Organizations often encounter these challenges when they look to manage the deployment of complex,
enterprise-scale solutions:

e You need to be able to deploy projects to multiple environments, like developer or test
environments, staging platforms, and production servers. The solution needs to be deployed
with different configuration settings for each environment.

e You need to deploy multiple dependent projects simultaneously as part of a single-step or
automated build and deployment process.

e You need to be able to drive deployment from an automated process. For example, you want to
use a continuous integration (Cl) process to deploy web applications to a test environment
when new code is checked in.

e You need to be able to control the deployment process and set deployment variables from
outside Visual Studio, as developers are unlikely to have the correct configuration settings or
the necessary credentials for every target environment.

e You need to deploy schema-based database projects and preserve existing data on subsequent
deployments.

e You need to deploy membership databases on an ad hoc basis without deploying user account
data. You may also need to update the schema of deployed membership databases without
losing existing user account data.

e You need to exclude certain files or folders when you deploy content to various target
environments.

Overview of Approach

This tutorial, together with the other tutorials in this series, uses this high-level approach to meet the
challenges described above.

Use custom Microsoft Build Engine (MSBuild) project files to control the overall build and deployment
process.

e This lets you build and deploy every project in the solution as part of a single, scriptable
operation.

20

Environment-specific settings are configured using simple environment-specific project files. In
contrast to the Visual Studio—centric approach of using solution configurations and publish
profiles to configure deployments for different environments, this approach lets you configure
and manage the deployment process from outside Visual Studio. This means that developers
don't need advance knowledge of connection strings, service endpoints, server credentials, and
other deployment variables for destination environments.

The custom project files can be invoked by Team Build as part of a Team Foundation Server (TFS)
workflow. This lets you configure automated deployment for Cl scenarios.

Use the Internet Information Services (11IS) Web Deployment Tool (Web Deploy) to package and
deploy web application projects.

Web Deploy provides a framework that lets you package and deploy your web application
content to a destination IIS web server, together with dependencies, configuration settings,
security settings, and any other requirements.

You can control the entire packaging and deployment process from within your custom MSBuild
project files. You can also manipulate the configuration settings that accompany your web
deployment package, like connection strings, service endpoints, and IIS destination details.

Web Deploy, together with the Web Publishing Pipeline, offers lots of extensibility points that
let you customize your deployments. For example, it's easy to exclude unwanted files and
folders from your web deployment packages.

Use the VSDBCMD.exe utility to deploy and update database schemas.

VSDBCMD allows you to deploy databases from a database schema file (.dbschema), which is
generated when you build a Visual Studio database project. In contrast, the database
deployment functionality included in Web Deploy is more suited to deploying existing databases
from a local SQL Server instance.

Unlike Visual Studio's functionality for deploying database projects, VSDBCMD lets you deploy
differential updates to an existing target database. This allows you to preserve any existing data
while you upgrade the database schema.

You can execute VSDBCMD commands from within your custom MSBuild project files.

Content Map

This tutorial includes topics that fall into four main areas.

These topics introduce the reference solution—the Contact Manager solution—and describe how to

download it and configure it on your local machine:

The Contact Manager Solution

21

e Setting Up the Contact Manager Solution

These topics introduce MSBuild project files, describe how you can create and use custom project files,
and walk through the deployment process for the Contact Manager solution:

e Understanding the Project File

e Understanding the Build Process

These topics describe web application deployment, including how the build and packaging process
works, how the build process integrates with the Web Publishing Pipeline, how to modify deployment
parameters, and how to deploy web packages to destination environments:

e Building and Packaging Web Application Projects

e Configuring Parameters for Web Package Deployment

e Deploying Web Packages

Deploying Database Projects describes the different techniques you can use to deploy Visual Studio
database projects, together with the advantages and disadvantages of each approach. Creating and

Running a Deployment Command File describes how to create a simple command file that encapsulates

your deployment logic and lets you deploy complex solutions as a single-step process.

Finally, Manually Installing Web Packages concludes the tutorial by showing you to import web packages
into IIS.

Key Technologies
The topics in this tutorial primarily use these technologies to manage build and deployment:
e Visual Studio 2010
e MSBuild
e [IS7.5
e Web Deploy 2.0

e The VSDBCMD.exe database deployment utility

The Contact Manager Solution

This series of tutorials uses a sample solution—the Contact Manager solution—to represent an

enterprise-scale application with a realistic level of complexity. This topic introduces the Contact
Manager solution, describes the key components of the solution, and identifies the challenges in
deploying this kind of application to various destination platforms in an enterprise environment.

22

As you work through the topics in these tutorials, you can use the Contact Manager solution as a
reference implementation that demonstrates how you can meet specific challenges in enterprise
deployment scenarios. The next topic, Setting Up the Contact Manager Solution, describes how to

download and run the solution on your developer workstation.

Solution Overview

The Contact Manager solution consists of four individual projects:

Solution Explorer *Ox

= | =

_j Solution 'ContactManaaer' (4 projects)
_______ ¢ Publish

,E ContactManager. Comman
_j ContactManager.Database

% ContactManager.Mvc
o

=]

23 ContactManager.Service

Solution Explo... [i R = ESEI’VEI’ Explorer

e ContactManager.Mvc. This is an ASP.NET MVC 3 web application project that represents the
entry point for the solution. It offers some basic web application functionality, like providing
users with the ability to create and view contact details. The application relies on a Windows
Communication Foundation (WCF) service to manage contacts and an ASP.NET application
services database to manage authentication and authorization.

e ContactManager.Database. This is a Visual Studio database project. The project defines the
schema for a database that stores contact details.

e ContactManager.Service. This is a WCF web service project. The WCF service exposes an
endpoint that allows callers to perform create, retrieve, update, and delete (CRUD) operations
on the ContactManager database. The service relies on the ContactManager database and the
ContactManager.Common.dll assembly.

e ContactManager.Common. This is a class library project. The WCF service relies on types
defined in this assembly.

The solution also includes a solution folder named Publish. This contains various custom project files and
command files that demonstrate how you can control and manipulate the build and deployment
process. These are covered in more detail later in this tutorial.

At a conceptual level, the components of the solution fit together like this:

23

MVC Web Application ASP.NET Application
Services Database

Common Assemblies WCF Service ContactManager Database

A‘—)A(—)

Note: While the ASP.NET MVC 3 web application uses the ASP.NET membership provider, all the pages
within the web application allow anonymous access. This is clearly not a realistic configuration.
However, the solution is set up in this way to make it easier for you to deploy and test the solution
without configuring user accounts and roles.

Deployment Challenges

The Contact Manager solution illustrates several deployment challenges that are common to lots of
enterprise deployment scenarios:

The solution consists of multiple dependent projects. You need to deploy these projects
simultaneously.

Connection strings and service endpoints need to be updated for each environment, and in a lot
of cases this information will not be available to the developer.

When you deploy the ContactManager database to staging and production environments, you
need to preserve existing data on subsequent deployments.

When you deploy the ASP.NET application services database, you need to deploy some
configuration data but omit any user account data.

The projects include some files and folders that should not be deployed. You need to exclude
these files and folders from the deployment process.

The solution needs to support automated deployment from a Team Foundation Server (TFS)
build server.

24

Conclusion

This topic provided a high-level overview of the Contact Manager solution and identified some of the
inherent deployment challenges that are common to lots of enterprise deployment scenarios. The
remaining topics in this tutorial describe some of the techniques you can use to meet these challenges.

The next topic, Setting Up the Contact Manager Solution, describes how to download and run the

solution on your developer workstation.

Setting Up the Contact Manager Solution

This topic describes how to download and configure the Contact Manager solution to run locally on a
developer workstation.

This topic forms part of a tutorial on web deployment in enterprise scenarios.

System Requirements

To run the Contact Manager solution locally and to perform the other tasks described in this tutorial,
you'll need to install this software on your developer workstation:

e Visual Studio 2010 Service Pack 1, Premium or Ultimate Edition
e Internet Information Services (l1S) 7.5 Express

e SQL Server Express 2008 R2

e IS Web Deployment Tool (Web Deploy) 2.1 or later

e ASP.NET 4.0

e ASP.NET MVC 3

e .NET Framework 4

.NET Framework 3.5 SP1

With the exception of Visual Studio 2010, you can download and install the latest versions of all of these
products and components through the Web Platform Installer.

Download and Extract the Solution

You can download the Contact Manager sample application from the MSDN Code Gallery at the
following URL:

http://code.msdn.microsoft.com/Deploying-Web-Applications-9d9093c0

Configure and Run the Solution

To configure and run the Contact Manager solution on your local machine, you'll need to perform these
high-level steps:

25

http://go.microsoft.com/?linkid=9805118
http://code.msdn.microsoft.com/Deploying-Web-Applications-9d9093c0

1. If you don't have one already, create a local ASP.NET application services database with the

membership and role management features enabled.
2. Edit connection strings in the web.config files to point to your local SQL Server Express instance.

3. Run the solution from Visual Studio 2010.

The remainder of this section provides more guidance on how to complete each of these tasks.

To create the application services database

1. Open a Visual Studio 2010 command prompt. To do this, on the Start menu, point to All
Programs, click Microsoft Visual Studio 2010, click Visual Studio Tools, and then click Visual
Studio Command Prompt (2010).

2. At the command prompt, type this command, and then press Enter:
aspnet_regsql -C "Data Source=.\SQLEXPRESS;Integrated Security=true" -A mr -d
CMAppServices
a. Use the —C switch to specify the connection string for your database server.
b. Use the —A switch to specify the application services features you want to add to the

database. In this case, m indicates that you want to add support for the membership
provider and r indicates that you want to add support for the role manager.

c. Use the —d switch to specify a name for your application services database. If you omit
this switch, the utility will create a database with the default name of aspnetdb.

3. When the database has been created successfully, the command prompt will show a
confirmation.

TrVisual Studio Command Prompt (2010)

C:sProgram Files <(xB6>“Microsoft Uisuwal Studie 18.B85UCraspnet)
urce=_“SQLEXPRESS ; Integrated Security=true" - mr —d CHAppSerev

Start adding the following Features:

rship
RoleManager

C:~Program Files {(xB6>-Microsoft Uisual Studie 18.8~UC>

Note: For more information on the aspnet_regsql utility, see ASP.NET SQL Server Registration Tool

(Aspnet regsql.exe).

26

http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx

The next step is to make sure that the connection strings in the Contact Manager solution point to your

local instance of SQL Server Express.

To update the connection strings

1.
2.

3.

Open the Contact Manager solution in Visual Studio 2010.

In the Solution Explorer window, expand the ContactManager.Mvc project, and then double-
click the Web.config node.

Note: The ContactManager.Mvc project includes two web.config files. You need to edit the
project-level file.

Solution Explarer * 0 X

al s ey

_j Solution 'ContactManager-WCF' (4 projects)
it Publish

.E ContactManager. Common
_j ContactManager.Database
& Jcontactransger.rivc)
=d| Properties

w3 References

g Service References
4 App_Data
[Content
[J Controllers
[Internal
[Models

[Scripts

[d Views

4] Global.asax

DAl £
g Web.config

0OHHRMH

H FHH

HFHEHBEEB

., B
i

In the connectionStrings element, verify that the connection string named ApplicationServices
points to your local ASP.NET application services database.

XML

<connectionStrings>
<add name="ApplicationServices"
connectionString="Data Source=.\SQLEXPRESS;
Integrated Security=true;
Initial Catalog=CMAppServices"
providerName="System.Data.SqlClient" />
</connectionStrings>

In the Solution Explorer window, expand the ContactManager.Service project, and then
double-click the Web.config node.

27

5.

v -
Solution Explorer 0 x

2| D E S]]
j Solution 'ContactManager-WCF' (4 projects)

 5ql
f,-*ﬂ ContactManager. Commaon

_j ContactManager . Database
._-cﬁ ContactManager.Mvc

=

0OFEMEEHMK

ContactManager.Service
=d| Properties

3] References

i Service References
4 App_Data

#| ContactService.svc
Cﬂ IContactService.cs
Y _

F

=g Web.config

In the connectionStrings element, in the connection string named ContactManagerContext,
verify that the Data Source property is set to your local instance of SQL Server Express. You
don't need to change anything else in the connection string.

XML

<connectionStrings>
<add name="ContactManagerContext"
connectionString="Data Source=.\SQLExpress;
Initial Catalog=ContactManager;
Integrated Security=true;
multipleactiveresultsets=true"
providerName="System.Data.SqlClient" />
</connectionStrings>

6. Save all open files.

You should now be ready to run the Contact Manager solution on your local machine.

Note: If you follow these steps without first creating an application services database, ASP.NET will
create the database the first time you attempt to create a user. However, manually creating the
database gives you a lot more control over the application services feature set you want to support.

To run the Contact Manager solution

1.

In Visual Studio 2010, press F5.

Internet Explorer starts up and requests the URL of the Contact Manager ASP.NET MVC 3
application. By default, the application displays the All Contacts page.

28

M All Contacts - Windows Internet Explorer _ ‘_Injzl

ey | @ http:/flocalhost:50114 O 7] E| E| E| 2 All Contacts x A kL

Contact Manager

All Contacts

View ID First Name Last Name

Add a contact

2. Add afew contacts, and then verify that the application works as expected.

M2 All Contacts - Windows Internet Explorer ‘ _._Inl;l

@ ® | @ hp:/flocahost: 50114 O 7] E| E| E| 2 All Contacts x A A L

Contact Manager

All Contacts

View ID First Name Last Name

View 1 Matt Hink
View 2 Rob Walters
View 3 Lisa Andrews

Add a contact

3. Browse to http://localhost:50114/Account/Register (adjust the URL if you're hosting the
application on a different port). Add a user name, email address, and password, and verify that
you’re able to register an account successfully.

29

€ Regntcr widows ntemet bxporer -
@v | @ htto:/localhost: 50114 O ¥] E]EI Z‘ 2 Regster x | {0} 5.7 104

Contact Manager

Create a New Account

Use the form below to create a new account.
Passwords are required to be a minimum of 6 characters in length.

Account Information

User name
rob

Email address
rob@fabrikam net

Password

Confirm password

4. Browse to http://localhost:50114/Account/LogOn (adjust the URL if you're hosting the
application on a different port). Verify that you're able to log on using the account you just

created.

30

6109 0n - Windows Internet Explorer =101
@v [@ hicz:/ocahost: 50124 0 =] | B 42 || x| @ LogOn x {n) 2.9 ¢

Contact Manager

Log On
Please enter your username and password. Reqister if you don't have an account.

Account Information

User name
rob

Password

™ Remember me?

Log On |

5. Close Internet Explorer to stop debugging.

Conclusion

At this point, the Contact Manager solution should be fully configured to run on your local machine. You
can use the solution as a reference when you work through the other topics in this tutorial.

The next topic, Understanding the Project File, explains how you can use the custom Microsoft Build
Engine (MSBuild) project files within the Contact Manager solution to control the deployment process.

Understanding the Project File

Microsoft Build Engine (MSBuild) project files lie at the heart of the build and deployment process. This
topic starts with a conceptual overview of MSBuild and the project file. It describes the key components
you'll come across when you work with project files, and it works through an example of how you can
use project files to deploy real-world applications.

What you'll learn:

e How MSBuild uses MSBuild project files to build projects.

31

e How MSBuild integrates with deployment technologies, like the Internet Information Services
(11S) Web Deployment Tool (Web Deploy).

e How to understand the key components of a project file.

e How you can use project files to build and deploy complex applications.

This topic forms part of a tutorial on web deployment in the enterprise.

MSBuild and the Project File

When you create and build solutions in Visual Studio, Visual Studio uses MSBuild to build each project in
your solution. Every Visual Studio project includes an MSBuild project file, with a file extension that
reflects the type of project—for example, a C# project (.csproj), a Visual Basic.NET project (.vbproj), or a
database project (.dbproj). In order to build a project, MSBuild must process the project file associated
with the project. The project file is an XML document that contains all the information and instructions
that MSBuild needs in order to build your project, like the content to include, the platform
requirements, versioning information, web server or database server settings, and the tasks that must
be performed.

MSBuild project files are based on the MSBuild XML schema, and as a result the build process is entirely
open and transparent. In addition, you don't need to install Visual Studio in order to use the MSBuild

engine—the MSBuild.exe executable is part of the .NET Framework, and you can run it from a command
prompt. As a developer, you can craft your own MSBuild project files, using the MSBuild XML schema, to
impose sophisticated and fine-grained control over how your projects are built and deployed. These
custom project files work in exactly the same way as the project files that Visual Studio generates
automatically.

Note: You can also use MSBuild project files with the Team Build service in Team Foundation Server
(TFS). For example, you can use project files in continuous integration (Cl) scenarios to automate
deployment to a test environment when new code is checked in. For more information, see
Configuring Team Foundation Server for Automated Web Deployment.

Project File Naming Conventions

When you create your own project files, you can use any file extension you like. However, to make your
solutions easier for others to understand, you should use these common conventions:

e Use the .proj extension when you create a project file that builds projects.

e Use the .targets extension when you create a reusable project file to import into other project
files. Files with a .targets extension typically don't build anything themselves, they simply
contain instructions that you can import into your .proj files.

32

http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx

Integration with Deployment Technologies

If you've worked with web application projects in Visual Studio 2010, like ASP.NET web applications and
ASP.NET MVC web applications, you'll know that these projects include built-in support for packaging

and deploying the web application to a target environment. The Properties pages for these projects
include Package/Publish Web and Package/Publish SQL tabs that you can use to configure how the
components of your application are packaged and deployed. This shows the Package/Publish Web tab:

Applcation

Build

Web

Package /Pubish Web
Package Publish SQL
Silverfight Applications
Bulld Events
Resources

Settings

Reference Paths
Signng

Code Analysis

Configuration: Iﬂcbvc {Debug) ;] Platform: IActr.'c {Any CPU)

Package/Publish enables you to deploy your Web application to Web servers,
Learn more about Package/Publish Web

Items to deploy (appliesto all deployment methods)

IO’W fies needed to run this application :J
™ Exclude generated debug symbols
™ Exclude files from the App_Data folder
Items to deploy (applies to Web Deploy only)
M Include 8l databases configured in Package/Publish SQLtab Qpen Settings
I Indude IS settings as configured in IIS Express
r
Web Deployment Package Settings

V' Create deployment package as a zip file
Location where package will be created:

=

Fob]\.’.)ebug'Padage'(.omacﬂa'\ager‘M':c 2ip

IIS Web site/application name to use onthe destination server:

pe‘aun Web Site /ContactManager.Mve_deploy

Physical path of Web application on destination server (used only when IS set

ngs areincluded):

Password used to encrypt secure [ISsettings:

The underlying technology behind these capabilities is known as the Web Publishing Pipeline (WPP). The
WPP essentially brings MSBuild and Web Deploy together to provide a complete build, package, and
deployment process for your web applications.

The good news is that you can take advantage of the integration points that the WPP provides when you

create custom project files for web projects. You can include deployment instructions in your project

file, which allows you to build your projects, create web deployment packages, and install these

packages on remote servers through a single project file and a single call to MSBuild. You can also call

any other executables as part of your build process. For example, you can run the VSDBCMD.exe

command-line tool to deploy a database from a schema file. Over the course of this topic, you'll see how

you can take advantage of these capabilities to meet the requirements of your enterprise deployment

scenarios.

33

http://go.microsoft.com/?linkid=9805122

Note: For more information on how the web application deployment process works, see ASP.NET Web
Application Project Deployment Overview.

The Anatomy of a Project File

Before you look at the build process in more detail, it’s worth taking a few moments to familiarize
yourself with the basic structure of an MSBuild project file. This section provides an overview of the
more common elements that you’ll encounter when you review, edit, or create a project file. In
particular, you'll learn:

e How to use properties to manage variables for the build process.
e How to use items to identify the inputs to the build process, like code files.

e How to use targets and tasks to provide execution instructions to MSBuild, using properties and
items defined elsewhere in the project file.

This shows the relationship between the key elements in an MSBuild project file:

Project

—» PropertyGroup
Lb Property
—» ltemGroup
\—b ltem
Lb ItemMetadata

L Target

> Static properties
and items

| Task

—» PropertyGroup
Lb Property
Target-specific

—» ItemGroup >- properties and

items
Lb ltem
L) ltemMetadata

34

http://msdn.microsoft.com/en-us/library/dd394698.aspx
http://msdn.microsoft.com/en-us/library/dd394698.aspx

The Project Element

The Project element is the root element of every project file. In addition to identifying the XML schema
for the project file, the Project element can include attributes to specify the entry points for the build
process. For example, in the Contact Manager sample solution, the Publish.proj file specifies that the
build should start by calling the target named FullPublish.

XML

<Project ToolsVersion="4.0" DefaultTargets="FullPublish"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

</Project>

Properties and Conditions

A project file typically needs to provide lots of different pieces of information in order to successfully
build and deploy your projects. These pieces of information could include server names, connection
strings, credentials, build configurations, source and destination file paths, and any other information
you want to include to support customization. In a project file, properties must be defined within a
PropertyGroup element. MSBuild properties consist of key-value pairs. Within the PropertyGroup
element, the element name defines the property key and the content of the element defines the
property value. For example, you could define properties named ServerName and ConnectionString to
store a static server name and connection string.

XML

<PropertyGroup>
<ServerName>FABRIKAM\TEST1</ServerName>
<ConnectionString>
Data Source=FABRIKAM\TESTDB;InitialCatalog=ContactManager,...
</ConnectionString>
</PropertyGroup>
To retrieve a property value, you use the format $(PropertyName). For example, to retrieve the value of
the ServerName property, you would type:

$(ServerName)

Note: You'll see examples of how and when to use property values later in this topic.

Embedding information as static properties in a project file is not always the ideal approach to managing
the build process. In a lot of scenarios, you’ll want to obtain the information from other sources or
empower the user to provide the information from the command prompt. MSBuild allows you to specify
any property value as a command-line parameter. For example, the user could provide a value for
ServerName when he or she runs MSBuild.exe from the command line.

msbuild.exe Publish.proj /p:ServerName=FABRIKAM\TESTWEB1

35

http://msdn.microsoft.com/en-us/library/bcxfsh87.aspx
http://msdn.microsoft.com/en-us/library/t4w159bs.aspx

Note: For more information on the arguments and switches you can use with MSBuild.exe, see
MSBuild Command Line Reference.

You can use the same property syntax to obtain the values of environment variables and built-in project
properties. Lots of commonly used properties are defined for you, and you can use them in your project
files by including the relevant parameter name. For example, to retrieve the current project platform—
for example, x86 or AnyCpu—you can include the $(Platform) property reference in your project file.
For more information, see Macros for Build Commands and Properties, Common MSBuild Project

Properties, and Reserved Properties.

Properties are often used in conjunction with conditions. Most MSBuild elements support the Condition
attribute, which lets you specify the criteria upon which MSBuild should evaluate the element. For
example, consider this property definition:

XML
<PropertyGroup>

<OutputRoot Condition=" "'$(OutputRoot)'=="" ">..\Publish\Out\</OutputRoot>
</PropertyGroup>

When MSBuild processes this property definition, it first checks to see whether an $(OutputRoot)
property value is available. If the property value is blank—in other words, the user hasn’t provided a
value for this property—the condition evaluates to true and the property value is set to ..\Publish\Out.
If the user has provided a value for this property, the condition evaluates to false and the static property
value is not used.

For more information on the different ways in which you can specify conditions, see MSBuild Conditions.

Items and Item Groups

One of the important roles of the project file is to define the inputs to the build process. Typically, these
inputs are files—code files, configuration files, command files, and any other files that you need to
process or copy as part of the build process. In the MSBuild project schema, these inputs are
represented by Item elements. In a project file, items must be defined within an ItemGroup element.
Just like Property elements, you can name an Item element however you like. However, you must
specify an Include attribute to identify the file or wildcard that the item represents.

XML

<ItemGroup>
<ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>
</ItemGroup>

By specifying multiple Item elements with the same name, you’re effectively creating a named list of
resources. A good way to see this in action is to take a look inside one of the project files that Visual
Studio creates. For example, the ContactManager.Mvc.csproj file in the sample solution includes a lot of
item groups, each with several identically named Item elements.

36

http://msdn.microsoft.com/en-us/library/ms164311.aspx
http://msdn.microsoft.com/en-us/library/c02as0cs.aspx
http://msdn.microsoft.com/en-us/library/bb629394.aspx
http://msdn.microsoft.com/en-us/library/bb629394.aspx
http://msdn.microsoft.com/en-us/library/ms164309.aspx
http://msdn.microsoft.com/en-us/library/7szfhaft.aspx
http://msdn.microsoft.com/en-us/library/ms164283.aspx
http://msdn.microsoft.com/en-us/library/646dk05y.aspx

XML

<ItemGroup>
<Reference Include="Microsoft.CSharp" />
<Reference Include="System.Runtime.Serialization" />
<Reference Include="System.ServiceModel" />

</ItemGroup>

<ItemGroup>
<Compile Include="Controllers\AccountController.cs" />
<Compile Include="Controllers\ContactsController.cs" />
<Compile Include="Controllers\HomeController.cs" />

</ItemGroup>

<ItemGroup>
<Content Include="Content\Custom.css" />
<Content Include="CreateDatabase.sql" />
<Content Include="DropDatabase.sql" />

</I£é$Group>

In this way, the project file is instructing MSBuild to construct lists of files that need to be processed in
the same way—the Reference list includes assemblies that must be in place for a successful build, the
Compile list includes code files that must be compiled, and the Content list includes resources that must
be copied unaltered. We'll look at how the build process references and uses these items later in this
topic.

Iltem elements can also include ItemMetadata child elements. These are user-defined key-value pairs
and essentially represent properties that are specific to that item. For example, a lot of the Compile
item elements in the project file include DependentUpon child elements.

XML

<Compile Include="Global.asax.cs">
<DependentUpon>Global.asax</DependentUpon>
</Compile>

Note: In addition to user-created item metadata, all items are assigned various common metadata on
creation. For more information, see Well-known Item Metadata.

You can create ItemGroup elements within the root-level Project element or within specific Target
elements. IltemGroup elements also support Condition attributes, which lets you tailor the inputs to the
build process according to conditions like the project configuration or platform.

Targets and Tasks

In the MSBuild schema, a Task element represents an individual build instruction (or task). MSBuild
includes a multitude of predefined tasks. For example:

e The Copy task copies files to a new location.

37

http://msdn.microsoft.com/en-us/library/ms164284.aspx
http://msdn.microsoft.com/en-us/library/ms164313.aspx
http://msdn.microsoft.com/en-us/library/77f2hx1s.aspx

e The Csc task invokes the Visual C# compiler.
e The Vbc task invokes the Visual Basic compiler.
e The Exec task runs a specified program.

e The Message task writes a message to a logger.

Note: For full details of the tasks that are available out of the box, see MSBuild Task Reference. For
more information on tasks, including how to create your own custom tasks, see MSBuild Tasks.

Tasks must always be contained within Target elements. A Target element is a set of one or more tasks
that are executed sequentially, and a project file can contain multiple targets. When you want to run a
task, or a set of tasks, you invoke the target that contains them. For example, suppose you have a simple
project file that logs a message.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="LogMessage">
<Message Text="Hello world!" />
</Target>
</Project>

You can invoke the target from the command line, by using the /t switch to specify the target.

msbuild.exe Publish.proj /t:LogMessage

Alternatively, you can add a DefaultTargets attribute to the Project element, to specify the targets that
you want to invoke.

XML

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
DefaultTargets="FullPublish">
<Target Name="LogMessage">
<Message Text="Hello world!" />
</Target>
</Project>

In this case, you don't need to specify the target from the command line. You can simply specify the
project file, and MSBuild will invoke the FullPublish target for you.

msbuild.exe Publish.proj

Both targets and tasks can include Condition attributes. As such, you can choose to omit entire targets
or individual tasks if certain conditions are met.

Generally speaking, when you create useful tasks and targets, you'll need to refer to the properties and
items that you've defined elsewhere in the project file:

38

http://msdn.microsoft.com/en-us/library/7z253716.aspx
http://msdn.microsoft.com/en-us/library/ms171466.aspx
http://msdn.microsoft.com/en-us/library/t50z2hka.aspx

e To use a property value, type $(PropertyName), where PropertyName is the name of the
Property element or the name of the parameter.

e To use an item, type @(/temName), where ItemName is the name of the Item element.

Note: Remember that if you create multiple items with the same name, you’re building a list. In
contrast, if you create multiple properties with the same name, the last property value you provide will
overwrite any previous properties with the same name—a property can only contain a single value.

For example, in the Publish.proj file in the sample solution, take a look at the BuildProjects target.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!="true'
<MSBuild Projects="@(ProjectsToBuild)"
Properties="0utDir=$(OutputRoot);
Configuration=$(Configuration);
DeployOnBuild=true;
DeployTarget=Package"
Targets="Build" />

>

</Target>
In this sample, you can observe these key points:

e [f the BuildingInTeamBuild parameter is specified and has a value of true, none of the tasks
within this target will be executed.

e The target contains a single instance of the MSBuild task. This task lets you build other MSBuild
projects.

e The ProjectsToBuild item is passed to the task. This item could represent a list of project or
solution files, all defined by ProjectsToBuild item elements within an item group. In this case,
the ProjectsToBuild item refers to a single solution file.

XML
<ItemGroup>

<ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>
</ItemGroup>

e The property values passed to the MSBuild task include parameters named OutputRoot and
Configuration. These are set to parameter values if they are provided, or static property values

if they are not.

XML

<PropertyGroup>

<Configuration Condition=" '$(Configuration)'=='"' ">Release
</Configuration>

<OutputRoot Condition=" '$(OutputRoot)'=="" ">..\Publish\Out\
</OutputRoot>

39

http://msdn.microsoft.com/en-us/library/z7f65y0d.aspx

</PropertyGroup>

You can also see that the MSBuild task invokes a target named Build. This is one of several built-in
targets that are widely used in Visual Studio project files and are available to you in your custom project
files, like Build, Clean, Rebuild, and Publish. You'll learn more about using targets and tasks to control
the build process, and about the MSBuild task in particular, later in this topic.

Note: For more information on targets, see MSBuild Targets.

Splitting Project Files to Support Multiple Environments

Suppose you want to be able to deploy a solution to multiple environments, like test servers, staging
platforms, and production environments. The configuration may vary substantially between these
environments—not just in terms of server names, connection strings, and so on, but also potentially in
terms of credentials, security settings, and lots of other factors. If you need to do this regularly, it's not
really expedient to edit multiple properties in your project file every time you switch the target
environment. Nor is it an ideal solution to require an endless list of property values to be provided to
the build process.

Fortunately there is an alternative. MSBuild lets you split your build configuration across multiple
project files. To see how this works, in the sample solution, notice that there are two custom project
files:

e Publish.proj, which contains properties, items, and targets that are common to all
environments.

e Env-Dev.proj, which contains properties that are specific to a developer environment.

Now notice that the Publish.proj file includes an Import element, immediately beneath the opening
Project tag.

XML
<Import Project="$(TargetEnvPropsFile)"/>

The Import element is used to import the contents of another MSBuild project file into the current
MSBuild project file. In this case, the TargetEnvPropsFile parameter provides the filename of the project
file you want to import. You can provide a value for this parameter when you run MSBuild.

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

This effectively merges the contents of the two files into a single project file. Using this approach, you
can create one project file containing your universal build configuration and multiple supplementary
project files containing environment-specific properties. As a result, simply running a command with a
different parameter value lets you deploy your solution to a different environment.

40

http://msdn.microsoft.com/en-us/library/ms171462.aspx
http://msdn.microsoft.com/en-us/library/92x05xfs.aspx

Universal build L Universal build Staging
. . environment . . environment
configuration , configuration .
properties properties
Publish.proj R Publish.proj e
y . J ——
Build and deploy to Build and deploy to
developer environment staging environment

Splitting your project files in this way is a good practice to follow. It allows developers to deploy to
multiple environments by running a single command, while avoiding the duplication of universal build
properties across multiple project files.

Note: For guidance on how to customize the environment-specific project files for your own server
environments, see Configure Deployment Properties for a Target Environment.

Conclusion

This topic provided a general introduction to MSBuild project files and explained how you can create
your own custom project files to control the build process. It also introduced the concept of splitting
project files into universal build instructions and environment-specific build properties, to make it easy
to build and deploy projects to multiple destinations.

The next topic, Understanding the Build Process, provides more insight into how you can use project

files to control build and deployment by walking you through the deployment of a solution with a
realistic level of complexity.

Further Reading

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:
Using MSBuild and Team Foundation Build by Sayed lbrahim Hashimi and William Bartholomew, ISBN:
978-0-7356-4524-0.

Understanding the Build Process

This topic provides a walkthrough of an enterprise-scale build and deployment process. The approach
described in this topic uses custom Microsoft Build Engine (MSBuild) project files to provide fine-grained
control over every aspect of the process. Within the project files, custom MSBuild targets are used to
run deployment utilities like the Internet Information Services (11S) Web Deployment Tool
(MSDeploy.exe) and the database deployment utility VSDBCMD.exe.

41

http://amzn.com/0735645248
http://amzn.com/0735645248

Note: The previous topic, Understanding the Project File, described the key components of an MSBuild

project file and introduced the concept of split project files to support deployment to multiple target
environments. If you're not already familiar with these concepts, you should review Understanding the
Project File before you work through this topic.

Build and Deployment Overview

In the Contact Manager solution, three files control the build and deployment process:

e Auniversal project file (Publish.proj). This contains build and deployment instructions that do
not change between destination environments.

e An environment-specific project file (Env-Dev.proj). This contains build and deployment settings
that are specific to a particular destination environment. For example, you could use the Env-
Dev.proj file to provide settings for a developer or test environment and create an alternative
file named Env-Stage.proj to provide settings for a staging environment.

e A command file (Publish-Dev.cmd). This contains an MSBuild.exe command that specifies which
project files you want to execute. You can create a command file for every destination
environment, where each file contains an MSBuild.exe command that specifies a different
environment-specific project file. This lets the developer deploy to different environments
simply by running the appropriate command file.

In the sample solution, you can find these three files in the Publish solution folder.

Solution Explorer

= | 2

Solution 'ContactManager-WCF' (4 projects)

= Env-Dev.proj
#) Publish-Diev, crnd
|| Publish.proj

.E ContactManager. Common
_j ContactManager.Database
3 ContactManager.Mvc
3 ContactManager.Service

HHEHH

+ [x

Before you look at these files in more detail, let's take a look at how the overall build process works
when you use this approach. At a high level, the build and deployment process looks like this:

42

Environment-
specific build
configuration

Universal build
configuration

-

Project

manifests MSBuild.exe

MSDeploy.exe VSDBCMD.exe

The first thing that happens is that the two project files—one containing universal build and deployment
instructions, and one containing environment-specific settings—are merged into a single project file.
MSBuild then works through the instructions in the project file. It builds each of the projects in the
solution, using the project file for each project. It then calls out to other tools, like Web Deploy
(MSDeploy.exe) and the VSDBCMD utility to deploy your web content and databases to the target
environment.

From start to finish, the build and deployment process performs these tasks:

1.
2.

It deletes the contents of the output directory, in preparation for a fresh build.
It builds each project in the solution:

a. For web projects—in this case, an ASP.NET MVC web application and a WCF web
service—the build process creates a web deployment package for each project.

b. For database projects, the build process creates a deployment manifest
(.deploymanifest file) for each project.

It uses the VSDBCMD.exe utility to deploy each database project in the solution, using various
properties from the project files—a target connection string and a database name—together
with the .deploymanifest file.

It uses the MSDeploy.exe utility to deploy each web project in the solution, using various
properties from the project files to control the deployment process.

43

You can use the sample solution to trace this process in more detail.

Note: For guidance on how to customize the environment-specific project files for your own server
environments, see Configure Deployment Properties for a Target Environment.

Invoking the Build and Deployment Process

To deploy the Contact Manager solution to a developer test environment, the developer runs the
Publish-Dev.cmd command file. This invokes MSBuild.exe, specifying Publish.proj as the project file to
execute and Env-Dev.proj as a parameter value.

msbuild.exe Publish.proj /fl /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

Note: The /fl switch (short for /fileLogger) logs the build output to a file named msbuild.log in the
current directory. For more information, see the MSBuild Command Line Reference.

At this point, MSBuild starts running, loads the Publish.proj file, and starts processing the instructions
within it. The first instruction tells MSBuild to import the project file that the TargetEnvPropsFile
parameter specifies.

XML
<Import Project="$(TargetEnvPropsFile)" />

The TargetEnvPropsFile parameter specifies the Env-Dev.proj file, so MSBuild merges the contents of
the Env-Dev.proj file into the Publish.proj file.

The next elements that MSBuild encounters in the merged project file are property groups. Properties
are processed in the order in which they appear in the file. MSBuild creates a key-value pair for each
property, providing that any specified conditions are met. Properties defined later in the file will
overwrite any properties with the same name defined earlier in the file. For example, consider the
OutputRoot properties.

XML

<OutputRoot Condition=" '$(OutputRoot)'=="" ">..\Publish\Out\</OutputRoot>
<OutputRoot Condition=" '$(BuildingInTeamBuild)'=="true' ">$(OutDir)</OutputRoot>

When MSBuild processes the first OutputRoot element, providing a similarly named parameter has not
been provided, it sets the value of the OutputRoot property to ..\Publish\Out. When it encounters the

second OutputRoot element, if the condition evaluates to true, it will overwrite the value of the
OutputRoot property with the value of the OutDir parameter.

The next element that MSBuild encounters is a single item group, containing an item named
ProjectsToBuild.

XML

<ItemGroup>
<ProjectsToBuild Include="$(SourceRoot)ContactManager-WCF.sln"/>
</ItemGroup>

44

http://msdn.microsoft.com/en-us/library/ms164311.aspx

MSBuild processes this instruction by building an item list named ProjectsToBuild. In this case, the item
list contains a single value—the path and filename of the solution file.

At this point, the remaining elements are targets. Targets are processed differently from properties and
items—essentially, targets are not processed unless they are either explicitly specified by the user or
invoked by another construct within the project file. Recall that the opening Project tag includes a
DefaultTargets attribute.

XML

<Project ToolsVersion="4.0"
DefaultTargets="FullPublish"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

This instructs MSBuild to invoke the FullPublish target, if targets are not specified when MSBuild.exe is

invoked. The FullPublish target doesn't contain any tasks; instead it simply specifies a list of
dependencies.

XML

<PropertyGroup>
<FullPublishDependsOn>
Clean;
BuildProjects;
GatherPackagesForPublishing;
PublishDbPackages;
PublishWebPackages;
</FullPublishDependsOn>
</PropertyGroup>
<Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />
This dependency tells MSBuild that in order to execute the FullPublish target, it needs to invoke this list

of targets in the order provided:
1. It mustinvoke the Clean target.
2. It must invoke the BuildProjects target.
3. It must invoke the GatherPackagesForPublishing target.
4. It must invoke the PublishDbPackages target.

5. It must invoke the PublishWebPackages target.

The Clean Target

The Clean target basically deletes the output directory and all its contents, as preparation for a fresh
build.

XML

<Target Name="Clean" Condition=" '$(BuildingInTeamBuild)'!="true"' ">
<Message Text="Cleaning up the output directory [$(OutputRoot)]"/>

45

<ItemGroup>
<_FilesToDelete Include="$(OutputRoot)***"/>
</ItemGroup>
<Delete Files="@(_FilesToDelete)"/>
<RemoveDir Directories="¢(OutputRoot)"/>
</Target>

Notice that the target includes an ItemGroup element. When you define properties or items within a
Target element, you're creating dynamic properties and items. In other words, the properties or items
aren't processed until the target is executed. The output directory might not exist or contain any files
until the build process begins, so you can't build the _FilesToDelete list as a static item; you have to wait
until execution is underway. As such, you build the list as a dynamic item within the target.

Note: In this case, because the Clean target is the first to be executed, there's no real need to use a
dynamic item group. However, it's good practice to use dynamic properties and items in this type of
scenario, as you might want to execute targets in a different order at some point.

You should also aim to avoid declaring items that will never be used. If you have items that will only be
used by a specific target, consider placing them inside the target to remove any unnecessary overhead
on the build process.

Dynamic items aside, the Clean target is fairly straightforward and makes use of the built-in Message,
Delete, and RemoveDir tasks to:

1. Send a message to the logger.
2. Build a list of files to delete.
3. Delete the files.

4. Remove the output directory.

The BuildProjects Target
The BuildProjects target basically builds all the projects in the sample solution.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!="true' ">
<MSBuild Projects="@(ProjectsToBuild)"
Properties="0utDir=$(OutputRoot);
Configuration=$(Configuration);
DeployOnBuild=true;
DeployTarget=Package"
Targets="Build" />
</Target>

This target was described in some detail in the previous topic, Understanding the Project File, to

illustrate how tasks and targets reference properties and items. At this point, you're mainly interested in
the MSBuild task. You can use this task to build multiple projects. The task does not create a new

46

instance of MSBuild.exe; it uses the current running instance to build each project. The key points of
interest in this example are the deployment properties:

e The DeployOnBuild property instructs MSBuild to run any deployment instructions in the
project settings when the build of each project is complete.

e The DeployTarget property identifies the target that you want to invoke after the project is
built. In this case, the Package target builds the project output into a deployable web package.

Note: The Package target invokes the Web Publishing Pipeline (WPP), which provides integration
between MSBuild and Web Deploy. If you want to take a look at the built-in targets that the WPP
provides, review the Microsoft. Web.Publishing.targets file in the
%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder.

The GatherPackagesForPublishing Target

If you study the GatherPackagesForPublishing target, you'll notice that it doesn't actually contain any
tasks. Instead, it contains a single item group that defines three dynamic items.

XML

<Target Name="GatherPackagesForPublishing">
<ItemGroup>
<PublishPackages
Include="$(_ContactManagerDest)ContactManager.Mvc.deploy.cmd">
<WebPackage>true</WebPackage>
<!-- More item metadata -->
</PublishPackages>
<PublishPackages
Include="$(_ContactManagerSvcDest)ContactManager.Service.deploy.cmd">
<WebPackage>true</WebPackage>
<!-- More item metadata -->
</PublishPackages>
<DbPublishPackages Include="$(DbDeployManifestPath)">
<DbPackage>true</DbPackage>
<!-- More item metadata -->
</DbPublishPackages>
</ItemGroup>
</Target>

These items refer to the deployment packages that were created when the BuildProjects target was
executed. You couldn't define these items statically in the project file, because the files to which the

items refer don't exist until the BuildProjects target is executed. Instead, the items must be defined
dynamically within a target that is not invoked until after the BuildProjects target is executed.

The items are not used within this target—this target simply builds the items and the metadata
associated with each item value. Once these elements are processed, the PublishPackages item will
contain two values, the path to the ContactManager.Mvc.deploy.cmd file and the path to the

47

ContactManager.Service.deploy.cmd file. Web Deploy creates these files as part of the web package for
each project, and these are the files that you must invoke on the destination server in order to deploy
the packages. If you open up one of these files, you'll basically see an MSDeploy.exe command with
various build-specific parameter values.

The DbPublishPackages item will contain a single value, the path to the
ContactManager.Database.deploymanifest file.

Note: A .deploymanifest file is generated when you build a database project, and it uses the same
schema as an MSBuild project file. It contains all the information required to deploy a database,
including the location of the database schema (.dbschema) and details of any pre-deployment and
post-deployment scripts. For more information, see An Overview of Database Build and Deployment.

You'll learn more about how deployment packages and database deployment manifests are created and
used in Building and Packaging Web Application Projects and Deploying Database Projects.

The PublishDbPackages Target

Briefly speaking, the PublishDbPackages target invokes the VSDBCMD utility to deploy the
ContactManager database to a target environment. Configuring database deployment involves lots of
decisions and nuances, and you'll learn more about this in Deploying Database Projects and Customizing

Database Deployments for Multiple Environments. In this topic, we'll focus on how this target actually

functions.
First, notice that the opening tag includes an Outputs attribute.

XML
<Target Name="PublishDbPackages" Outputs="%(DbPublishPackages.Identity)">

This is an example of target batching. In MSBuild project files, batching is a technique for iterating over
collections. The value of the Outputs attribute, "%(DbPublishPackages.ldentity)", refers to the Identity
metadata property of the DbPublishPackages item list. This notation,
Outputs=%(ItemList.ltemMetadataName), is translated as:

e Split the items in DbPublishPackages into batches of items that contain the same Identity
metadata value.

e Execute the target once per batch.

Note: Identity is one of the built-in metadata values that is assigned to every item on creation. It refers

to the value of the Include attribute in the Item element—in other words, the path and filename of the
item.

In this case, because there should never be more than one item with the same path and filename, we're
essentially working with batch sizes of one. The target is executed once for every database package.

48

http://msdn.microsoft.com/en-us/library/aa833165.aspx
http://msdn.microsoft.com/en-us/library/ms164313.aspx

You can see a similar notation in the _Cmd property, which builds a VSDBCMD command with the
appropriate switches.

XML

<_Cmd>"$(VsdbCmdExe)"
/a:Deploy
/cs:"%(DbPublishPackages.DatabaseConnectionString)"
/p:TargetDatabase=%(DbPublishPackages.TargetDatabase)
/manifest:"%(DbPublishPackages.FullPath)"
/script:"$(_CmDbScriptPath)"
$(_DbDeployOrScript)

</_Cmd>

In this case, %(DbPublishPackages.DatabaseConnectionString),
%(DbPublishPackages.TargetDatabase), and %(DbPublishPackages.FullPath) all refer to metadata

values of the DbPublishPackages item collection. The _Cmd property is used by the Exec task, which
invokes the command.

XML
<Exec Command="$(_Cmd)"/>

As a result of this notation, the Exec task will create batches based on unique combinations of the
DatabaseConnectionString, TargetDatabase, and FullPath metadata values, and the task will execute
once for each batch. This is an example of task batching. However, because the target-level batching has
already divided our item collection into single-item batches, the Exec task will run once and only once
for each iteration of the target. In other words, this task invokes the VSDBCMD utility once for each
database package in the solution.

Note: For more information on target and task batching, see MSBuild Batching, Item Metadata in
Target Batching, and Item Metadata in Task Batching.

The PublishWebPackages Target

By this point, you've invoked the BuildProjects target, which generates a web deployment package for
each project in the sample solution. Accompanying each package is a deploy.cmd file, which contains the
MSDeploy.exe commands required to deploy the package to the target environment, and a
SetParameters.xml file, which specifies the necessary details of the target environment. You've also
invoked the GatherPackagesForPublishing target, which generates an item collection containing the
deploy.cmd files you're interested in. Essentially, the PublishWebPackages target performs these
functions:

e It manipulates the SetParameters.xml file for each package to include the correct details for the
target environment, using the XmlPoke task.

e It invokes the deploy.cmd file for each package, using the appropriate switches.

49

http://msdn.microsoft.com/en-us/library/ms171473.aspx
http://msdn.microsoft.com/en-US/library/ms228229.aspx
http://msdn.microsoft.com/en-US/library/ms228229.aspx
http://msdn.microsoft.com/en-us/library/ms171474.aspx

Just like the PublishDbPackages target, the PublishWebPackages target uses target batching to ensure
that the target is executed once for each web package.

XML
<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

Within the target, the Exec task is used to run the deploy.cmd file for each web package.

XML
<PropertyGroup>
<_Cmd>
%(PublishPackages.FullPath)
$(_WhatifSwitch)
/M:$(MSDeployComputerName)
%(PublishPackages.AdditionalMSDeployParameters)
</_Cmd>
</PropertyGroup>

<Exec Command="$(_Cmd)"/>

For more information on configuring the deployment of web packages, see Building and Packaging Web

Application Projects.

Conclusion

This topic provided a walkthrough of how split project files are used to control the build and deployment
process from start to finish for the Contact Manager sample solution. Using this approach lets you run
complex, enterprise-scale deployments in a single, repeatable step, simply by running an environment-
specific command file.

Further Reading

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:
Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William Bartholomew, ISBN:
978-0-7356-4524-0.

Building and Packaging Web Application Projects

When you want to deploy a web application project to a remote server environment, your first task is to
build the project and generate a web deployment package. This topic describes how the build process
works for web application projects. In particular, it explains:

e How the Web Publishing Pipeline (WPP) extends the build process to include deployment
functionality.

¢ How the Internet Information Services (lIS) Web Deployment Tool (Web Deploy) turns your web
application into a deployment package.

e How the build and packaging process works and what files are created.

50

http://amzn.com/0735645248
http://amzn.com/0735645248

Web Application Projects and the WPP

In Visual Studio 2010, the build and deployment process for web application projects is supported by the
WPP. The WPP provides a set of Microsoft Build Engine (MSBuild) targets that extend the functionality
of MSBuild and enable it to integrate with Web Deploy. Within Visual Studio, you can see this extended

functionality on the property pages for your web application project. The Package/Publish Web page,

together with the Package/Publish SQL page, lets you configure how your web application project is

packaged for deployment when the build process is complete.

Applcation

Build

Vieb
Package/Pubish Web
Package Publish SQL

Silverfight Applications

Configuration: I-ich'-'c {Debug) ll Platform: IActJ\'c {Any CPU)

Package/Publish enables you to deploy your Web application to Web servers,
Learn more about Package/Publish Web

Items to deploy (appliesto all deployment methods)

IOf'ty fies needed to run this applicaton 3
™ Exclude generated debug symbols
[T Exclude files from the App_Data folder

&l

=

Buiid Events
Items to deploy (applies to Web Deploy only)
Resources
M Indude sll databases configured in Package/Publish SQLtab Open Settings
Sera ™ Indude IIS settings as configured in I1S Express
Reference Paths r
Signing Web Deployment Package Settings
. ¥ Create deployment package as a zip file
Code Analysis i tiuadnde 9 P
Location where package will be creatad:
iob]bebug'waasge'comamtaﬂager‘M-.'c.zxo
IS Web site/application name to use onthe destination server:
pe’aun Web Site/ContactManager . Mvc_deploy
Physical path of Web application on destination server (used only when [ISsettings areincluded):
Password used to encrypt secure [iSsettings:
How Does the WPP Work?

If you take a look at the project file for a C#-based web application project, you can see that it imports

two .targets files.

XML

<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
<Import Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\
v10.0\WebApplications\Microsoft.WebApplication.targets" />

The first Import statement is common to all Visual C# projects. This file, Microsoft.CSharp.targets,

contains targets and tasks that are specific to Visual C#. For example, the C# compiler (Csc) task is

invoked here. The Microsoft.CSharp.targets file in turn imports the Microsoft. Common.targets file. This

defines targets that are common to all projects, like Build, Rebuild, Run, Compile, and Clean. The

51

second Import statement is specific to web application projects. The Microsoft. WebApplication.targets
file in turn imports the Microsoft. Web.Publishing.targets file. The Microsoft.Web.Publishing.targets file
essentially is the WPP. It defines targets, like Package and MSDeployPublish, that invoke Web Deploy to
complete various deployment tasks.

To understand how these additional targets are used, in the Contact Manager sample solution, open the
Publish.proj file and take a look at the BuildProjects target.

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!="true' ">
<MSBuild Projects="@(ProjectsToBuild)"
Properties="0utDir=$(OutputRoot);
Configuration=$(Configuration);
DeployOnBuild=true;
DeployTarget=Package"
Targets="Build" />
</Target>
This target uses the MSBuild task to build various projects. Notice the DeployOnBuild and DeployTarget
properties:

e The DeployOnBuild=true property essentially means "l want to execute an additional target
when build completes successfully."

e The DeployTarget property identifies the name of the target you want to execute when the
DeployOnBuild property is equal to true. In this case, you're specifying that you want MSBuild
to execute the Package target after building the project.

The Package target is defined in the Microsoft. Web.Publishing.targets file. Essentially, this target takes
the build output of your web application project and turns it into a web deployment package that can be
published to an IIS web server.

Note: To view a project file (for example, ContactManager.Mvc.csproj) in Visual Studio 2010, you first
need to unload the project from your solution. In the Solution Explorer window, right-click the project
node, and then click Unload Project. Right-click the project node again, and then click Edit [project
file]). The project file will open in its raw XML form. Remember to reload the project when you're
done.

For more information on MSBuild targets, tasks, and Import statements, see Understanding the

Project File. For a more in-depth introduction to project files and the WPP, see Inside the Microsoft
Build Engine: Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William
Bartholomew, ISBN: 978-0-7356-4524-0.

What Is a Web Deployment Package?

When you build and deploy a web application project, either by using Visual Studio 2010 or by using
MSBuild directly, the end result is typically a web deployment package. The web deployment package is

52

http://amzn.com/0735645248
http://amzn.com/0735645248

a .zip file. It contains everything that IS and Web Deploy need in order to recreate your web application,
including:

e The compiled output of your web application, including content, resource files, configuration
files, JavaScript and cascading style sheets (CSS) resources, and so on.

e Assemblies for your web application project and for any referenced projects within your
solution.

e SQL scripts to generate any databases that you're deploying with your web application.

Once the web deployment package has been generated, you can publish it to an IS web server in
various ways. For example, you can deploy it remotely by targeting the Web Deploy Remote Agent
service or the Web Deploy Handler on the destination web server, or you can use IIS Manager to
manually import the package on the destination web server. For more information on these approaches
to deployment, see Choosing the Right Approach to Web Deployment.

How Does the Build Process Work?

This shows what happens when you build and package a web application project:

Web Application Deployment Resources
Project

*.csproj

* SetParameters.xml

* SourceManifest.xml ProjectName.zip

Build inputs Build outputs Deployment
outputs

When you build a web application project, the build process generates a file named [project
name].SourceManifest.xml. Along with the project file and the build output, this .SourceManifest.xml file
tells Web Deploy what it needs to include in the web deployment package. Using these inputs, Web
Deploy generates a web deployment package named [project name].zip.

53

Alongside the web deployment package, the build process generates two files that can help you to use
the package:

e The .deploy.cmd file includes a set of parameterized Web Deploy (MSDeploy.exe) commands
that publish your web deployment package to a remote IIS web server. Running the .deploy.cmd
file, with appropriate parameters, typically provides a quicker and easier alternative to manually
constructing the MSDeploy.exe commands yourself.

e The SetParameters.xml file provides a set of parameter values to the MSDeploy.exe command.
These values include properties like the name of the IIS web application to which you want to
deploy the package, the values of any service endpoints and connection strings defined in the
web.config file, and any deployment property values defined on the project properties pages.

The SetParameters.xml file is key to managing the deployment process. This file is generated
dynamically according to the contents of your web application project. For example, if you add a
connection string to your web.config file, the build process will automatically detect the connection
string, parameterize the deployment accordingly, and create an entry in the SetParameters.xml file to
allow you to modify the connection string as part of the deployment process. The next topic, Configuring
Parameters for Web Package Deployment, explains the role of this file in more detail and describes the
different ways in which you can modify it during build and deployment.

Note: In Visual Studio 2010, the WPP does not support precompiling the pages in a web application
prior to packaging. The next version of Visual Studio and the WPP will include the ability to precompile
a web application as a packaging option.

Conclusion

This topic provided an overview of the build and packaging process for web application projects in Visual
Studio 2010. It described how the WPP lets you invoke Web Deploy commands from MSBuild, and it
explained how the build and packaging process works.

Once you've created a web deployment package, your next step is to deploy it. For more information on
this, see Configuring Parameters for Web Package Deployment and Deploying Web Packages.

Further Reading

The next topics in this tutorial, Configuring Parameters for Web Package Deployment and Deploying

Web Packages, provide guidance on how to use the web package you've created. The final tutorial in
this series, Advanced Enterprise Web Deployment, provides guidance on how to customize and

troubleshoot the packaging process.

For a more in-depth introduction to project files and the WPP, see Inside the Microsoft Build Engine:
Using MSBuild and Team Foundation Build by Sayed Ibrahim Hashimi and William Bartholomew, ISBN:
978-0-7356-4524-0.

54

http://amzn.com/0735645248
http://amzn.com/0735645248

Configuring Parameters for Web Package Deployment

This topic describes how to set parameter values, like Internet Information Services (1IS) web application
names, connection strings, and service endpoints, when you deploy a web package to a remote IIS web
server.

Understanding Parameterization
When you build a web application project, the build and packaging process generates three key files:

e A [project name].zip file. This is the web deployment package for your web application project.
This package contains all the assemblies, files, database scripts, and resources required to
recreate your web application on a remote IIS web server.

e A [project name].deploy.cmd file. This contains a set of parameterized Web Deploy
(MSDeploy.exe) commands that publish your web deployment package to a remote IS web
server.

e A [project name].SetParameters.xml file. This provides a set of parameter values to the
MSDeploy.exe command. You can update the values in this file and pass it to Web Deploy as a
command-line parameter when you deploy your web package.

Note: For more information on the build and packaging process, see Building and Packaging Web
Application Projects.

The SetParameters.xml file is dynamically generated from your web application project file and any
configuration files within your project. When you build and package your project, the Web Publishing
Pipeline (WPP) will automatically detect lots of the variables that are likely to change between
deployment environments, like the destination IIS web application and any database connection strings.
These values are automatically parameterized in the web deployment package and added to the
SetParameters.xml file. For example, if you add a connection string to the web.config file in your web
application project, the build process will detect this change and will add an entry to the
SetParameters.xml file accordingly.

In a lot of cases, this automatic parameterization will be sufficient. However, if your users need to vary
other settings between deployment environments, like application settings or service endpoint URLs,
you need to tell the WPP to parameterize these values in the deployment package and add
corresponding entries to the SetParameters.xml file. The sections that follow explain how to do this.

Automatic Parameterization
When you build and package a web application, the WPP will automatically parameterize these things:
e The destination IS web application path and name.

e Any connection strings in your web.config file.

55

e Connection strings for any databases you add to the Package/Publish SQL tab in the project
property pages.

For example, if you were to build and package the Contact Manager sample solution without touching

the parameterization process in any way, the WPP would generate this
ContactManager.Mvc.SetParameters.xml file:

XML

<parameters>
<setParameter
name="IIS Web Application Name"
value="Default Web Site/ContactManager.Mvc_deploy" />
<setParameter
name="ApplicationServices-Web.config Connection String"
value="Data Source=DEVWORKSTATION\SQLEXPRESS;Initial Catalog=CMAppServices;
Integrated Security=true;" />
</parameters>

In this case:

e The IS Web Application Name parameter is the IIS path where you want to deploy the web
application. The default value is taken from the Package/Publish Web page in the project
property pages.

e The ApplicationServices-Web.config Connection String parameter was generated from a
connectionStrings/add element in the web.config file. It represents the connection string that
the application should use to contact the membership database. The value you provide here will
be substituted into the deployed web.config file. The default value is taken from the pre-
deployment web.config file.

The WPP also parameterizes these properties in the deployment package it generates. You can provide
values for these properties when you install the deployment package. If you install the package
manually through 1IS Manager, as described in Manually Installing Web Packages, the installation wizard
prompts you to provide values for any parameters. If you install the package remotely using the

.deploy.cmd file, as described in Deploying Web Packages, Web Deploy will look to this

SetParameters.xml file to provide the parameter values. You can edit the values in the
SetParameters.xml file manually, or you can customize the file as part of an automated build and
deployment process. This process is described in more detail later in this topic.

Custom Parameterization

In more complex deployment scenarios, you'll often want to parameterize additional properties before
you deploy your project. Generally speaking, you should parameterize any properties and settings that
will vary between destination environments. These can include:

e Service endpoints in the web.config file.

56

e Application settings in the web.config file.

e Any other declarative properties that you want to prompt users to specify.

The easiest way to parameterize these properties is to add a parameters.xml file to the root folder of
your web application project. For example, in the Contact Manager solution, the ContactManager.Mvc
project includes a parameters.xml file in the root folder.

F
Solution Explorer * X

= 2 E e
o _g Solution ‘ContactManager’ (4 projects)
% Publish
4.3 ContactManager. Comman
4_j ContactManager.Database
B T contactitanager five
+|=d| Properties
«g] References
g Service References
3 App_Data
| Content
[J Controllers
[d Internal
[Models
1 Scripts
[Views

F [H [F

«.__;—3 ContactManager. Service

'—H:_‘g Solution Explo. .. '._%1 Team Explorer E Server Explorer

If you open this file, you'll see that it contains a single parameter entry. The entry uses an XML Path
Language (XPath) query to locate and parameterize the endpoint URL of the ContactService Windows
Communication Foundation (WCF) service in the web.config file.

XML

<parameters>
<parameter name="ContactService Service Endpoint Address"”
description="Specify the endpoint URL for the ContactService WCF
service in the destination environment"
defaultValue="http://localhost/ContactManagerService">
<parameterEntry kind="XmlFile" scope="Web.config"
match="/configuration/system.serviceModel/client
/endpoint[@name="'BasicHttpBinding_IContactService']
/@address" />
</parameter>
57

</parameters>

In addition to parameterizing the endpoint URL in the deployment package, the WPP also adds a
corresponding entry to the SetParameters.xml file that gets generated alongside the deployment
package.

XML

<parameters>

<setParameter
name="ContactService Service Endpoint Address"
value="http://localhost/ContactManagerService" />

</parameters>

If you install the deployment package manually, [IS Manager will prompt you for the service endpoint
address alongside the properties that were parameterized automatically. If you install the deployment
package by running the .deploy.cmd file, you can edit the SetParameters.xml file to provide a value for
the service endpoint address together with values for the properties that were parameterized
automatically.

For full details on how to create a parameters.xml file, see How to: Use Parameters to Configure
Deployment Settings When a Package is Installed. The procedure named To use deployment
parameters for Web.config file settings provides step-by-step instructions.

Modifying the SetParameters.xml File

If you plan to deploy the web application package manually—either by running the .deploy.cmd file or
by running MSDeploy.exe from the command line—there's nothing to stop you manually editing the
SetParameters.xml file prior to the deployment. However, if you’re working on an enterprise-scale
solution, you may need to deploy a web application package as part of a larger, automated build and
deployment process. In this scenario, you need the Microsoft Build Engine (MSBuild) to modify the
SetParameters.xml file for you. You can do this by using the MSBuild XmlPoke task.

The Contact Manager sample solution illustrates this process. The code examples that follow have been

edited to show only the details that are relevant to this example.

Note: For a broader overview of the project file model in the sample solution, and an introduction to
custom project files in general, see Understanding the Project File and Understanding the Build

Process.

First, the parameter values of interest are defined as properties in the environment-specific project file
(for example, Env-Dev.proj).

XML

<PropertyGroup>
<ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'==""
DemoSite/ContactManager

>

58

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx

</ContactManagerIisPath>

<ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'==""
http://localhost:85/ContactManagerService/ContactService.svc

</ContactManagerTargetUrl>

<MembershipConnectionString Condition=" '$(MembershipConnectionString)'==""
Data Source=TESTDB1;Integrated Security=true;Initial Catalog=CMAppServices

</MembershipConnectionString>

</PropertyGroup>

>

>

Note: For guidance on how to customize the environment-specific project files for your own server
environments, see Configure Deployment Properties for a Target Environment.

Next, the Publish.proj file imports these properties. Because each SetParameters.xml file is associated
with a.deploy.cmd file, and we ultimately want the project file to invoke each .deploy.cmd file, the
project file creates an MSBuild item for each .deploy.cmd file and defines the properties of interest as
item metadata.

XML

<ItemGroup>
<PublishPackages Include="$(_ContactManagerDest)ContactManager.Mvc.deploy.cmd">
<Parametersxml>
$(_ContactManagerDest)ContactManager.Mvc.SetParameters.xml
</ParametersXml>
<IisWebAppName>
$(ContactManagerIisPath)
</IisWebAppName>
<MembershipDBConnectionName>
ApplicationServices-Web.config Connection String
</MembershipDBConnectionName>
<MembershipDBConnectionString>
$(MembershipConnectionString.Replace(";","%3b"))
</MembershipDBConnectionString>
<ServiceEndpointParamName>
ContactService Service Endpoint Address
</ServiceEndpointParamName>
<ServiceEndpointValue>
$(ContactManagerTargetUrl)
</ServiceEndpointValue>
</PublishPackages>

</ItemGroup>
In this case:
e The ParametersXml metadata value indicates the location of the SetParameters.xml file.

e The lisWebAppName value is the IIS path to which you want to deploy the web application.

59

e The MembershipDBConnectionString value is the connection string for the membership
database, and the MembershipDBConnectionName value is the name attribute of the
corresponding parameter in the SetParameters.xml file.

e The ServiceEndpointValue value is the endpoint address for the WCF service on the destination
server, and the ServiceEndpointParamName value is the name attribute of the corresponding
parameter in the SetParameters.xml file.

Finally, in the Publish.proj file, the PublishWebPackages target uses the XmlPoke task to modify these
values in the SetParameters.xml file.

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">
<XmlPoke
XmlInputPath="%(PublishPackages.ParametersXml)"
Query="//parameters/setParameter[@name="'%(PublishPackages.ConnectionName) ']
/@value”
Value="%(PublishPackages.ConnectionString)"
Condition =" "%(PublishPackages.ConnectionName)'!=
/>
<XmlPoke
XmlInputPath="%(PublishPackages.ParametersXml)"
Query="//parameters/setParameter
[@name="%(PublishPackages.MembershipDBConnectionName)']/@value”
Value="%(PublishPackages.MembershipDBConnectionString)"
Condition =" '%(PublishPackages.MembershipDBConnectionName)'!="""
/>
<XmlPoke
XmlInputPath="%(PublishPackages.ParametersXml)"
Query="//parameters/setParameter[@name="IIS Web Application Name']/@value’
Value="%(PublishPackages.IisWebAppName)"
Condition =" '%(PublishPackages.IisWebAppName)'!="""
/>
<XmlPoke
XmlInputPath="%(PublishPackages.ParametersXml)"
Query="//parameters/setParameter
[@name="%(PublishPackages.ServiceEndpointParamName)']/@value”
Value="%(PublishPackages.ServiceEndpointValue)"
Condition =" '%(PublishPackages.ServiceEndpointParamName)'!=
/>
<!--Execute the .deploy.cmd file-->

</Target>
You'll notice that each XmlPoke task specifies four attribute values
e The XmllnputPath attribute tells the task where to find the file you want to modify.

e The Query attribute is an XPath query that identifies the XML node you want to change.
60

e The Value attribute is the new value you want to insert into the selected XML node.

e The Condition attribute is the criteria on which the task should run or not run. In these cases,
the condition ensures that you don't try to insert a null or empty value into the
SetParameters.xml file.

Conclusion

This topic described the role of the SetParameters.xml file and explained how it's generated when you
build a web application project. It explained how you can parameterize additional settings by adding a
parameters.xml file to your project. It also described how you can modify the SetParameters.xml file as
part of a larger, automated build process, by using the XmlPoke task in your project files.

The next topic, Deploying Web Packages, describes how you can deploy a web package either by

running the .deploy.cmd file or by using MSDeploy.exe commands directly. In both cases, you can
specify your SetParameters.xml file as a deployment parameter.

Further Reading

For information on how to create web packages, see Building and Packaging Web Application Projects.

For guidance on how to actually deploy a web package, see Deploying Web Packages. For a step-by-step

walkthrough on how to create a parameters.xml file, see How to: Use Parameters to Configure

Deployment Settings When a Package is Installed.

For more general information on parameterization in Web Deploy, see Web Deploy Parameterization in
Action (blog post).

Deploying Web Packages

This topic describes how you can publish web deployment packages to a remote server by using the
Internet Information Services (IIS) Web Deployment Tool (Web Deploy) 2.0.

There are two main ways in which you can deploy a web package to a remote server:
e You can use the MSDeploy.exe command-line utility directly.

e You can run the [project name].deploy.cmd file that the build process generates.

The end result is the same regardless of which approach you use. Essentially, all the .deploy.cmd file
does is to run MSDeploy.exe with some predetermined values, so that you don't have to provide as
much information in order to deploy the package. This simplifies the deployment process. On the other
hand, using MSDeploy.exe directly gives you a lot more flexibility over exactly how your package is
deployed.

Which approach you use will depend on a variety of factors, including how much control you require
over the deployment process and whether you're targeting the Web Deploy Remote Agent service or

61

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://go.microsoft.com/?linkid=9805119
http://go.microsoft.com/?linkid=9805119

the Web Deploy Handler. This topic explains how to use each approach and identifies when each

approach is appropriate.
The tasks and walkthroughs in this topic assume that:

e You've built and packaged your web application, as described in Building and Packaging Web

Application Projects.

e You've modified the SetParameters.xml file to provide the right parameter values for your
target environment, as described in Configuring Parameters for Web Package Deployment.

Using the .Deploy.cmd File

Running the [project name).deploy.cmd file is the simplest way to deploy a web package. In particular,
using the .deploy.cmd file offers these advantages over using MSDeploy.exe directly:

e You don't need to specify the location of the web deployment package—the .deploy.cmd file
already knows where it is.

e You don't need to specify the location of the SetParameters.xml file—the .deploy.cmd file
already knows where it is.

e You don't need to specify source and destination MSDeploy providers—the .deploy.cmd file
already knows which values to use.

e You don't need to specify MSDeploy operation settings—the .deploy.cmd file adds the
commonly required values to the MSDeploy.exe command automatically.

Before you use the .deploy.cmd file to deploy a web package, you should ensure that:

e The .deploy.cmd file, the [project name).SetParameters.xml file, and the web package ([project
name].zip) are in the same folder.

e Web Deploy (MSDeploy.exe) is installed on the computer that runs the .deploy.cmd file.

The .deploy.cmd file supports various command-line options. When you run the file from a command
prompt, this is the basic syntax:

[project name].deploy.cmd [/T | /Y]
[/M:<computer name>]
[/A:<Basic | NTLM>]
[/U:<user name>]
[/P:<password>]
[/L]
[/G:<true | false>]
[Additional MSDeploy.exe flags]

62

You must specify either a /T flag or a /Y flag, to indicate whether you want to perform a trial run or a

live deployment respectively (don't use both flags in the same command). This table explains the

purpose of each of these flags.

Flag

IT

Y

™M

/A

J
P
/L

G

Description

Calls MSDeploy.exe with the —whatif flag, which indicates a trial run. Rather than deploying the
package, it creates a report of what would happen if you did deploy the package.

Calls MSDeploy.exe without the —whatif flag. This deploys the package to the local computer or
the specified destination server.

Specifies the destination server name or service URL. For more information on the values you
can provide here, see the Endpoint Considerations section in this topic.

If you omit the /M flag, the package will be deployed to the local computer.

Specifies the authentication type that MSDeploy.exe should use to perform the deployment.
Possible values are NTLM and Basic.

If you omit the /A flag, the authentication type defaults to NTLM for deployment to the Web
Deploy Remote Agent service and to Basic for deployment to the Web Deploy Handler.

Specifies the user name. This applies only if you're using basic authentication.
Specifies the password. This applies only if you're using basic authentication.
Indicates that the package should be deployed to the local 1S Express instance.

Specifies that the package is deployed using the tempAgent provider setting. If you omit the /G
flag, the value defaults to false.

Note: Every time the build process creates a web package, it also creates a file named [project

name].deploy-readme.txt that explains these deployment options.

In addition to these flags, you can specify Web Deploy operation settings as additional .deploy.cmd

parameters. Any additional settings you specify are simply passed through to the underlying

MSDeploy.exe command. For more information on these settings, see Web Deploy Operation Settings.

Suppose you want to deploy the ContactManager.Mvc web application project to a test environment by

running the .deploy.cmd file. Your test environment is configured to use the Web Deploy Remote Agent

service, as described in Configure a Web Server for Web Deploy Publishing (Remote Agent). To deploy
the web application, you need to complete the next steps.

To deploy a web application using the .deploy.cmd file

1.

Build and package the web application project, as described in Building and Packaging Web

Application Projects.

Modify the ContactManager.Mvc.SetParameters.xml file to contain the correct parameter
values for your test environment, as described in Configuring Parameters for Web Package

Deployment.

63

http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx

3. Open a Command Prompt window and navigate to the location of the
ContactManager.Mvc.deploy.cmd file.

4. Type this command, and then press Enter:

ContactManager.Mvc.deploy.cmd /Y /M:TESTWEB1 /A:NTLM

In this example:
e The /Y flag indicates that you want to actually deploy the package, rather than doing a trial run.

e The /M flag indicates that you want to deploy the package to the server named TESTWEB1.
From this value, MSDeploy.exe will attempt to deploy the package to the Web Deploy Remote
Agent service at http://TESTWEB1/MSDeployAgentService.

e The /A flag indicates that you want to use NTLM authentication. As such, you don't need to
specify a user name and password.

To illustrate how using the .deploy.cmd file simplifies the deployment process, take a look at the
MSDeploy.exe command that gets generated and executed when you run
ContactManager.Mvc.deploy.cmd using the options shown above.

msdeploy.exe
-source:package="'C:\Users\matt.FABRIKAM\Desktop\ContactManager-03\ContactManager\
Publish\Out_PublishedWebsites\ContactManager.Mvc_Package\ContactManager.Mvc.zip' -

dest:auto,computerName="'TESTWEB1.fabrikam.net', authtype='NTLM',
includeAcls="False’

-verb:sync

-disableLink:AppPoolExtension

-disablelLink:ContentExtension

-disablelLink:CertificateExtension
-setParamFile:"C:\Users\matt.FABRIKAM\Desktop\ContactManager-03\ContactManager\
Publish\Out_PublishedWebsites\ContactManager.Mvc_Package\
ContactManager.Mvc.SetParameters.xml"

For more information on using the .deploy.cmd file to deploy a web package, see How to: Install a

Deployment Package Using the deploy.cmd File.

Using MSDeploy.exe

Although using the .deploy.cmd file generally simplifies the deployment process, there are some
situations when it's preferable to use MSDeploy.exe directly. For example:

e If you want to deploy to the Web Deploy Handler as a non-administrator user, you can’t use the
.deploy.cmd file. This is due to a bug in Web Deploy 2.0, as described under Endpoint
Considerations.

e If you want to manually switch between different SetParameters.xml files in different locations,
you may prefer to use MSDeploy.exe directly.

64

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

e If you want to override several MSDeploy.exe command-line arguments, you may prefer to use
MSDeploy.exe directly.

When you use MSDeploy.exe, you need to provide three key pieces of information:
e A -source parameter that indicates where your data is coming from.
e A -dest parameter that indicates where your data is going to.

e A -verb parameter that indicates the operation you want to perform.

MSDeploy.exe relies on Web Deploy providers to process source and destination data. Web Deploy
includes a lot of providers that represent the range of applications and data sources it can work with—
for example, there are providers for SQL Server databases, 1IS web servers, certificates, global assembly
cache (GAC) assemblies, various different configuration files, and lots of other types of data. Both the —
source parameter and the —dest parameter must specify a provider, in the form -
source:[providerName]=[location]. When you're deploying a web package to an IIS website, you should

use these values:
e The —source provider is always package. For example:
-source:package="[path to web package]'
e The —dest provider is always auto. For example:
-dest:auto="'[server name or service URL]'
e The -verb is always sync.

-verb:sync

In addition, you'll need to specify various other provider-specific settings and general operation settings.
For example, suppose you want to deploy the ContactManager.Mvc web application to a staging
environment. The deployment will target the Web Deploy Handler and must use basic authentication.
To deploy the web application, you need to complete the next steps.

To deploy a web application using MSDeploy.exe
1. Build and package the web application project, as described in Building and Packaging Web

Application Projects.

2. Modify the ContactManager.Mvc.SetParameters.xml file to contain the correct parameter
values for your staging environment, as described in Configuring Parameters for Web Package

Deployment.

3. OpenaCommand Prompt window and browse to the location of MSDeploy.exe. This is typically
at %PROGRAMFILES%\IIS\Microsoft Web Deploy V2\msdeploy.exe.

4. Type this command, and then press Enter (disregard the line breaks):

65

http://technet.microsoft.com/en-us/library/dd568989(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569040(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569019(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569016(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569001(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx

MSDeploy.exe

-source:package="[path]\ContactManager.Mvc.zip"

-dest:auto,
computerName="https://stagewebl:8172/MSDeploy.axd?site=DemoSite",
username="FABRIKAM\stagingdeployer",
password="Pa$$word",
authtype="Basic",
includeAcls="False"

-verb:sync

-disablelLink:AppPoolExtension

-disablelLink:ContentExtension

-disablelLink:CertificateExtension

-setParamFile:"[path]\ContactManager.Mvc.SetParameters.xml"

-allowUntrusted

In this example:

The —source parameter specifies the package provider and indicates the location of the web
package.

The —dest parameter specifies the auto provider. The computerName setting provides the
service URL of the Web Deploy Handler on the destination server. The authtype setting
indicates that you want to use basic authentication, and as such you need to provide a
username and a password. Finally, the includeAcls="False" setting indicates that you don't
want to copy the access control lists (ACLs) of the files in your source web application to the
destination server.

The —verb:sync argument indicates that you want to replicate the source content on the
destination server.

The —disableLink arguments indicate that you don't want to replicate application pools, virtual
directory configuration, or Secure Sockets Layer (SSL) certificates on the destination server. For
more information, see Web Deploy Link Extensions.

The —setParamFile parameter provides the location of the SetParameters.xml file.

The —allowUntrusted switch indicates that Web Deploy should accept SSL certificates that were
not issued by a trusted certification authority. If you're deploying to the Web Deploy Handler,
and you've used a self-signed certificate to secure the service URL, you need to include this
switch.

Automating Web Package Deployment

In a lot of enterprise scenarios, you'll want to deploy your web packages as part of a larger single-step or

automated deployment. Regardless of whether you choose to deploy your web packages by running the

.deploy.cmd file or by using MSDeploy.exe directly, you can parameterize your commands and call them
from a target in a Microsoft Build Engine (MSBuild) project file.

66

http://technet.microsoft.com/en-us/library/dd569028(WS.10).aspx

In the Contact Manager sample solution, take a look at the PublishWebPackages target in the
Publish.proj file. This target runs once for each .deploy.cmd file identified by an item list named
PublishPackages. The target uses properties and item metadata to build up a full set of argument values
for each .deploy.cmd file and then uses the Exec task to run the command.

XML
<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">

<PropertyGroup>
<_WhatIfSwitch>/Y</ _WhatIfSwitch>
<_WhatIfSwitch Condition=" '$(_WhatIf)'=="'true' ">/T</_WhatIfSwitch>
<_Cmd>
%(PublishPackages.FullPath) $(_WhatifSwitch) /M:$(MSDeployComputerName)
/U:$(MSDeployUsername) /P:$(Password) /A:$(MSDeployAuth)
%(PublishPackages.AdditionalMSDeployParameters)

</ _Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

Note: For a broader overview of the project file model in the sample solution, and an introduction to
custom project files in general, see Understanding the Project File and Understanding the Build

Process.

Endpoint Considerations

Regardless of whether you deploy your web package by running the .deploy.cmd file or by using
MSDeploy.exe directly, you need to specify a computer name or a service endpoint for your
deployment.

If the destination web server is configured for deployment using the Web Deploy Remote Agent service,
you specify the target service URL as your destination.

http://[server name]/MSDeployAgentService

Alternatively, you can specify the server name alone as your destination, and Web Deploy will infer the
remote agent service URL.

[server name]

If the destination web server is configured for deployment using the Web Deploy Handler, you need to
specify the endpoint address of the IS Web Management Service (WMSvc) as your destination. By
default, this takes the form:

https://[server name]:8172/MSDeploy.axd

You can target any of these endpoints using either the .deploy.cmd file or MSDeploy.exe directly.
However, if you want to deploy to the Web Deploy Handler as a non-administrator user, as described in

67

Configure a Web Server for Web Deploy Publishing (Web Deploy Handler), you need to add a query

string to the service endpoint address.

https://[server name]:8172/MSDeploy.axd?site=[IIS website name]

This is because the non-administrator user doesn't have server-level access to IIS; he or she only has
access to a specific IIS website. At the time of writing, due to a bug in the Web Publishing Pipeline
(WPP), you can't run the .deploy.cmd file using an endpoint address that includes a query string. In this
scenario, you need to deploy your web package by using MSDeploy.exe directly.

Note: For more information on the Web Deploy Remote Agent service and the Web Deploy Handler,
see Choosing the Right Approach to Web Deployment. For guidance on how to configure your

environment-specific project files to deploy to these endpoints, see Configure Deployment Properties

for a Target Environment.

Authentication Considerations

Regardless of whether you deploy your web package by running the .deploy.cmd file or by using
MSDeploy.exe directly, you need to specify an authentication type. Web Deploy accepts two possible
values: NTLM or Basic. If you specify basic authentication, you also need to provide a user name and
password. There are various factors you need to be aware of when you select an authentication type:

e If you're deploying to the Web Deploy Remote Agent service, you must use NTLM
authentication. The remote agent service doesn't accept basic authentication credentials.

e If you're deploying to the Web Deploy Handler, you can use either NTLM or basic
authentication. The default setting is basic authentication. Although basic authentication relies
on user names and passwords being transmitted in plain text, your credentials are protected as
the Web Deploy Handler always uses SSL encryption.

e If your web package includes a database, and the web server and database server are separate
machines, you won’t be able to deploy the database using NTLM authentication due to the
NTLM "double-hop" limitation. You need to either use SQL Server credentials in your

deployment connection string or supply basic authentication credentials to Web Deploy. This
issue is described in more detail in Deploying Membership Databases to Enterprise

Environments.

Conclusion

This topic described how you can deploy a web package either by running the .deploy.cmd file or by
using MSDeploy.exe directly. It explained when each approach might be appropriate, and it described
how you can parameterize and run a deployment command as part of a larger single-step or automated
build process.

68

http://go.microsoft.com/?linkid=9805120

Further Reading

For guidance on how to create and parameterize a web deployment package, see Building and
Packaging Web Application Projects and Configuring Parameters for Web Package Deployment. For
guidance on how to build and deploy web packages from a Team Foundation Server (TFS) instance, see
Configuring Team Foundation Server for Automated Web Deployment. For information on how to
customize and troubleshoot the deployment process, see Excluding Files and Folders from Deployment.

Deploying Database Projects

This topic explains the build and deployment process for database projects in Visual Studio 2010. It also
describes how you can use the Microsoft Build Engine (MSBuild) and VSDBCMD.exe to gain more control
over database deployment.

If you want to control how your database projects are deployed, and customize your deployment for
different destination environments, you first need to understand how the build process works and what
deployment options are available to you. This topic will help you to understand these key aspects of
building and deploying database projects:

e What are the inputs to the build process?
e What are the outputs from the build process?
e What are the deployment options for database projects?

e What are the touch points for modifying a database project deployment?

Note: In lots of enterprise deployment scenarios, you need the ability to publish incremental updates
to a deployed database. The alternative is to recreate the database on every deployment, which
means you lose any data in the existing database. When you work with Visual Studio 2010, using
VSDBCMD is the recommended approach to incremental database publishing. However, the next
version of Visual Studio and the Web Publishing Pipeline (WPP) will include tooling that supports
incremental publishing directly.

Understanding the Build Process

If you open the Contact Manager sample solution in Visual Studio 2010, you'll see that the database
project includes a Properties folder that contains four files.

69

B

Solution Explorer * X

S EEHEE
j Solution 'ContactManager-WCF' (4 projects)

E ContactManager.Common

i

ContactManacer . Database

. Properties
4}y Database.sqlcmdvars
4§23 Database.sqldeployment
J";_;'“S, Database. sglpermissions
U Database.sqglsettings

|1 Data Generation Plansz
o obj

14 Schema Comparisons
1 Schema Objects

|1 Scripts

Together with the project file (ContactManager.Database.dbproj in this case), these files control various
aspects of the build and deployment process:

The Database.sqlcmdvars file provides values for any SQLCMD variables you use when you
deploy the project. Each solution configuration (for example, debug and release) can specify a
different .sglcmdvars file.

The Database.sqldeployment file provides deployment-specific settings, like whether to use the
collation defined in your project or the collation of the destination server, whether to recreate
the destination database every time or simply amend the existing database to bring it up to
date, and so on. Each solution configuration can specify a different .sqldeployment file.

The Database.sqlpermissions file is an XML document that you can use to define any
permissions you want to add to the target database. All solution configurations share the same
.sglpermissions file.

The Database.sqlsettings file specifies the database-level properties to use when creating the
database, like the collation to use, the behavior of comparison operators, and so on. All solution
configurations share the same .sqlsettings file.

It's worth taking a moment to open these files in Visual Studio and familiarize yourself with the

contents.

When you build a database project, the build process creates two files:

A database schema (.dbschema file). This describes the schema of the database you want to

create in XML format.

A deployment manifest (.deploymanifest file). This contains all the information required to
create and deploy your database. It references the .dbschema file along with other resources,
like the deployment instructions (the .sgldeployment file) and any pre-deployment or post-
deployment SQL scripts.

70

This shows the relationship between these resources:

Database Project

*.dbproj

* sglsettings * dbschema

*.sglpermissions

*'Sqldepilcj.‘fn-‘E”t III""'IIIIIII""'IIIIIIII""'IIIIIII"' *'m‘phvma"ifESt

* sglcmdvars

Pre-deploy/post-
deploy scripts

Build outputs

‘ Build inputs

sersnnensnsnsd File references

As you can see, the .sqlsettings file and the .sqlpermissions file are inputs to the build process. Along
with the database project file, these files are used to create the database schema file. The
.sgldeployment file and the .sqlcmdvars file pass through the build process unchanged. The deployment
manifest indicates the location of the database schema, the .sqldeployment file, the .sqlcmdvars file,
and any pre-deployment or post-deployment SQL scripts.

Why Use VSDBCMD to Deploy a Database Project?

There are various different approaches to deploying database projects. However, not all of them are
suitable for deploying a database project to remote servers in an enterprise environment. Consider what
you want from a database project deployment. In enterprise deployment scenarios, you're likely to
want:

e The ability to deploy the database project from a remote location.

71

The ability to make incremental updates to an existing database.
The ability to include pre-deployment scripts or post-deployment scripts.
The ability to tailor the deployment to multiple destination environments.

The ability to deploy the database project as part of a larger, typically scripted, single-step
solution deployment.

There are three main approaches you can use to deploy a database project:

You can use the deployment functionality with the database project type in Visual Studio 2010.
When you build and deploy a database project in Visual Studio 2010, the deployment process
uses the deployment manifest to generate a SQL-based deployment file specific to the build
configuration. This will create the database if it doesn't already exist or make any necessary
changes to the database if it does already exist. You can use SQLCMD.exe to run this file on your
destination server, or you can set Visual Studio to create and run the file. The disadvantage of
this approach is that you have only limited control over the deployment settings. You may often
also need to modify the SQL deployment file to provide environment-specific variable values.
You can only use this approach from a computer with Visual Studio 2010 installed, and the
developer would need to know and provide connection strings and credentials for all
destination environments.

You can use the Internet Information Services (lIS) Web Deployment Tool (Web Deploy) to
deploy a database as part of a web application project. However, this approach is a lot more

complex if you want to deploy a database project rather than simply replicate an existing local
database on a destination server. You can configure Web Deploy to run the SQL deployment
script that the database project generates, but in order to do this, you need to create a custom
WPP targets file for your web application project. This adds a substantial amount of complexity
to the deployment process. In addition, Web Deploy does not directly support incremental
updates to existing databases. For more information on this approach, see Extending the Web

Publishing Pipeline to package database project deployed SQL file.

You can use the VSDBCMD utility to deploy the database, using either the database schema or
the deployment manifest. You can call VSDBCMD.exe from an MSBuild target, which lets you
publish databases as part of a larger, scripted deployment process. You can override the
variables in your .sglcmdvars file and lots of other database properties from a VSDBCMD
command, which allows you to customize your deployment for different environments without
creating multiple build configurations. VSDBCMD provides differentiation functionality, which
means it will make only the necessary changes to align a destination database with your
database schema. VSDBCMD also offers a wide range of command-line options, which give you
fine-grained control over the deployment process.

72

http://msdn.microsoft.com/en-us/library/dd465343.aspx
http://go.microsoft.com/?linkid=9805121
http://go.microsoft.com/?linkid=9805121

From this overview, you can see that using VSDBCMD with MSBuild is the approach best suited to a
typical enterprise deployment scenario:

Visual Studio 2010 Web Deploy 2.0 VSDBCMD.exe

Supports remote deployment? Yes Yes Yes
Supports incremental updates? Yes No Yes
Supports pre/post-deployment scripts? Yes Yes Yes
Supports multi-environment deployment? Limited Limited Yes
Supports scripted deployment? Limited Yes Yes

The remainder of this topic describes the use of VSDBCMD with MSBuild to deploy database projects.

Understanding the Deployment Process

The VSDBCMD utility lets you deploy a database using either the database schema (the .dbschema file)
or the deployment manifest (the .deploymanifest file). In practice, you'll almost always use the
deployment manifest, as the deployment manifest lets you provide default values for various
deployment properties and identify any pre-deployment or post-deployment SQL scripts you want to
run. For example, this VSDBCMD command is used to deploy the ContactManager database to a
database server in a test environment:

vsdbcmd.exe /a:Deploy
/manifest:"..\ContactManager.Database.deploymanifest”
/cs:"Data Source=TESTDB1;Integrated Security=true”
/p:TargetDatabase=ContactManager
/dd+
/script:"..\Publish-ContactManager-Db.sql"

In this case:

e The /a(or /Action) switch specifies what you want VSDBCMD to do. You can set this to Import
or Deploy. The Import option is used to generate a .dbschema file from an existing database,
and the Deploy option is used to deploy a .dbschema file to a target database.

e The /manifest (or /ManifestFile) switch identifies the .deploymanifest file you want to deploy.
If you wanted to use the .dbschema file instead, you'd use the /model (or /ModelFile) switch.

e The /cs (or /ConnectionString) switch provides the connection string for the target database
server. Note that this doesn't include the name of the database—VSDBCMD needs to connect
to the server to create the database; it doesn't need to connect to an individual database. If
your .deploymanifest file includes a connection string, you can omit this switch. If you use the
switch anyway, the switch value will override the .deploymanifest value.

e The /p:TargetDatabase property provides the name you want to assign to the target database
on creation. This overrides the value of the TargetDatabase property in the .deploymanifest file.

73

You can use the /p:[property name] syntax to set a wide variety of deployment properties and
to override any SQLCMD variables declared in your .sglcmdvars file.

e The /dd+ (or /DeployToDatabase+) switch indicates that you want to create a deployment and
deploy it to the target environment. If you specify /dd-, or omit the switch, VSDBCMD will
generate a deployment script but will not deploy it to the target environment. This switch is
often the source of confusion and is explained in more detail in the next section.

e The /script (or /DeploymentScriptFile) switch specifies where you want to generate the
deployment script. This value does not affect the deployment process.

For more information on VSDBCMD, see Command-Line Reference for VSDBCMD.EXE (Deployment and
Schema Import) and How to: Prepare a Database for Deployment From a Command Prompt by Using
VSDBCMD.EXE.

For an example of how you can use VSDBCMD from an MSBuild project file, see Understanding the Build
Process. For examples of how to configure database deployment settings for multiple environments, see
Customizing Database Deployments for Multiple Environments.

Understanding the DeployToDatabase Switch

The behavior of the /dd or /DeployToDatabase switch depends on whether you’re using VSDBCMD with
a .dbschema file or a .deploymanifest file. If you're using a .dbschema file, the behavior is fairly
straightforward:

e If you specify /dd+ or /dd, VSDBCMD will generate a deployment script and deploy the
database.

e If you specify /dd- or omit the switch, VSDBCMD will generate a deployment script only.

If you're using a .deploymanifest file, the behavior is a lot more complicated. This is because the
.deploymanifest file contains a property name DeployToDatabase that also determines whether the
database is deployed.

XML
<DeployToDatabase>False</DeployToDatabase>

The value of this property is set according to the properties of the database project. If you set the
Deploy action to Create a deployment script (.sql), the value will be False. If you set the Deploy action
to Create a deployment script (.sql) and deploy to the database, the value will be True.

Note: These settings are associated with a specific build configuration and platform. For example, if
you configure settings for the Debug configuration and then publish using the Release configuration,
your settings will not be used.

74

http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx

Praject Settings
Bulld Events
References
Buid

Deploy

Code Analysis

Configuration: |.Acl:i'.'e {Debug) j Platform: IA:ﬁ\-e (Any CPU)

Configure deployment settings for:
Ih‘-,-' project settings _ﬂ

Degloy action:
lCr:ﬂl: a deployment script (Lsal)
Create a geployment sapt Legd

pt and deploy to the database

Target Datahaze Sattings

Target connection:

=l

T [

Target database name:
[Conta:iMaﬂagcr.DaTd:ase

Deployment configuration file:
|-'-‘roocrl:i::'qD.:hbu5: sgldeployment ﬂ

Sql command variables file:

|Properties\Database. salcmdvars I R

Note: In this scenario, the Deploy action should always be set to Create a deployment script (.sql),
because you don't want Visual Studio 2010 to deploy your database. In other words, the
DeployToDatabase property should always be False.

When a DeployToDatabase property is specified, the /dd switch will only override the property if the
property value is false:

e |f the DeployToDatabase property is False, and you specify /dd+ or /dd, VSDBCMD will override
the DeployToDatabase property and deploy the database.

e |f the DeployToDatabase property is False, and you specify /dd- or omit the switch, VSDBCMD
will not deploy the database.

e If the DeployToDatabase property is True, VSDBCMD will ignore the switch and deploy the
database.

e Adeployment script is generated in each case, regardless of whether you're deploying the

database as well.

Conclusion

This topic provided an overview of the build and deployment process for database projects in Visual
Studio 2010. It also described how you can use VSDBCMD.exe with MSBuild to support enterprise-scale

database deployment.

For more information on how this works in practice, see Customizing Database Deployments for

Multiple Environments.

Further Reading

For information on how to customize database deployments by creating a separate deployment
configuration file for each environment, see Customizing Database Deployments for Multiple

75

Environments. For guidance on how to configure database role memberships by running a post-
deployment script, see Deploying Database Role Memberships to Test Environments. For guidance on

managing some of the unique challenges that membership databases impose, see Deploying
Membership Databases to Enterprise Environments.

These topics on MSDN provide broader guidance and background information on Visual Studio database
projects and the database deployment process:

e Visual Studio 2010 SQL Server Database Projects

e Managing Database Change

e How to: Prepare a Database for Deployment From a Command Prompt by Using VSDBCMD.EXE

e An Overview of Database Build and Deployment

Creating and Running a Deployment Command File

This topic describes how to build a command file that will let you run a deployment using Microsoft
Build Engine (MSBuild) project files as a single-step, repeatable process.

Process Overview

In this topic, you'll learn how to create and run a command file that uses these project files to perform a
repeatable deployment to your target environment. Essentially, the command file simply needs to
contain an MSBuild command that:

e Tells MSBuild to execute the environment-agnostic Publish.proj file.

e Tells the Publish.proj file which file contains the environment-specific project settings and
where to find it.

Create an MSBuild Command

As described in Understanding the Build Process, the environment-specific project file—for example,

Env-Dev.proj—is designed to be imported into the environment-agnostic Publish.proj file at build time.
Together, these two files provide a complete set of instructions that tell MSBuild how to build and
deploy your solution.

The Publish.proj file uses an Import element to import the environment-specific project file.

XML
<Import Project="$(TargetEnvPropsFile)"/>

As such, when you use MSBuild.exe to build and deploy the Contact Manager solution, you need to:

e Run MSBuild.exe on the Publish.proj file.

76

http://msdn.microsoft.com/en-us/library/ff678491.aspx
http://msdn.microsoft.com/en-us/library/aa833404.aspx
http://msdn.microsoft.com/en-us/library/dd193258.aspx
http://msdn.microsoft.com/en-us/library/aa833165.aspx

e Specify the location of the environment-specific project file by supplying a command-line
parameter named TargetEnvPropsFile.

To do this, your MSBuild command should resemble this:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

From here, it's a simple step to move to a repeatable, single-step deployment. All you need to do is to
add your MSBuild command to a .cmd file. In the Contact Manager solution, the Publish folder includes
a file named Publish-Dev.cmd that does exactly this.

%windir%\Microsoft.NET\Framework\v4.0.30319\msbuild.exe Publish.proj /fl
/p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

echo

pause

Note: The /fl switch instructs MSBuild to create a log file named msbuild.log in the working directory
in which MSBuild.exe was invoked.

To deploy or redeploy the Contact Manager solution, all you need to do is run the Publish-Dev.cmd file.
When you run the file, MSBuild will:

e Build all the projects in the solution.

e Generate deployable web packages for the web application projects.

e Generate .dbschema and .deploymanifest files for the database projects.
e Deploy the web packages to the web server.

e Deploy the database to the database server.

Run the Deployment

When you've created a command file for your target environment, you should be able to complete the
entire deployment by simply running the file.

To deploy the Contact Manager solution to your test environment

1. On your developer workstation, open Windows Explorer, and then browse to the location of the
Publish-Dev.cmd file.

2. Double-click the file to runiit.
3. If an Open File — Security Warning dialog box appears, click Run.

4. If your configuration settings and test servers are set up correctly, the Command Prompt
window will show a Build succeeded message when MSBuild has finished processing the project
files.

77

Info:
Info:

Info:
mmon -
Info:

MmO .|

Info:

rvice.

Info:

ruice.

Info:
Info:
Te

Updating setfAcl {DemoSi e
Using ID "Bf?7e??e—1bB7—473 2 ' for connections to the
remote =

g filePath

g filePath
Updating filePath
dll>.

Updating filePath
pdhl. .

Updat setfcl
Updating setAcl

Elapsed BB:80:23 .43

(DemositesContactManagerServicesbinxContactManager.Co
(DemoSite ContactManagerfervicesbinsContactHanager.Co
(DemositesContactManagerService

{DemoSitesContactManagerServicesbhinsContactHanager. Se

(DemoSite-ContactMana icesWeh.config).

5. [If this is the first time you've deployed the solution to this environment, you'll need to add the
test web server machine account to the db_datawriter and db_datareader roles on the
ContactManager database. This procedure is described in Configure a Database Server for Web

Deploy Publishing.

Note: You only need to assign these permissions when you create the database. By default,
the build process will not recreate the database on every deployment—instead, it will
compare the existing database to the latest schema and make only the changes required. As a
result, you should only need to map these database roles the first time you deploy the

solution.

6. Open Internet Explorer and browse to the URL of the Contact Manager application (for
example, http://testweb1:85/ContactManager/).

7. Verify that the application works as expected and you’re able to add contacts.

78

JE5 All Contacts - Windows Internet Explorer .._Inj!l

G@v | @ http:/flocalhost:50114 O 7] B 4] x 2 All Contacts x A ok 11

Contact Manager

All Contacts

First Name Last Name
Matt Hink
Rob Walters

Lisa Andrews

Add a contact

Conclusion

Creating a command file containing your MSBuild instructions provides you with a quick and easy way of
building and deploying a multi-project solution to a specific destination environment. If you need to
repeatedly deploy your solution to multiple destination environments, you can create multiple
command files. In each command file, the MSBuild command will build the same universal project file,
but it will specify a different environment-specific project file. For example, a command file to publish to
a developer or test environment might contain this MSBuild command:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj

A command file to publish to a staging environment might contain this MSBuild command:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj

Note: For guidance on how to customize the environment-specific project files for your own server

environments, see Configure Deployment Properties for a Target Environment.

You can also customize the build process for each environment by overriding properties or setting
various other switches in your MSBuild command. For more information, see MSBuild Command Line
Reference.

Manually Installing Web Packages

This topic describes how to manually import a web deployment package into Internet Information
Services (l1S).

79

http://msdn.microsoft.com/en-us/library/ms164311.aspx
http://msdn.microsoft.com/en-us/library/ms164311.aspx

The topic Building and Packaging Web Application Projects described how the 1IS Web Deployment Tool
(Web Deploy), in conjunction with the Microsoft Build Engine (MSBuild) and the Web Publishing Pipeline
(WPP), lets you package your web application projects into a single zip file. This file, commonly known as

a web deployment package (or simply a deployment package), contains all the content and
configuration information that IS needs in order to re-create your web application on a web server.

Once you've created a web deployment package, you can publish it to an IIS server in various ways. In a
lot of scenarios, you'll want to take advantage of the integration points between MSBuild, the WPP, and
Web Deploy to create and install web packages remotely as part of an automated or single-step build
and deployment process. This process is described in Deploying Web Packages. However, this isn't

always possible. Suppose you want to deploy a web application to an Internet-facing production
environment. For security reasons, such a production environment is at the very least likely to be behind
a firewall on a subnet that is separate from the build server, in a perimeter network (also known as
DMZ, demilitarized zone, and screened subnet). In lots of cases, the production environment will be on a
separate domain or on a physically isolated network.

In these scenarios, your only option may be to port the web package onto the destination server and
manually import it into 1IS. Although this approach precludes automated deployment, it's still a highly
effective technique for publishing a web application—you simply copy a single zip file to your web server
and use a wizard to guide you through the import process.

Task Overview

You'll need to complete these high-level tasks to import a web deployment package into IIS:

e Create a web deployment package using the MSBuild command line, Team Build, or Visual
Studio 2010.

e Copy the web package to the destination web server.

e Use the Import Application Package Wizard in IS Manager to install the web package and
provide values for variables like connection strings and service endpoints.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic
assume that you're already familiar with the concepts behind web packages, Web Deploy, and the WPP.
For more information, see Building and Packaging Web Application Projects.

Note: This topic is best used in conjunction with Configure a Web Server for Web Deploy Publishing

(Offline Deployment), which explains how to install the required components and prepare an IIS

website for package import.

Create a Web Deployment Package

The first task is to create a web deployment package for the web application project you want to deploy.
You can create web packages in a variety of ways.

Approach 1: Create a package as part of the build process with Visual Studio
80

You can configure your web application project to create a web deployment package after every build
through the Package/Publish Web tab on the project property pages. This process is described in
Building and Packaging Web Application Projects.

Approach 2: Create a package as part of the build process with MSBuild

If you build your web application project by using MSBuild directly, either through a custom MSBuild
project file or from the command line, you can create a web deployment package as part of the build
process by including the DeployOnBuild=true and DeployTarget=Package properties in your command.
This process is described in Understanding the Build Process.

Approach 3: Create a package on demand in Visual Studio

You can create a web deployment package for a web application project at any time in Visual Studio
2010. To do this, in the Solution Explorer window, right-click your web application project, and then
click Build Deployment Package.

ISnluﬁnn Explarer 0 x
S S
(e Buid ContactManager' (4 projects)
Rebuild sh
Clean mwvConfig
ogDeploy.ps1
¥r] (Build Deployment Package) wiblish-Dev. cmd
3% Publish... 'ublish. proj
__j!j Package Publish Settings petManager.Common
actManager.Database
Run Code Analysis
Add Web Deployment Project... actManager. Service

Convert to Web Application
Check Accessibility...

@

Caloulate Code Metrics

Project Dependencies. ..

Project Build Order...

Add >

Add Reference...

Add Service Reference...

Add Deployable Dependendes. .. % Team Explorer E Server Explorer

Add Library Package Reference...

r_-.g o, View Class Diagram

Approach 4: Create a package on demand from the command line

You can create a web deployment package from the command line by invoking the Package target on
your web application project using MSBuild. The command should resemble this:

MSBuild.exe [Path to your project].[csproj/vbproj] /T:Package

Whichever approach you use, the end result is the same. The WPP creates a web deployment package
as a zip file, together with various supporting resources, in the output folder for your web application
project.

81

PackageTmp 16/02/2012 18:59 File folder

%] ContactManager.Mve. deploy. cmd 16/02/2012 19:00 Windows Command Script 14 KB
| ContactManager Mvc.deployreadme. txt 16/02/2012 19:00 Text Document 4 KB
& ContactManager.Mvc. SetParameters.xml 16/02/2012 19:00 XML Documnent 1KB
& ContactManager.Mvc. SourceManifest.xml 16/02/2012 19:00 XML Documnent 1KB
@ ContactManager.Mvc.zip 16/02/2012 19:00 Compressed (zipped) Folder 554 KB

When you're planning to import the web package manually, you require only the zip file. Copy this file to
your target web server and you can begin the import process.

Import a Web Package into IIS

You can use the next procedure to import a web deployment package from the local file system into an
IIS website. Before you perform this procedure, ensure that you have:

e Copied the web deployment package to the web server.

e Configured an IIS web server to host your application.

For more information on configuring an 1IS web server to support web deployment packages, see
Configure a Web Server for Web Deploy Publishing (Offline Deployment).

To import a web deployment package using IS Manager

1. InlIS Manager, in the Connections pane, right-click your 1IS website, point to Deploy, and then
click Import Application.

82

¢-H|% |8
-5 Start Page
-85 TESTWEB1 (FABRIKAMmatt)
i} Application Pools
E-[&] Sites
g Default Web Site

-

2 Explore

Edit Permissions. ..

Add Application. ..
Add Virtual Directory...

lt‘, b ﬁl'gl;;‘

Edit Bindings...

Manage Web Site »

Refresh

Remawve

Install Application From Gallery

D XE

2 s |:* Install Application From Gallery
Rename {QJ Export Application. ..

Impart ication. ..
Switch to Content View E[

K Delete Web Site and Content

[:I' I

?'_‘3 Recyde...

In the Import Application Package Wizard, on the Select the Package page, browse to the
location of your web deployment package, and then click Next.

On the Select the Contents of the Package page, clear any content that you don't require, and
then click Next.

83

Import Application Package

gy | Select the Contents of the Package

Package contains:
Web Application (tactManager\Source\ContactManager. Mvclob
‘¥ Create an application (C:\ContactManager\Source\ContactManage
= iE. File System Cantent (C:\ContactManager\Source\ContactManager
i |__'| C:\ContactManager\Source\ContactManager . Mvc\obj\Release
*“| Grant permissions (C:\ContactManager\Source \ContactManager. Mvc'c
| Grant permissions (C:\ContactManager \Source \ContactManager. Mvc'c
4 Deploy SQL database (C:\ContactManager\Source\ContactManager.M

: || 5QL Saript

Path C:\ContactM

1| | i

Advanced Settings... |
Previous | Next I Finish | Cancel |

Note: In a lot of cases, you may not want to import everything that comes with a web
deployment package. For example, you may not want to allow Web Deploy to replace the

associated database.
The Grant permissions entries set permissions on the destination file system to ensure that
the application pool identity can access the physical folder that stores the website content. In

addition, the anonymous authentication user is granted read permission to the folder to let
the application serve Multipurpose Internet Mail Extensions (MIME) type files. If you prefer,

you can remove these entries and configure permissions manually.

4. On the Enter Application Package Information page, provide the requested information.

84

Import Application Package ed |

|

@/

Enter Application Package Information

Enter information that is reguired to install this package:

Application Path
Full site path where you want to install your application (for example, Default Web Site/Application).

DemaSite/ ICnntach\ﬂanager

ContactService Service Endpoint Address
Enter the value for the pate to the indude file

Ihtn:n :/localhost/ContactManagerService

Connection String
Enter the connection string to your database.

IData Source=TESTDE 1;Initial Catalog=CMAppServices;User Id=sa;Password =Pas$wird; s |

Connection String
ApplicationServices Connection String used in web.config by the application to access the database.

IData Source=TESTDEB 1;Initial Catalog=CMAppServices;Integrated Security=true; | =

Previous | Mext I

1)
7l
(]
o
=)
o

When you create a web package, the WPP analyzes the configuration file for your application
and detects any variables, like connection strings and service endpoints. In this case:

a.

Application Path is the IS path where you want to install your application. This setting is
common to all deployment packages that the WPP creates.

ContactService Service Endpoint Address is the address that the application should use
to communicate with the deployed WCF service. This setting corresponds to an entry in

the web.config file.

The first Connection String setting is the connection string that Web Deploy should use
to deploy the database associated with the application (in this case an ASP.NET
membership database). This setting corresponds to the setting on the Package/Publish
SQL tab in Visual Studio.

The second Connection String setting is the connection string that your application will
actually use to communicate with the database when it's up and running. This
corresponds to a connection string entry in the web.config file.

Note: For more information on where these parameters come from, see Configuring
Parameters for Web Package Deployment.

Click Next.

If this is not the first time you've deployed the application to this website, you'll be prompted to
specify whether you want to delete all existing content prior to installation. Choose the option
that's appropriate for your requirements, and then click Next.

85

21X

Import Application Package

| | Overwrite Existing Files

3

You have chosen to install this application padkage to an existing application. Would you like to delete all the
files on the destination?

™ Mo, just append the files in the application package to the destination.

¢ Yes, delete all extra files and folders on the destination that are not in the application package.

Previous | Next Finish Cancel

7. When IIS has finished installing the package, click Finish.

Import Application Package

lh' | Installation Progress and Summary

3

summary | Details |
The package was installed successfully.

The following actions were performed:
Added 1 Files.

Updated 55 Files.

|Updated 1 Databases.

Previous Mext Finish | Cancel I

At this point, you've successfully published your web application to IIS.

86

Conclusion

This topic described how to import a web deployment package into an IS website using IIS Manager.
This approach to web application publishing is appropriate when security or infrastructure constraints
make remote deployment impossible or undesirable.

Further Reading

For guidance on how to configure an IIS web server to support manually importing a web package, see
Configure a Web Server for Web Deploy Publishing (Offline Deployment). For more general guidance on

deploying web packages, see Walkthrough: Deploying a Web Application Project Using a Web

Deployment Package (Part 1 of 4).

87

http://msdn.microsoft.com/en-us/library/dd483479.aspx
http://msdn.microsoft.com/en-us/library/dd483479.aspx

Configuring Server Environments for Web Deployment

This tutorial will show you how to set up server environments to support one-click, or automated,
website deployment and publishing in various different scenarios. The tutorial includes topics to walk
you through completing various tasks, like configuring a web server to support specific approaches to
deployment and setting up a Web Farm Framework (WFF) server farm, together with scenario-based
overviews that provide higher-level end-to-end guidance.

The tutorial uses the Fabrikam, Inc. deployment scenario described in Enterprise Web Deployment:

Scenario Overview as a reference point for examples and network infrastructure.

How to Use This Tutorial
This tutorial includes these topics:

e Choosing the Right Approach to Web Deployment

e Scenario: Configuring a Test Environment for Web Deployment

e Scenario: Configuring a Staging Environment for Web Deployment

e Scenario: Configuring a Production Environment for Web Deployment

e Configuring a Web Server for Web Deploy Publishing (Remote Agent)

e Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler)

e Configuring a Web Server for Web Deploy Publishing (Offline Deployment)

e Configuring a Database Server for Web Deploy Publishing

e Creating a Server Farm with the Web Farm Framework

e Configuring Deployment Properties for a Target Environment

The first topic, Choosing the Right Approach to Web Deployment, describes the main approaches you

can use to publish web applications by using the Internet Information Services (1IS) Web Deployment
Tool (Web Deploy) 2.0. It also identifies the scenarios that map to each approach. From here, each
scenario topic provides a high-level overview of the tasks you need to complete and identifies the topics
you'll need to work through to help you complete these tasks.

If you're using the split project file approach described in Understanding the Build Process to build and

deploy your solution, the final topic, Configuring Deployment Properties for a Target Environment,

describes how to configure environment-specific project files for deployment to different destination
environments.

Key Technologies

This tutorial focuses on how to use these products and technologies to support web deployment:

88

e [IS75
e Web Deploy 2.x
o WFF 2.x

e IS Web Management Service (WMSvc)

The tutorial also touches on the use of Windows Server 2008 R2, SQL Server 2008 R2, ASP.NET 4.0, and
ASP.NET MVC 3.

Choosing the Right Approach to Web Deployment

When you work with the Internet Information Services (11S) Web Deployment Tool (Web Deploy) 2.0 or
later, there are three main approaches you can use to get your packaged web applications onto a web
server. You can either:

e Deploy the application from a remote location by targeting the Web Deployment Agent Service
(also known as the "remote agent") on the destination server.

e Deploy the application from a remote location using Web Deploy On Demand (also known as
the "temp agent").

e Deploy the application from a remote location by targeting the /IS Web Deploy Handler on the
destination server.

e Deploy the application by manually copying the web package to the destination server and
importing it through 1IS Manager.

How you configure your destination web servers will depend on which approach to deployment you
want to use. This topic will help you decide which approach to deployment is right for you.
Overview

This table shows the main advantages and disadvantages of each deployment approach, together with
the scenarios that most typically suit each approach.

Approach

Remote Agent

Temp Agent

Advantages

It is easy to set up.

It is suitable for regular
updates to web
applications and content.

There is no need to install
Web Deploy on the target
computer.

Disadvantages

The user must be an
administrator on the target
server.

the user can't supply
alternative credentials.

The user must be an
administrator on the target
server.

Typical Scenarios

Development
environments.

Test environments.

Development
environments.

Test environments.

Web Deploy Handler

Offline Deployment

The latest version of Web
Deploy is automatically
used.

Non-administrator users
can deploy content.

It is suitable for regular
updates to web
applications and content.

It is very easy to set up.

It is suitable for isolated
environments.

Using the Remote Agent

The user can't supply
alternative credentials.

It is a lot more complex to
set up.

The server administrator
must manually copy and
import the web package
every time.

Staging environments.

Intranet production
environments.

Hosted environments.

Internet-facing production
environments.

Isolated network
environments.

When you install Web Deploy using the default settings on a destination server, the Web Deployment

Agent Service (the "remote agent") is automatically installed and started. By default, the remote agent

exposes an HTTP endpoint at this address:

http://[server]/MSDEPLOYAGENTSERVICE

Note: You can replace [server] with the machine name of your web server, an IP address for your web

server, or a hostname that resolves to your web server.

Server administrators can deploy web packages from a remote location, like a developer machine or a

build server, by specifying this endpoint address. For example, suppose Matt Hink at Fabrikam, Inc. has

built the ContactManager.Mvc web application project on his developer machine. The build process

generates a web package, together with a .deploy.cmd file that contains the Web Deploy commands
required to install the package. If Matt is a server administrator on the TESTWEBL server, he can deploy
the web application to the test web server by running this command on his developer machine:

ContactManager.Mvc.deploy.cmd /y /m:http://TESTWEB1/MSDEPLOYAGENTSERVICE a/:NTLM

In actual fact, the Web Deploy executable can infer the endpoint address of the remote agent if you

provide the machine name, so Matt only needs to type this:

ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /a:NTLM

Note: For more information on Web Deploy command-line syntax and .deploy.cmd files, see How to:

Install a Deployment Package Using the deploy.cmd File.

The remote agent offers a straightforward way to deploy content from a remote location, and this

approach can work well with one-click or automated deployment. However, the user who runs the

deployment command must also be either a domain administrator or a member of the local

administrators group on the destination server. In addition, the remote agent doesn't support basic

authentication, so you can't pass alternative credentials on the command line.

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

The remote agent provides a useful approach to deployment in development or test scenarios, where
it's not uncommon for developers to have full administrator control over a test server environment, and
applications are typically rebuilt and redeployed very frequently. However, this approach is usually less
acceptable for staging or production environments.

For an end-to-end example of a scenario that uses the remote agent approach, see Scenario:
Configuring a Test Environment for Web Deployment.

Using the Temp Agent

The temp agent approach to deployment is similar to the remote agent approach. However, in contrast
to the remote agent approach, you don't need to install Web Deploy on the destination web server.
Instead, when you perform the deployment, Web Deploy will install a temporary version of the web
deployment agent service on the destination server and will use this to deploy your content to IIS. When
the deployment is complete, all temporary files are removed.

If you want to use the temp agent provider setting, add the /g flag to your deployment command:
ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /g:true

Note: You can’t use the temp agent if the web deployment agent service is installed on the destination
computer, even if the service is not running.

The advantage of this approach is that you don't need to maintain installations of Web Deploy on your
destination servers. Furthermore, you don't need to ensure that the source and destination computers
are running the same version of Web Deploy. However, this approach suffers from the same principal
limitations as the remote agent approach, namely that you must be a local administrator on the
destination server in order to deploy content, and only NTLM authentication is supported. The temp
agent approach also requires a lot more initial configuration of the destination environment.

For more information on using the temp agent, see How to: Install a Deployment Package Using the

deploy.cmd File and Web Deploy On Demand.

Using the Web Deploy Handler

For IIS 7 onwards, Web Deploy offers an alternative deployment approach through the IIS Web Deploy
Handler. The Web Deploy Handler is closely integrated with the 1IS Web Management Service (WMSvc),
which is designed to allow users to manage IIS websites from remote locations.

By default, the remote agent exposes an HTTP endpoint at this address:
https://[server]:8172/MSDeploy.axd

Note: You can replace [server] with the machine name of your web server, an IP address for your web
server, or a hostname that resolves to your web server.

The big advantage of the Web Deploy Handler over the remote agent, and the temp agent, is that you

can configure IIS to allow non-administrator users to deploy applications and content to specific IIS

websites. The Web Deploy Handler also supports basic authentication, so you can provide alternative
91

http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

credentials as parameters in your Web Deploy commands. The major drawback is that the Web Deploy
Handler is initially a lot more complicated to set up and configure.

In the case of non-administrator users, the Web Management Service (WMSvc) will only allow the user
to connect to IIS using a site-level connection, rather than a server-level connection. To access a
particular site, you can include a site-specific query string in the endpoint address:

https://[server]:8172/MSDeploy.axd?site=DemoSite

For example, suppose a build process is configured to automatically deploy a web application to a
staging environment after every successful build. If you used the remote agent approach, you'd need to
make the build process identity an administrator on your destination servers. In contrast, using the Web
Deploy Handler approach you can give a non-administrator user—FABRIKAM\stagingdeployer in this
case—permission to a specific IS website only, and the build process can provide these credentials to
deploy the web package.

msdeploy.exe

-source:package="..\ContactManager.Mvc.zip"'

-dest:auto,
computerName="https://STAGEWEB1:8172/MSDeploy.axd?site=DemoSite"’,
userName="'FABRIKAM\stagingdeployer',
password="'Pa$$word’,
authtype='Basic’,

-verb:sync

-setParamFile:"..\ContactManager.Mvc.SetParameters.xml"

-allowUntrusted

Note: For more information on Web Deploy command-line operations and syntax, see Web Deploy
Command Line Reference. For more information on using the .deploy.cmd file, see How to: Install a

Deployment Package Using the deploy.cmd File.

The Web Deploy Handler provides a useful approach to deployment in staging environments, hosted
environments, and intranet-based production environments, where remote access to the server is
available but administrator credentials are not.

For an end-to-end example of a scenario that uses the Web Deploy Handler approach, see Scenario:
Configuring a Staging Environment for Web Deployment.

Using Offline Deployment

In some cases, it's not possible or practical to deploy applications and content to an IIS website from a
remote location. For example, the source and destination computers may be in isolated networks or
network segments, or firewall policy may not permit remote access.

In scenarios like these, you can still use the packaging and publishing capabilities of Web Deploy; you
just can't use them from a remote location. Instead, an administrator on the destination server must
copy the web package onto the server and import it through 1IS Manager.

92

http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

- |7 |8
-5 Start Page
=93 TESTWEB1 (FABRIKAM\matt)
i[5} Application Pools
E-[@] Sites
-3 Default Web Site
-

2 Explore

Edit Permissions. ..

o .
=" Add Application...

&1 Add virtual Directory...

Edit Bindings...

Manage Web Site »

k3 Refresh
K Remove
P
LS

Install Application From Gallery

| Deploy L4 | :" Install Application From Gallery
%@ Export Application. ..

E[(-Import Application. ..)

K Delete Web Site and Content

Rename

7% Switch to Content View

=

= Recyde...

The offline deployment approach is typically useful in Internet-facing production environments, where
servers in a perimeter network may have restricted connectivity with computers in the internal network.

For an end-to-end example of a scenario that uses the offline deployment approach, see Scenario:
Configuring a Production Environment for Web Deployment.

Further Reading

For more information on Web Deploy command-line operations and syntax, see Web Deploy Command

Line Reference. For more information on using the .deploy.cmd file, see How to: Install a Deployment

Package Using the deploy.cmd File.

For more general guidance on the different ways in which you can deploy web packages from a remote
computer, see Using Web Deploy Remotely. For more information on using Web Deploy On Demand,

see Web Deploy On Demand.

Scenario: Configuring a Test Environment for Web Deployment

This topic describes a typical web deployment scenario for developer or test environments and explains
the tasks you need to complete in order to set up a similar environment.

93

http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd568991(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://technet.microsoft.com/en-us/library/ee461175(WS.10).aspx
http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

Scenario Overview

When developers work on web applications, they're often given access to a server environment that
they can use to test changes to their applications in a realistic setting. This kind of development or test
environment typically has these characteristics:

e The environment consists of a single web server and a single database server.

e The developers usually have administrator privileges on the servers, to let them configure the
environment to the requirements of their applications.

e Changes to applications are deployed on a frequent basis, so the environment needs to support
single-step or automated deployment.

For example, in our tutorial scenario, Matt Hink is a developer at Fabrikam, Inc. Matt is working on the

Contact Manager solution and regularly needs to deploy changes to a test environment. Matt is an
administrator on the test web server and the test database server. Initially, Matt needs to be able to
deploy the solution to the test environment directly.

Fabrikam.net Domain
Test Environment

Administrator: Matt Hink

TESTWEB].
fabrikam.net

Developer Workstation
Matt Hink

Build and deploy application

TESTDB1.
fabrikam.net

1]

As work progresses and more developers join the team, the Contact Manager solution is configured for
continuous integration (Cl) in Team Foundation Server (TFS). Whenever a developer checks in content,

94

Team Build should build the solution, run any unit tests, and automatically deploy the solution to the
test environment.

Fabrikam.net Domain

...

Developer Test Environment

Workstation

TESTWEBL1.

Code check-in fabrikam.net

. | Build and deploy application

i ¢
7))

2 ad

Team Build Server

(Build process account) TESTDB1.

fabrikam.net

Solution Overview

The test environment needs to support single-step or automated deployment from a remote computer,
so you have a choice of two main approaches. You can:

e Configure the test web server to support deployment using the Web Deployment Agent Service
(the "remote agent").

e Configure the test web server to support deployment using the Web Deploy handler.

Note: You could also use Web Deploy On Demand (the "temp agent"). This is similar to the remote

agent approach in terms of requirements and constraints.

In this case, the developers have administrator privileges on the destination servers, and the test
environment is not subject to strict security constraints, so the logical choice is to configure the test web
server to support deployment using the remote agent. This is less complex and requires less initial
configuration than the Web Deploy Handler approach. You'll also need to configure your database
server to support remote access and deployment.

95

http://technet.microsoft.com/en-us/library/ee517345(WS.10).aspx

These topics provide all the information you need in order to complete these tasks:

e Configure a Web Server for Web Deploy Publishing (Remote Agent). This topic describes how to

build a web server that supports Web Deploy publishing, using the remote agent approach,
starting from a clean Windows Server 2008 R2 build.

e Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a

database server to support remote access and deployment, starting from a default installation
of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical staging environment, see Scenario: Configuring a Staging

Environment for Web Deployment. For guidance on configuring a typical production environment, see

Scenario: Configuring a Production Environment for Web Deployment.

Scenario: Configuring a Staging Environment for Web Deployment

This topic describes a typical web deployment scenario for a staging environment and explains the tasks
you need to complete in order to set up a similar environment.

Scenario Overview

Lots of organizations use staging environments to preview updates to web applications or websites. This
gives people within the organization a chance to explore and review new functionality or content before
the site "goes live," or in other words is deployed to a production environment. The staging
environment is designed to replicate the production environment as closely as possible, in order to
provide a realistic preview. This kind of staging environment typically has these characteristics:

e The environment consists of multiple load-balanced web servers and one or more database
servers, often with failover clustering and database mirroring.

e Applications may be deployed manually by a development team or automatically by a Team
Build server.

e The users or process accounts that deploy applications are unlikely to have administrator
privileges on the staging servers.

e Changes to applications are deployed on a frequent basis, so the environment needs to support
single-step or automated deployment.

Note: Scaling out a database deployment across multiple servers is beyond the scope of this tutorial.
For more information on this area, please consult SQL Server Books Online.

For example, in our tutorial scenario, Team Foundation Server (TFS) manages the Contact Manager

solution. The TFS administrator, Rob Walters, has created a build definition that lets developers trigger a
deployment to the staging environment as required.

96

http://technet.microsoft.com/en-us/library/ms130214.aspx

Fabrikam.net Domain
Staging Environment
Administrator: Rob Walters

STAGEWEB1. STAGEWEB2.
fabrikam.net fabrikam.net

Team Build Server

Deploy specific build

STAGEDEBI. :
fabrikam.net

Note that in most cases, you won't necessarily want to deploy the latest build to the staging
environment. Instead, you're a lot more likely to want to deploy a specific build that has already
undergone validation and verification in the test environment.

Solution Overview
In this scenario, you can deduce these facts from an analysis of the deployment requirements:

e The user or process account that performs the deployment won’t have administrator privileges
on the staging servers, so the staging web servers must support non-administrator deployment.
As such, you'll need to configure the staging web servers to use the Web Deploy Handler rather
than the remote agent.

e The staging environment includes multiple web servers, but it needs to support one-click or
automated deployment, so you'll need to use the Web Farm Framework (WFF) to create a
server farm. Using this approach, you can deploy an application to one web server (the primary
server), and WFF will replicate the deployment on all the other web servers in the staging
environment.

e The user or process account that performs the deployment must have permissions to create
databases. As such, you'll need to add the account to the dbcreator server role on the database

97

server, in addition to configuring the database server to support remote access and
deployment.

These topics provide all the information you need in order to complete these tasks:

e Create a Server Farm with the Web Farm Framework. This topic describes how to create and

configure a server farm using WFF, so that web platform products and components,
configuration settings, and websites and applications are replicated across multiple load-
balanced web servers.

e Configure a Web Server for Web Deploy Publishing (Web Deploy Handler). This topic describes
how to build a web server that supports Web Deploy publishing, using the remote agent
approach, starting from a clean Windows Server 2008 R2 build.

e Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a
database server to support remote access and deployment, starting from a default installation
of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical developer test environment, see Scenario: Configuring a Test

Environment for Web Deployment. For guidance on configuring a typical production environment, see

Scenario: Configuring a Production Environment for Web Deployment.

Scenario: Configuring a Production Environment for Web Deployment

This topic describes a typical web deployment scenario for a production environment and explains the
tasks you need to complete in order to set up a similar environment.

Scenario Overview

The production environment is the final destination for a web application or a website. By this point,
your application has been through testing, has been deployed to a staging environment, and is ready to
"go live." The characteristics of a production environment can vary widely according to the nature and
purpose of your web content, the size of your organization, your target audience, and lots of other
factors. In an enterprise-scale scenario, the production environment may have these characteristics:

e The environment consists of multiple load-balanced web servers and one or more database
servers, often with failover clustering and database mirroring.

e If the environment is Internet-facing, it's likely to be segregated from your internal network. It
may be on a different subnet in a perimeter network, it may be on a different domain, and it
may be on an entirely different network infrastructure.

e Developers and build server process accounts are highly unlikely to have administrator
privileges on the production servers.

98

e Changes to applications are deployed on a less frequent basis than test or staging deployments.

Note: Scaling out a database deployment across multiple servers is beyond the scope of this tutorial.
For more information on this area, please consult SQL Server Books Online.

For example, in our tutorial scenario, a Team Build server includes build definitions that let users build
the Contact Manager solution and deploy it to a staging environment in a single step. When the
application is ready to be deployed to production, due to the constraints imposed by security
requirements and the network infrastructure, the production environment administrator must manually
copy the web package onto a production web server and import it through Internet Information Services

(11S) Manager.

Perimeter Network

Production Environment
Administrator: Lisa Andrews

Internal Network

PROWEB1. PROWEB2.

Build application A s
fabrikam.net fabrikam.net

and create web
package

Team Build Server

(Build process account) P

and import web
package

| 1

PRODB1.
fabrikam.net

Solution Overview

In this scenario, you can deduce these facts from an analysis of the deployment requirements:

e Due to security restrictions and the network configuration, you can’t configure the production
environment to support one-click or automated deployment. Offline deployment is the only
viable approach in this scenario.

e The production environment includes multiple web servers, so you can use the Web Farm
Framework (WFF) to create a server farm. Using this approach, the administrator only needs to
import the application onto one web server (the primary server), and WFF will replicate the
deployment on all the other web servers in the production environment.

99

http://technet.microsoft.com/en-us/library/ms130214.aspx

These topics provide all the information you need in order to complete these tasks:

Create a Server Farm with the Web Farm Framework. This topic describes how to create and

configure a server farm using WFF, so that web platform products and components,
configuration settings, and websites and applications are replicated across multiple load-
balanced web servers.

Configure a Web Server for Web Deploy Publishing (Offline Deployment). This topic describes

how to build a web server that lets administrators import and deploy web packages manually,
starting from a clean Windows Server 2008 R2 build.

Configure a Database Server for Web Deploy Publishing. This topic describes how to configure a

database server to support remote access and deployment, starting from a default installation
of SQL Server 2008 R2.

Further Reading

For guidance on configuring a typical developer test environment, see Scenario: Configuring a Test

Environment for Web Deployment. For guidance on configuring a typical staging environment, see

Scenario: Configuring a Staging Environment for Web Deployment.

Configuring a Web Server for Web Deploy Publishing (Remote Agent)

This topic describes how to configure an Internet Information Services (I1S) web server to support web
publishing and deployment using the 1IS Web Deployment Tool (Web Deploy) Remote Agent Service.

When you work with Web Deploy 2.0 or later, there are three main approaches you can use to get your

applications or sites onto a web server. You can:

Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web
server, but you need to provide the credentials of a local server administrator in order to deploy
anything to the server.

Use the Web Deploy Handler. This approach is a lot more complex and requires more initial
effort to set up the web server. However, when you use this approach, you can configure IIS to
allow non-administrator users to perform the deployment. The Web Deploy Handler is only
available in 1IS version 7 or later.

Use offline deployment. This approach requires the least configuration of the web server, but a
server administrator must manually copy the web package onto the server and import it
through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see

Choosing the Right Approach to Web Deployment.

100

Is the Web Deploy Remote Agent the Right Approach for You?

Yes, if the user who will deploy the content can supply the credentials of an administrator on the
destination server. This approach is often desirable in these types of scenarios:

e Development or test environments, where the developer has full control over the destination
web server and database server.

e Smaller organizations in which a single user or a small group of users has control over the entire
application lifecycle.

In lots of larger organizations, and particularly for staging or production environments, it's often not
realistic to give users administrator rights on web servers. In the case of hosted web servers, this is
especially unlikely to be the case. In addition, if you're planning to automate deployment from a build
server, you may not want to use administrator credentials for the deployment process. In these
scenarios, configuring your web servers to support deployment using the Web Deploy Handler may

provide a more satisfactory choice.

Task Overview

To configure the web server to accept and deploy web packages from a remote computer using the Web
Deploy Remote Agent approach, you'll need to:

e Install IS 7.5 and the IIS 7 recommended configuration.
e Install Web Deploy 2.1 or later.
e Create an IS website to host the deployed content.

e Ensure that the Web Deployment Agent Service is running.

To host the sample solution specifically, you'll also need to:
e Install the .NET Framework 4.0.

e Install ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this
topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you
continue, ensure that:

e Windows Server 2008 R2 Service Pack 1 and all available updates are installed.
e The server is domain-joined.

e The server has a static IP address.

101

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP
Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.

Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to

date.

In this case, you need to install these things:

11IS 7 Recommended Configuration. This enables the Web Server (lIS) role on your web server
and installs the set of 1IS modules and components that you need in order to host an ASP.NET
application.

.NET Framework 4.0. This is required to run applications that were built on this version of the
.NET Framework.

Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,
MSDeploy.exe) on your server. As part of this process, it installs and starts the Web Deployment
Agent Service. This service lets you deploy web packages from a remote computer.

ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure the

required components. Although you don't have to use the Web Platform Installer, it simplifies the

installation process by automatically detecting dependencies and ensuring that you always get the

latest product versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1.
2.

Download and install the Web Platform Installer.

When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do
this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

At the top of the Web Platform Installer 3.0 window, click Products.
On the left side of the window, in the navigation pane, click Frameworks.

In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click
Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a
product or component is already installed, the Web Platform Installer will indicate this by
replacing the Add button with the text Installed.

102

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

10.

Spotlight Products Applications

1Al i
Server
Frameworks nJ
Database
|1 Tools «®
i
nin
i

0 Items to be installed

Name

ASP.NET MVC 3 (Visual Studic 2010)
Microsoft .NET Framework 4

PHP538

ASP.NET MVC 3 Tools Update Language Packs
ASP.NET Web Pages

ASP.NET Web Pages Language Packs
Windows Cache Extension 1.1 for PHP 5.2
Windows Cache Extension 1.1 for PHP 5.3
NET Framework 35 5P 1

Windows PowerShell 2.0

In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

In the navigation pane, click Server.

In the IS 7 Recommended Configuration row, click Add.

In the Web Deployment Tool 2.1 row, click Add.

=18)x]
ol
Released Install A
11/04/2011 Add
12/04/2010 Installed
29/08/2011 Add
10/05/2011 Add I
13/01/2011 Add |
13/01/2011 Add
28/06/2010 Add |
23/06/2010 Add
18/11/2008 Installed oo
16/04/2010 Installed ﬂ
Install I Eat |

Click Install. The Web Platform Installer will show you a list of products—together with any
associated dependencies—to be installed and will prompt you to accept the license terms.

103

T x|

Review the following list of third party application software, Microsoft products and components to be installed and
Windows components to be turned on. Third party applications and products are provided by the third parties listed
here; Microsoft grants you no rights for third party software. You are responsible for and must separately locate, read

Web Platform Installation

and accept these third party license terms

7% 1S 7 Recommended Configuration -
[IS: Static Content (Dependency)
1IS: Default Document (Dependency)
IIS: Directory Browsing (Dependency)
IIS: HTTP Errors (Dependency)
[IS: HTTP Logging (Dependency)
IIS: Logging Tools (Dependency)
1IS: Request Monitor (Dependency)
IIS: Request Filtering (Dependency)
IIS: Static Content Compression (Dependency)

Ll [oS P | e) ;]
By clicking "I Accept,” you agree to the license terms for the third party and Microsoft software listed above. If you do
not agree to all of the license terms, click "l Decline,

1Decline | 1 Accept I

11. Review the license terms, and if you consent to the terms, click | Accept.

12. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET |IS
Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do
this, you'll find that 1IS will serve static content (like HTML files) without any problems, but it will return
HTTP Error 404.0 — Not Found when you attempt to browse to ASP.NET content. You can use this
procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS
1. Click Start, and then type Command Prompt.

2. Inthe search results, right-click Command Prompt, and then click Run as administrator.

3. Inthe Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:
aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit
version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:
104

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available
updates for the new products and components you've installed.

Configure the IIS Website

Before you can deploy web content to your server, you need to create and configure an IS website to
host the content. Web Deploy can only deploy web packages to an existing IS website; it can't create
the website for you. At a high level, you'll need to complete these tasks:

e Create a folder on the file system to host your content.
e Create an IIS website to serve the content, and associate it with the local folder.

e Grant read permissions to the application pool identity on the local folder.

Although there's nothing stopping you from deploying content to the default website in IIS, this
approach is not recommended for anything other than test or demonstration scenarios. To simulate a
production environment, you should create a new IIS website with settings that are specific to the
requirements of your application.

To create and configure an IIS website

1. On the local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services
(11S) Manager.

3. InlIS Manager, in the Connections pane, expand the server node (for example, TESTWEB1).

-7 |8
o HE Start Page
SRS TESTWEB 1 (FABRIKAM \matt)
= .:} Application Poals
[H- @] Sites

4. Right-click the Sites node, and then click Add Web Site.
5. Inthe Site name box, type a name for the IIS website (for example, DemoSite).

6. Inthe Physical path box, type (or browse to) the path to your local folder (for example,
C:\DemoSite).

7. Inthe Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this
website on port 80, you’ll need to stop the default website before you can access your site.

105

8. Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)
record for the website, and then click OK.

Add Web Site ed
Site name: Application pool:
|pemosite Demosite Select... |
—Content Directory
Physical path:

IC \DemoSite _l

Pass-through authentication

Connect as... | Test Settings...
—Binding
Type: IP address: Port:
Ihttp ﬂ IAII Unassigned j |85
Host name:

Example: www.contosa.com or marketing.contoso.com

V¥ Start Web site immediately

oK I Cancel |

Note: In a production environment, you’ll likely want to host your website on port 80 and
configure a host header, together with matching DNS records. For more information on
configuring host headers in IIS 7, see Configure a Host Header for a Web Site (lIS 7). For more

information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and
DNS Server.

9. Inthe Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 *

Remove |
Browse |
1] | |

Cloze |

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site
configuration.

106

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

12. In the Host name box, type the name of your web server (for example, TESTWEB1), and then

click OK.
Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 *
http testweb1 35 *

4]

Add...

Edit...

Remove

Browse

il

Cloze

Note: The first site binding allows you to access the site locally using the IP address and port or
http://localhost:85. The second site binding allows you to access the site from other
computers on the domain using the machine name (for example, http://testweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15. In the Application Pools pane, right-click the name of your application pool, and then click Basic
Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).

16. In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

Edit Application Pool

MName:

2%

DemaSite

NET Framework version:

Managed pipeline mode:
IIntegrated j

¥ Start application pool immediately

[o 1|

Cancel

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web

Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on

the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool

identity by default (in contrast to previous versions of IIS, where application pools would typically run

using the Network Service account). The application pool identity is not a real user account and does not

107

show up on any lists of users or groups—instead, it's created dynamically when the application pool is
started. Each application pool identity is added to the local IS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

e Assign permissions to the application pool identity directly, using the format 1IS
AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

e Assign permissions to the IIS_IUSRS group.
The most common approach is to assign permissions to the local 1IS_IUSRS group because this approach

lets you change application pools without reconfiguring file system permissions. The next procedure
uses this group-based approach.

Note: For more information on application pool identities in 1IS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.

2. Right-click the folder, and then click Properties.

3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

2%

Select the location you want to search.

Location:

=~ Entire Directory
[#]-53 fabrikam net

5. Inthe Select Users or Groups dialog box, type IIS_IUSRS, click Check Names, and then click OK.

6. Inthe Permissions for [folder name] dialog box, notice that the new group has been assigned
the Read & execute, List folder contents, and Read permissions by default. Leave this
unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

As a final task before you attempt to deploy any web packages to your server, you should ensure that
the Web Deployment Agent Service is running. When you deploy a package from a remote computer,

108

http://go.microsoft.com/?linkid=9805123

the Web Deployment Agent Service is responsible for extracting and installing the contents of the
package. The service is started by default when you install the Web Deployment Tool and runs under the
Network Service identity.

You can check whether a service is running in multiple different ways, using various command-line
utilities or Windows PowerShell cmdlets. This procedure describes a straightforward Ul-based approach.

To check that the Web Deployment Agent Service is running

1. On the Start menu, point to Administrative Tools, and then click Services.

2. Locate the Web Deployment Agent Service row, and verify that the Status is set to Started.

Name | Description | status | Startup Type | Log On as

Lk Thread Ordering Server Provides ordered execution for a group of threads wit... Manual Local Service
L TPM Base Services Enables access to the Trusted Platform Module (TPM), ... Manual Local Service
St UPnP Device Host Allows UPnP devices to be hosted on this computer, If .., Disabled Local Service
{5k User Profile Service This service is responsible for loading and unloading us.., Started Automatic Local System
ik Virtual Disk Provides management services for disks, volumes, file ... Marual Local System
EkVolume Shadow Copy Manages and implements Volume Shadow Copies used ... Marual Local System
#3yjeb Deployment Agent Service Remote agent service for the Microsoft Web Deploy 2.0, Starb Automatic Metwork Service
S Windows Audio Manages audio for Windows-based programs. If this s... Manual Local Service
{55 Windows Audio Endpoint Builder Manages audio devices for the Windows Audio service... Manual Local System

3. If the service is not already started, click Start.

Configure Firewall Exceptions
By default, the Remote Agent Service listens on TCP port 80, at this URL:
http://[server name]/MSDEPLOYAGENTSERVICE

In most cases, you won't need to configure any additional firewall rules for the Remote Agent Service
because web servers typically listen for HTTP requests on port 80. If you customized your installation to
listen on a nonstandard port, you'll need to configure firewall exceptions as required.

Conclusion

At this point, your web server is ready to accept and install web packages from a remote computer.
Before you attempt to deploy a web application to the server, you may want to check these key points:

e Have you registered ASP.NET 4.0 with 1IS?
e Does the application pool identity have read access to the source folder for your website?

e s the Web Deployment Agent Service running?

Further Reading

For guidance on how to configure custom Microsoft Build Engine (MSBuild) project files to deploy web
packages to the Remote Agent Service, see Configure Deployment Properties for a Target Environment.

109

Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler)

This topic describes how to configure an Internet Information Services (11S) web server to support web
publishing and deployment using the IS Web Deploy Handler.

When you work with Web Deploy 2.0 or later, there are three main approaches you can use to get your
applications or sites onto a web server. You can:

e Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web
server, but you need to provide the credentials of a local server administrator in order to deploy
anything to the server.

e Use the Web Deploy Handler. This approach is a lot more complex and requires more initial
effort to set up the web server. However, when you use this approach, you can configure IIS to
allow non-administrator users to perform the deployment. The Web Deploy Handler is only
available in 1IS version 7 or later.

e Use offline deployment. This approach requires the least configuration of the web server, but a
server administrator must manually copy the web package onto the server and import it
through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see
Choosing the Right Approach to Web Deployment.

Is the Web Deploy Handler the Right Approach for You?

Yes, if you want to allow non-administrator users to deploy content to specific IS websites. This
approach is often desirable in these types of scenarios:

e Staging or production environments, where the person or service account that triggers the
remote deployment is unlikely to have access to the credentials of a server administrator.

e Hosted environments, where you want to give remote users the ability to update their websites
without giving them full control of your web servers (or access to anyone else's websites).

In development or test scenarios, or in smaller organizations, deploying content using server
administrator credentials is often less contentious. In these scenarios, configuring your web servers to
support deployment using the Web Deploy Remote Agent Service offers a more straightforward

approach.

Task Overview

To configure the web server to accept and deploy web packages from a remote computer using the Web
Deploy Handler approach, you'll need to:

e Create, or choose, a domain user account (the "non-administrator user") whose credentials
you'll use to perform deployments.

110

e Install IS 7.5, including the Web Management Service and the Basic Authentication module.
e Install Web Deploy 2.1 or later.

e Configure the Web Management Service to allow remote connections, and start the service.
e Create an IIS website to host the deployed content.

e Grant your non-administrator user permissions on your website in IIS Manager.

e Ensure that the Web Management Service delegation rules permit the service to add and
change website content using your non-administrator user account.

e Configure any firewalls to allow incoming connections on port 8172.

To host the ContactManager sample solution specifically, you'll also need to:
e Install the .NET Framework 4.0.

e [nstall ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this
topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you
continue, ensure that:

e Windows Server 2008 R2 Service Pack 1 and all available updates are installed.
e The server is domain-joined.

e The server has a static IP address.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP
Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.
Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to
date.

In this case, you need to install these things:

e 1IS 7 Recommended Configuration. This enables the Web Server (l1IS) role on your web server
and installs the set of 1IS modules and components that you need in order to host an ASP.NET
application.

¢ lIS: Management Service. This installs the Web Management Service (WMSvc) in IIS. This
service enables remote management of IIS websites and exposes the Web Deploy Handler

endpoint to clients.
111

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx

11S: Basic Authentication. This installs the IIS Basic Authentication module. This lets the Web
Management Service (WMSvc) authenticate the credentials you provide.

Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,
MSDeploy.exe) on your server. As part of this process, it installs the Web Deploy Handler and
integrates it with the Web Management Service.

.NET Framework 4.0. This is required to run applications that were built on this version of the
.NET Framework.

ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure various

components. Although you don't have to use the Web Platform Installer, it simplifies the installation

process by automatically detecting dependencies and ensuring that you always get the latest product

versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1.
2.

Download and install the Web Platform Installer.

When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do
this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

At the top of the Web Platform Installer 3.0 window, click Products.
On the left side of the window, in the navigation pane, click Frameworks.

In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click
Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a
product or component is already installed, the Web Platform Installer will indicate this by
replacing the Add button with the text Installed.

112

http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

8.
9.

10.

JST=TE

Spotlight Products Applications pel
Name Released Install
1Al i ASP.NET MVC 3 (Visual Studio 2010) 11/04/2011 Add
Server
Frameworks nJ Microsoft NET Framework 4 12/04/2010 Installed
Database
Tools @ PHPS38 20/08/2011 Add
AV ASP.NET MVC 3 Tools Update Language Packs 10/05/2011 Add I
AVE ASP.NET Web Pages 13/01/2011 Add
AVIE ASP.NET Web Pages Langusge Packs 13/01/2011 Add
<« Windows Cache Extension 1.1 for PHP 5.2 28/06/2010 Add
<¢ Windows Cache Extension 1.1 for PHP 5.3 28/06/2010 Add
nJ JNET Framework 35 5P 1 18/11/2008 Installed
- Windows PowerShell 2.0 16/04/2010 Installed
0 ltemsto be installed Options Install Ext

In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.
In the navigation pane, click Server.

In the IS 7 Recommended Configuration row, click Add.
In the Web Deployment Tool 2.1 row, click Add.

In the 1IS: Basic Authentication row, click Add.

11. In the 1IS: Management Service row, click Add.

12. Click Install. The Web Platform Installer will show you a list of products—together with any

associated dependencies—to be installed and will prompt you to accept the license terms.

113

|»

=

T x|

Review the following list of third party application software, Microsoft products and components to be installed and
Windows components to be turned on. Third party applications and products are provided by the third parties listed
here; Microsoft grants you no rights for third party software. You are responsible for and must separately locate, read

Web Platform Installation

and accept these third party license terms

7% 1S 7 Recommended Configuration -
[IS: Static Content (Dependency)
1IS: Default Document (Dependency)
IIS: Directory Browsing (Dependency)
IIS: HTTP Errors (Dependency)
[IS: HTTP Logging (Dependency)
IIS: Logging Tools (Dependency)
1IS: Request Monitor (Dependency)
IIS: Request Filtering (Dependency)
IIS: Static Content Compression (Dependency)

Ll [oS P | e) ;]
By clicking "I Accept,” you agree to the license terms for the third party and Microsoft software listed above. If you do
not agree to all of the license terms, click "l Decline,

1Decline | 1 Accept I

13. Review the license terms, and if you consent to the terms, click I Accept.

14. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET IIS
Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do
this, you'll find that 1IS will serve static content (like HTML files) without any problems, but it will return
HTTP Error 404.0 — Not Found when you attempt to browse to ASP.NET content. You can use the next
procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS
1. Click Start, and then type Command Prompt.

2. Inthe search results, right-click Command Prompt, and then click Run as administrator.

3. Inthe Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:
aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit
version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:
114

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available
updates for the new products and components you've installed.

Configure the Web Management Service

Now that you've installed everything you need, the next step is to configure the Web Management
Service in lIS. At a high level, you'll need to complete these tasks:

e Enable basic authentication at the server level.
e Configure the Web Management Service to accept remote connections.

e Start the Web Management Service.

e Check that the required Web Management Service delegation rules are in place.

To configure the Web Management Service

1. On the Start menu, point to Administrative Tools, and then click Internet Information Services
(11S) Manager.

2. In lIS Manager, in the Connections pane, click the server node (for example, STAGEWEB1).

- |7 |8
o i&'ﬁ Start Page
SREE] <T4\GEWER 1 (FABRIKAM\Administrator)
E:* Application Pools
- | Sites

3. Inthe center pane, under IIS, double-click Authentication.

115

Qgg STAGEWEB1 Home

Filter: - o ~ g show Al | Group by: Area LNEEIRS
ASP.NET A
S & [-
% Q‘::’ 0 1B
MET MET .MET Error MET MET Trust Application
Authorizati... Compilation Pages Globalization Levels Settings
i 3 — ')
w W @ & &
Connection Machine Key Paages and Providers Session State SMTP E-mail
Strings Controls
IIs
0 T | 1l
; g e &
Authentication §Compression Default Directory Error Pages Handler
Document Browsing Mappings
g 3 . =g ne
& L*J ik &
HTTP ISAPI and CGI ISAPI Filters Logging MIME Types Modules
Respo.. Restrictions
) ;e = o |
e = al ity
Output Request Server Worker
Caching Filtering Certificates Processes
4. Right-click Basic Authentication, and then click Enable.
le Authentication
Group by: No Grouping hé
MName = | Status | Response Type |
Anonymous Authentication Enabled
Disabled

5.
6.

ASP.NET Impersonation

Disabled
Disabled

Edit...

Help

@

Online Help

In the Connections pane, click the server node again to return to the top-level settings.

HTTP 401 Challenge
HTTF 302 Login/Redirect

In the center pane, under Management, double-click Management Service.

116

7.

8.

@;E STAGEWEB1 Home

Filter: - %GD - %Show All |Grou|:l by: Area EEIR
Connection Machine Key Pages and Providers Session State SMTP E-mail ﬂ
Strings Controls
s
) 1n=hs
B d e &
Authentication Compression Default Directory Error Pages Handler
Document Browsing Mappings
g] -__"F in
4 B ¢ 8 = 4
HTTP ISAPT and CGI ISAFPI Filters Logaing MIME Types Modules
Respo... Restrictions
-y "
| 1
P = L &
Output Reguest Server Worker
Caching Filtering Certificates Processes
Management

B & &

Configuration Feature IIS Manager
Editor Delegation Permissions
¥
Shared
Configuration

I1S Manager

Users

In the center pane, select Enable remote connections.

[+]

Note: If the Web Management Service is already running, you'll need to stop it first.

In the Actions pane, click Start to start the Web Management Service.

eil Management Service

MAnaoET .
¥ Enable remote connections
n S

® Windows credentials only

" Windows credentials or II5 Manager cedentials

Use this feature to configure how dients connect to this server by using remote connections in IIS

| v

53 Log requests to:

Connections

IP address: Port:

|8l Unassigned =l [s172
SS5L certificate:

|WMsve-STAGEWEE 1 = |

[ee5ystemDrive % \inetpub Yogs WS ve

117

(i) The Management Service
(WMSVC) is stopped. The
service must be started to
remately manage the Web
server by using 115 Manager.

S Apply
=3¢ Cancel

= FRestart
Stop

9 Help

Onine Help

9. If you're prompted to save your settings, click Yes.

Note: You may also want to configure the service to start automatically. To do this, open the
Services console, right-click Web Management Service, and then click Properties. In the
Startup type dropdown list, select Automatic, and then click OK.

10. In the Connections pane, click the server node again to return to the top-level settings.

11. In the center pane, under Management, double-click Management Service Delegation.

Ggg STAGEWEB1 Home

Filter: - Go - %Show All | Group by: Area - v
Connection Machine Key Pages and Providers Session State SMTP E-mail ;I
Strings Controls
ms
) ———, IE*
2 9 |a 2
Authentication Compression Default Directory Error Pages Handler
Document Browsing Mappings
3 A : A =
& 0 = &
HTTP ISAPI and CGI ISAPI Filters Logging MIME Types Modules
Respo... Restrictions
) ;g = o
» o= R €ty
Output Reguest Server Worker
Caching Filtering Certificates Processes
Management
E B o . L
5 8 2
1= 2 g ‘@ i
Configuration Feature IIS Manager IIS Manager Management § Management
Editor Delegation Permissions Users Service Service D...
Shared
Configuration
=

12. Verify that the center pane contains a set of rules.

le Management Service Delegation

|Use this feature to set rules for allowing remote delegated deployments,

Provider | State | Path | Path Type | | Identity T... | IJser Name

| appPoclPipeling,a... Enabled fuserScope} PathPrefix Spedificlser WDeployConfig\Writer
T recydeapp Enabled {userScope} PathPrefix Spedficlser WDeployAdmin

| zetad Enabled {userScope} PathPrefix Currentllser

| createapp Enabled {userScope} PathPrefix Spedficlser WDeployConfigWriter
| dbMysql Enabled Server= ConnectionString Currentllser

| dbFullsgl Enabled Data Source= ConnectionString Currentlser

| contentPath, isApp Enabled {userScope} PathPrefix Currentllser

118

These rules allow authorized Web Management Service users to use various Web Deploy
providers. For example, to deploy web applications and content to 1IS through the Web Deploy
Handler, there must be a delegation rule that allows all authenticated Web Management Service
users to use the contentPath and iisApp providers (the last rule that you can see in the
screenshot).

If you installed products and components in the order described in this topic, the latest version
of Web Deploy should automatically add all the required delegation rules to the Web
Management Service. If the Management Service Delegation page does not show any rules,
you'll need to create them yourself. For instructions on how to do this, see Configure the Web
Deployment Handler.

13. In the Connections pane, click the server node again to return to the top-level settings.

Create and Configure an IIS Website

Before you can deploy web content to your server, you need to create and configure an IIS website to
host the content. Web Deploy can only deploy web packages to an existing 1IS website; it can't create
the website for you. You also need to do a little extra configuration to allow your non-administrator
account to deploy content remotely. At a high level, you'll need to complete these tasks:

e Create a folder on the file system to host your content.
e Create an IS website to serve the content, and associate it with the local folder.
e Grant read permissions to the application pool identity on the local folder.

e Grant the necessary IS permissions to the domain account that will deploy your web
application.

Although there's nothing stopping you from deploying content to the default website in IIS, this
approach is not recommended for anything other than test or demonstration scenarios. To simulate a
production environment, you should create a new IIS website with settings that are specific to the
requirements of your application.

To create an IS website
1. Onthe local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services
(11S) Manager.

3. In lIS Manager, in the Connections pane, expand the server node (for example, STAGEWEB1).

119

http://go.microsoft.com/?linkid=9805124
http://go.microsoft.com/?linkid=9805124

Q-idl” |8

&5 Start Page

SRS STAGEWWES 1 (FABRIKAM\A
,;* Application Pools
- 8] Sites

dministrataor)

Right-click the Sites node, and then click Add Web Site.
In the Site name box, type a name for the IIS website (for example, DemoSite).

In the Physical path box, type (or browse to) the path to your local folder (for example,
C:\DemoSite).

In the Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this
website on port 80, you’ll need to stop the default website before you can access your site.

Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)
record for the website, and then click OK.

Add Web Site ed
Site name: Application pool:
|pemosite Demosite Select... |
—Content Directory
Physical path:

IC \DemoSite _l

Pass-through authentication

Connect as... | Test Settings...
—Binding
Type: IP address: Port:
Ihttp ﬂ IAII Unassigned j |85
Host name:

Example: www.contosa.com or marketing.contoso.com

V¥ Start Web site immediately

oK I Cancel |

Note: In a production environment, you’ll likely want to host your website on port 80 and
configure a host header, together with matching DNS records. For more information on
configuring host headers in IIS 7, see Configure a Host Header for a Web Site (IIS 7). For more
information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and
DNS Server.

120

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

9. Inthe Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 *

Remove

Browse

[ewe |
5|
_ oo |

Cloze

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site

configuration.

12. In the Host name box, type the name of your web server (for example, STAGEWEB1), and then

click OK.
Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 *
http stageweb1 85 =
1 | i

Add...

Edit...

Remove

Browse

Cloze

il

Note: The first site binding allows you to access the site locally using the IP address and port or
http://localhost:85. The second site binding allows you to access the site from other
computers on the domain using the machine name (for example, http://stageweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15.

In the Application Pools pane, right-click the name of your application pool, and then click Basic

Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).

16.

121

In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

IDemoSite

NET Framework version:

Managed pipeline mode:
IInhegrated j

¥ Start application pool immediately

oK I Cancel

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web
Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on
the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool
identity by default (in contrast to previous versions of IIS, where application pools would typically run
using the Network Service account). The application pool identity is not a real user account and does not
show up on any lists of users or groups—instead, it's created dynamically when the application pool is
started. Each application pool identity is added to the local lIS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

e Assign permissions to the application pool identity directly, using the format lIS
AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

e Assign permissions to the IIS_IUSRS group.

The most common approach is to assign permissions to the local IIS_IUSRS group, because this
approach lets you change application pools without reconfiguring file system permissions. The next
procedure uses this group-based approach.

Note: For more information on application pool identities in IIS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.
2. Right-click the folder, and then click Properties.
3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

122

http://go.microsoft.com/?linkid=9805123

2%

Select the location you want to search.

Location:

EI: Erttire Directory
(-3 fabrikam net

5. Inthe Select Users or Groups dialog box, type lIS_IUSRS, click Check Names, and then click OK.

6. Inthe Permissions for [folder name] dialog box, notice that the new group has been assigned
the Read & execute, List folder contents, and Read permissions by default. Leave this
unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

As a final task, you must grant the appropriate permissions to the non-administrator user whose
credentials you'll use to deploy content. This user requires the permissions to deploy content remotely
to your website.

To configure IIS website permissions for a non-administrator domain user

1. InlIS Manager, in the Connections pane, right-click your website node (for example, DemoSite),
point to Deploy, and then click Configure Web Deploy Publishing.

123

€-d|7 |8
&5 Start Page
E‘...Gj STAGEWEE1 (FABRIKAM\Administrator)
-} Application Pools
=-[a] Sites
-6 Default Web Site
=@
2 Explore

Edit Permissions. ..

0 Add Application...
L“J Add Virtual Directory...

Edit Bindings...

Manage Web Site »

Refresh

X E

Remawve

| Deploy 4 | Configure Web Deploy Publishing...

Rename {QJ Expart Application. ..
E[Import Application. ..

K Delete Web Site and Content

Switch to Content View

[:I' I

?'_‘3 Recyde...

2. Inthe Configure Web Deploy Publishing dialog box, to the right of the Select a user to give
publishing permissions list, click the ellipsis button.

Configure Web Deploy Publishing ilil

Select a user to give publishing permissions

| FABRIKAM\Administrator - EI

Enter SQL Server connection string to be used for publishing

| e

Enter MySQL connection string to be used for publishing

Specify the URL for the publishing server connection
Ihtn:ls:HSTAGEWEBl:Sl?Z{msdepon.axd

Specify a location to save the publish settings file
IC:‘JJsers‘lﬁdministrahor.Fﬁ\BRlKAM\DeskhopFﬂBRIKAM_Adm

Results
=l

3. Inthe Allow User dialog box, type the domain and user name of the account you want to use to
deploy content, and then click OK.
124

Allow User... Al

Select the type of user:
' Windows

IFABRIKAM‘\,EBginngpID}'er Select... |

s Manzger,

I Select... |
OK I Cancel |

4. Inthe Configure Web Deploy Publishing dialog box, click Setup.

Configure Web Deploy Publishing ﬂﬂ

Select a user to give publishing permissions

IF.ﬁ.BRIKAM‘\,smgingdeployer j |
Enter SQL Server connection string to be used for publishing

Enter MySQL connection string to be used for publishing

|
ISper.:iFy the URL for the publishing server connection
Ihttps:,.';'STAGEWEBl:Sl?Hmsdeploy.axd
Spedify a location to save the publish settings file
IC:‘n,Users‘n,Administ’ahor.FABRIKAM‘;DESktop\FABRIKAM_sEg _l
Results

Publish enabled for 'FABRIKAM\stagingdeployer' j

Granted 'FABRIKAM\stagingdeployer' full control on 'C:
\DemoSite'

Successfully created settings file 'C:\Users

\Administrator . FABRIKAM\Desktop LI

Setup I Close |

Note: This operation performs two key functions in one step. First, it grants the user
permission to modify the website remotely through the Web Management Service, according
to the delegation rules you examined in the previous section. Second, it grants the user full
control of the source folder for the website, which allows the user to add, modify, and set
permissions on the website content.

5. Inthe Configure Web Deploy Publishing dialog box, click Close.

Configure Firewall Exceptions

By default, the IS Web Management Service listens on TCP port 8172. If Windows Firewall is enabled on
your web server, you'll need to create a new inbound rule to allow TCP traffic on port 8172 (all
outbound traffic is permitted by default in Windows Firewall). If you use a third-party firewall, you'll
need to create rules to allow traffic.

125

Direction From Port To Port Port Type
Inbound Any 8172 TCP

Outbound 8172 Any TCP

For more information on configuring rules in Windows Firewall, see Configuring Firewall Rules. For third-

party firewalls, please consult your product documentation.

Conclusion

Your web server should now be ready to accept remote deployments to the Web Deploy Handler
through the Web Management Service. Before you attempt to deploy a web application to the server,
you may want to check these key points:

e Have you enabled basic authentication at the server level in IIS?

e Have you enabled remote connections to the Web Management Service?

e Have you started the Web Management Service?

e Are there management service delegation rules in place?

e Does the application pool identity have read access to the source folder for your website?
e Does the non-administrator user account have site-level permissions in 11S?

e Does your firewall allow incoming connections to the server on TCP port 81727

Further Reading

For guidance on how to configure custom Microsoft Build Engine (MSBuild) project files to deploy web
packages to the Web Deploy Handler, see Configure Deployment Properties for a Target Environment.

Configuring a Web Server for Web Deploy Publishing (Offline Deployment)

This topic describes how to configure an IIS web server to support offline web publishing and
deployment.

When you work with Internet Information Services (IIS) Web Deployment Tool (Web Deploy) 2.0 or
later, there are three main approaches you can use to get your applications or sites onto a web server.
You can:

e Use the Web Deploy Remote Agent Service. This approach requires less configuration of the web
server, but you need to provide the credentials of a local server administrator in order to deploy
anything to the server.

e Use the Web Deploy Handler. This approach is a lot more complex and requires more initial
effort to set up the web server. However, when you use this approach, you can configure IIS to

126

http://technet.microsoft.com/en-us/library/dd448559(WS.10).aspx

allow non-administrator users to perform the deployment. The Web Deploy Handler is only

available in IS version 7 or later.

e Use offline deployment. This approach requires the least configuration of the web server, but a
server administrator must manually copy the web package onto the server and import it
through IIS Manager.

For more information on the key features, advantages, and disadvantages of these approaches, see
Choosing the Right Approach to Web Deployment.

Is Offline Deployment the Right Approach for You?

Yes, if your network infrastructure or security restrictions prevent remote deployment. This is most
likely to be the case in Internet-facing production environments, where the web servers are isolated—
either physically or by firewalls and subnets—from the rest of your server infrastructure.

Obviously, this approach becomes less desirable if your web applications are updated on a regular basis.
If your infrastructure allows it, you may want to consider enabling remote deployment, using either the
Web Deploy Handler or the Web Deploy Remote Agent Service.

Task Overview

To configure the web server to support offline import and deployment of web packages, you'll need to:
e Install IS 7.5 and the IIS 7 recommended configuration.
e Install Web Deploy 2.1 or later.
e Create an IS website to host the deployed content.

e Disable the Web Deployment Agent Service.

To host the sample solution specifically, you'll also need to:
e Install the .NET Framework 4.0.

e Install ASP.NET MVC 3.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this
topic assume that you're starting with a clean server build running Windows Server 2008 R2. Before you
continue, ensure that:

e Windows Server 2008 R2 Service Pack 1 and all available updates are installed.
e The server is domain-joined.

e The server has a static IP address.

127

Note: For more information on joining computers to a domain, see Joining Computers to the Domain
and Logging On. For more information on configuring static IP addresses, see Configure a Static IP
Address.

Install Products and Components

This section will guide you through installing the required products and components on the web server.
Before you begin, a good practice is to run Windows Update to ensure that your server is fully up to
date.

In this case, you need to install these things:

e 1IS 7 Recommended Configuration. This enables the Web Server (1IS) role on your web server
and installs the set of 1IS modules and components that you need in order to host an ASP.NET
application.

e .NET Framework 4.0. This is required to run applications that were built on this version of the
.NET Framework.

e Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,
MSDeploy.exe) on your server. Web Deploy integrates with 1IS and lets you import and export
web packages.

e ASP.NET MVC 3. This installs the assemblies you need to run MVC 3 applications.

Note: This walkthrough describes the use of the Web Platform Installer to install and configure various
components. Although you don't have to use the Web Platform Installer, it simplifies the installation
process by automatically detecting dependencies and ensuring that you always get the latest product
versions. For more information, see Microsoft Web Platform Installer 3.0.

To install the required products and components

1. Download and install the Web Platform Installer.

2. When installation is complete, the Web Platform Installer will launch automatically.

Note: You can now launch the Web Platform Installer at any time from the Start menu. To do
this, on the Start menu, click All Programs, and then click Microsoft Web Platform Installer.

3. Atthe top of the Web Platform Installer 3.0 window, click Products.
4. On the left side of the window, in the navigation pane, click Frameworks.

5. Inthe Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click
Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a
product or component is already installed, the Web Platform Installer will indicate this by
replacing the Add button with the text Installed.

128

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9805118
http://go.microsoft.com/?linkid=9805118

10.

Spotlight Products Applications

1Al i
Server
Frameworks nJ
Database
|1 Tools «®
i
nin
i

0 Items to be installed

Name

ASP.NET MVC 3 (Visual Studic 2010)
Microsoft .NET Framework 4

PHP538

ASP.NET MVC 3 Tools Update Language Packs
ASP.NET Web Pages

ASP.NET Web Pages Language Packs
Windows Cache Extension 1.1 for PHP 5.2
Windows Cache Extension 1.1 for PHP 5.3
NET Framework 35 5P 1

Windows PowerShell 2.0

In the ASP.NET MVC 3 (Visual Studio 2010) row, click Add.

In the navigation pane, click Server.

In the IS 7 Recommended Configuration row, click Add.

In the Web Deployment Tool 2.1 row, click Add.

=18)x]
ol
Released Install A
11/04/2011 Add
12/04/2010 Installed
29/08/2011 Add
10/05/2011 Add I
13/01/2011 Add |
13/01/2011 Add
28/06/2010 Add |
23/06/2010 Add
18/11/2008 Installed oo
16/04/2010 Installed ﬂ
Install I Eat |

Click Install. The Web Platform Installer will show you a list of products—together with any
associated dependencies—to be installed and will prompt you to accept the license terms.

129

T x|

Review the following list of third party application software, Microsoft products and components to be installed and
Windows components to be turned on. Third party applications and products are provided by the third parties listed
here; Microsoft grants you no rights for third party software. You are responsible for and must separately locate, read

Web Platform Installation

and accept these third party license terms

7% 1S 7 Recommended Configuration -
[IS: Static Content (Dependency)
1IS: Default Document (Dependency)
IIS: Directory Browsing (Dependency)
IIS: HTTP Errors (Dependency)
[IS: HTTP Logging (Dependency)
IIS: Logging Tools (Dependency)
1IS: Request Monitor (Dependency)
IIS: Request Filtering (Dependency)
IIS: Static Content Compression (Dependency)

Ll [oS P | e) ;]
By clicking "I Accept,” you agree to the license terms for the third party and Microsoft software listed above. If you do
not agree to all of the license terms, click "l Decline,

1Decline | 1 Accept I

11. Review the license terms, and if you consent to the terms, click | Accept.

12. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0

window.

If you installed the .NET Framework 4.0 before you installed IIS, you'll need to run the ASP.NET |IS
Registration Tool (aspnet_regiis.exe) to register the latest version of ASP.NET with IIS. If you don't do
this, you'll find that 1IS will serve static content (like HTML files) without any problems, but it will return
HTTP Error 404.0 — Not Found when you attempt to browse to ASP.NET content. You can use the next
procedure to ensure that ASP.NET 4.0 is registered.

To register ASP.NET 4.0 with IIS
1. Click Start, and then type Command Prompt.

2. Inthe search results, right-click Command Prompt, and then click Run as administrator.

3. Inthe Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework\v4.0.30319 directory.

4. Type this command, and then press Enter:
aspnet_regiis -iru

5. If you plan to host 64-bit web applications at any point, you should also register the 64-bit
version of ASP.NET with IIS. To do this, in the Command Prompt window, navigate to the
%WINDIR%\Microsoft.NET\Framework64\v4.0.30319 directory.

6. Type this command, and then press Enter:
130

http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k6h9cz8h(v=VS.100).aspx

aspnet_regiis -iru

As a good practice, use Windows Update again at this point to download and install any available
updates for the new products and components you've installed.

Configure the IIS Website

Before you can deploy web content to your server, you need to create and configure an 1IS website to
host the content. Web Deploy can only deploy web packages to an existing IS website; it can't create
the website for you. At a high level, you'll need to complete these tasks:

e Create a folder on the file system to host your content.
e Create an IIS website to serve the content, and associate it with the local folder.

e Grant read permissions to the application pool identity on the local folder.

Although there's nothing stopping you from deploying content to the default website in IIS, this
approach is not recommended for anything other than test or demonstration scenarios. To simulate a
production environment, you should create a new |IS website with settings that are specific to the
requirements of your application.

To create and configure an IIS website

1. On the local file system, create a folder to store your content (for example, C:\DemoSite).

2. On the Start menu, point to Administrative Tools, and then click Internet Information Services
(11S) Manager.

3. In lIS Manager, in the Connections pane, expand the server node (for example, PROWEB1).

€-H|7 8
o HE Start Page
ERE] PROVEB 1 (FABRIKAM\Administrator)
= q:? Application Poals
[+ @] Sites

4. Right-click the Sites node, and then click Add Web Site.
5. In the Site name box, type a name for the 1IS website (for example, DemoSite).

6. Inthe Physical path box, type (or browse to) the path to your local folder (for example,
C:\DemoSite).

7. Inthe Port box, type the port number on which you want to host the website (for example, 85).

Note: The standard port numbers are 80 for HTTP and 443 for HTTPS. However, if you host this
website on port 80, you’ll need to stop the default website before you can access your site.

131

8. Leave the Host name box blank, unless you want to configure a Domain Name System (DNS)
record for the website, and then click OK.

Add Web Site ed
Site name: Application pool:
|pemosite Demosite Select... |
—Content Directory
Physical path:

IC \DemoSite _l

Pass-through authentication

Connect as... | Test Settings...
—Binding
Type: IP address: Port:
Ihttp ﬂ IAII Unassigned j |85
Host name:

Example: www.contosa.com or marketing.contoso.com

V¥ Start Web site immediately

oK I Cancel |

Note: In a production environment, you’ll likely want to host your website on port 80 and
configure a host header, together with matching DNS records. For more information on
configuring host headers in IIS 7, see Configure a Host Header for a Web Site (lIS 7). For more

information on the DNS Server role in Windows Server 2008 R2, see DNS Server Overview and
DNS Server.

9. Inthe Actions pane, under Edit Site, click Bindings.

10. In the Site Bindings dialog box, click Add.

Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 *

Remove |
Browse |
1] | |

Cloze |

11. In the Add Site Binding dialog box, set the IP address and Port to match your existing site
configuration.

132

http://technet.microsoft.com/en-us/library/cc753195(WS.10).aspx
http://technet.microsoft.com/en-gb/library/cc770392.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448607

12. In the Host name box, type the name of your web server (for example, PROWEB1), and then

click OK.
Site Bindings
Type | Host Mame Port | IP Address | Binding
http 85 =
htip proweb 1 85 =

1] |

Add...

Edit...

Remowve

Browse

il

Close

Note: The first site binding allows you to access the site locally using the IP address and port or
http://localhost:85. The second site binding allows you to access the site from other

computers on the domain using the machine name (for example, http://proweb1:85).

13. In the Site Bindings dialog box, click Close.

14. In the Connections pane, click Application Pools.

15.

In the Application Pools pane, right-click the name of your application pool, and then click Basic

Settings. By default, the name of your application pool will match the name of your website (for

example, DemoSite).
16.
2xl

Edit Application Pool

MName:
DemaSite

NET Framework version:

Managed pipeline mode:
IInhegrated j

¥ start application pool immediately

[o |

Cancel |

In the .NET Framework version list, select .NET Framework v4.0.30319, and then click OK.

Note: The sample solution requires .NET Framework 4.0. This is not a requirement for Web

Deploy in general.

In order for your website to serve content, the application pool identity must have read permissions on

the local folder that stores the content. In IIS 7.5, application pools run with a unique application pool

identity by default (in contrast to previous versions of 1IS, where application pools would typically run

using the Network Service account). The application pool identity is not a real user account and does not

133

show up on any lists of users or groups—instead, it's created dynamically when the application pool is
started. Each application pool identity is added to the local IS_IUSRS security group as a hidden item.

To grant permissions to an application pool identity on a file or folder, you have two options:

e Assign permissions to the application pool identity directly, using the format 1IS
AppPool\[application pool name] (for example, IIS AppPool\DemoSite).

e Assign permissions to the IIS_IUSRS group.
The most common approach is to assign permissions to the local lIS_IUSRS group, because this

approach lets you change application pools without reconfiguring file system permissions. The next
procedure uses this group-based approach.

Note: For more information on application pool identities in 1IS 7.5, see Application Pool Identities.

To configure folder permissions for an IIS website

1. In Windows Explorer, browse to the location of your local folder.

2. Right-click the folder, and then click Properties.

3. On the Security tab, click Edit, and then click Add.

4. Click Locations. In the Locations dialog box, select the local server, and then click OK.

2|

Select the location you want to search.

=~ Entire Directory
[#]-53 fabrikam net

ok | cancel |

4

5. Inthe Select Users or Groups dialog box, type IIS_IUSRS, click Check Names, and then click OK.

6. Inthe Permissions for [folder name] dialog box, notice that the new group has been assigned
the Read & execute, List folder contents, and Read permissions by default. Leave this
unchanged and click OK.

7. Click OK to close the [folder name] Properties dialog box.

134

http://go.microsoft.com/?linkid=9805123

Disable the Remote Agent Service

When you install Web Deploy, the Web Deployment Agent Service is installed and started automatically.
This service allows you to deploy and publish web packages from a remote location. You won't be using
the remote deployment capability in this scenario, so you should stop and disable the service.

Note: You don't need to stop the remote agent service in order to import and deploy a web package
manually. However, it's a good practice to stop and disable the service if you don't plan to use it.

You can stop and disable a service in multiple ways, using various command-line utilities or Windows
PowerShell cmdlets. This procedure describes a straightforward Ul-based approach.

To stop and disable the remote agent service

1. On the Start menu, point to Administrative Tools, and then click Services.

2. Inthe Services console, locate the Web Deployment Agent Service row.

Name = | Description | status | Startup Type | Log On As |
& Thread Ordering Server Provides ordered execution for a group of threads wit... Manual Local Service
L. TPM Base Services Enables access to the Trusted Platform Module (TEM]), ... Manual Local Service
5L UPNP Device Host Alows UPnP devices to be hosted on this computer, If ... Disabled Local Service
155 User Profile Service This service is responsible for loading and unloading us.., Started Automatic Local System
G virtual Disk Provides management services for disks, volumes, fie ... Marial Local System

& Volume Shadow Copy Manages and implements Volume Shadow Copies used ... Manual Local System

AWeb Deployment Agent Service Remote agent service for the Microsoft Web Deploy 2.0, Automatic MNeh Ervice
ShWindows Audio Manages audio for Windows-based programs. If this s... Manual Local Service
355 Windows Audio Endpoint Builder Manages audio devices for the Windows Audio service. .. Manual Local System

3. Right-click Web Deployment Agent Service, and then click Properties.
4. Inthe Web Deployment Agent Service Properties dialog box, click Stop.

5. Inthe Startup type list, select Disabled, and then click OK.

135

Web Deployment Agent Service Properties (| x|

General | Log On | Recovery | Dependencies |

Service name: MzDepSve

Digplay name: ‘Web Deployment Agent Service

Dessciphion:)zﬂemote agent service for the Microsoft Web Deploy - |
: 0. ﬂ

Path to executable:

"C:\Program Files®\J15 Microsoft Web Deploy'\MsDepSve exe” funService:!

Startup type:

Help me configure service startup options.

Service status: Stopped

Start | Stop I Pauge Eesume

*You can specify the start parameters that apply when you start the service
from here.

Start parameters: I

QK I Cancel Apply

Conclusion

At this point, your web server is ready for offline web package deployment. Before you attempt to
import web packages to an IIS website, you may want to check these key points:

e Have you registered ASP.NET 4.0 with 1IS?
e Does the application pool identity have read access to the source folder for your website?

e Have you stopped the Web Deployment Agent Service?

Configuring a Database Server for Web Deploy Publishing

This topic describes how to configure a SQL Server 2008 R2 database server to support web deployment
and publishing.

The tasks described in this topic are common to every deployment scenario—it doesn't matter whether
your web servers are configured to use the IIS Web Deployment Tool (Web Deploy) Remote Agent
Service, the Web Deploy Handler, or offline deployment or your application is running on a single web
server or a server farm. The way you deploy the database may change according to security
requirements and other considerations. For example, you might deploy the database with or without
sample data, and you might deploy user role mappings or configure them manually after deployment.
However, the way you configure the database server remains the same.

136

Task Overview

You don't have to install any additional products or tools to configuring a database server to support
web deployment. Assuming that your database server and your web server run on different machines,
you simply need to:

e Permit SQL Server to communicate using TCP/IP.

e Allow SQL Server traffic through any firewalls.

e Give the web server machine account a SQL Server login.

e Map the machine account login to any required database roles.

e Give the account that will run the deployment a SQL Server login and database creator
permissions.

e To support repeat deployments, map the deployment account login to the db_owner database
role.

This topic will show you how to perform each of these procedures. The tasks and walkthroughs in this
topic assume that you're starting with a default instance of SQL Server 2008 R2 running on Windows
Server 2008 R2. Before you continue, ensure that:

e Windows Server 2008 R2 Service Pack 1 and all available updates are installed.
e The server is domain-joined.
e The server has a static IP address.

e SQL Server 2008 R2 Service Pack 1 and all available updates are installed.

The SQL Server instance only needs to include the Database Engine Services role, which is included
automatically in any SQL Server installation. However, for ease of configuration and maintenance, we
recommend that you include the Management Tools — Basic and Management Tools — Complete server
roles.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain

and Logging On. For more information on configuring static IP addresses, see Configure a Static IP
Address. For more information on installing SQL Server, see Installing SQL Server 2008 R2.

Enable Remote Access to SQL Server

SQL Server uses TCP/IP to communicate with remote computers. If your database server and your web
server are on different machines, you need to:

e Configure SQL Server networking settings to allow communication over TCP/IP.

e Configure any hardware or software firewalls to allow TCP traffic (and in some cases User
Datagram Protocol (UDP) traffic) on the ports that the SQL Server instance uses.
137

http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/bb500395.aspx

To enable SQL Server to communicate over TCP/IP, use SQL Server Configuration Manager to change the
network configuration for your SQL Server instance.
To enable SQL Server to communicate using TCP/IP

1. On the Start menu, point to All Programs, click Microsoft SQL Server 2008 R2, click

Configuration Tools, and then click SQL Server Configuration Manager.

2. Inthe tree view pane, expand SQL Server Network Configuration, and then click Protocols for
MSSQLSERVER.

Note: If you have installed multiple instances of SQL Server, you'll see a Protocols for [instance
name] item for each instance. You need to configure network settings on an instance-by-
instance basis.

3. Inthe details pane, right-click the TCP/IP row, and then click Enable.

= sql Server Configuration Manager

File Action View Help

e AR ERESN 7|

@ SOL Server Configuration Manager (Local) Protocal MName | Status
5| SOL Server Services %~ Shared Memary Enabled
& S0L Server Metwork Configuration (32bit) %~ Mamed Pipes Dizabled
2> S0L Mative Client 10.0 Configuration (32bit) TCP/IP Enabierl

4 S0L Server Metwork Configuration Y VIA Disabled
=~ Protocols for MSSQLSERVER
.. S0L Native Client 10.0 Configuration

4. In the Warning dialog box, click OK.

y | Any changes made will be saved; however, they wil not take
¢ effect until the service is stopped and restarted.

You need to restart the MSSQLSERVER service before your new network configuration will take
effect. You can do that at a command prompt, from the Services console, or from SQL Server
Management Studio. In this procedure, you'll use SQL Server Management Studio.

5. Close SQL Server Configuration Manager.

6. On the Start menu, point to All Programs, click Microsoft SQL Server 2008 R2, and then click
SQL Server Management Studio.

138

7. Inthe Connect to Server dialog box, in the Server name box, type the name of the database
server, and then click Connect.

f_'-Cannect to Server 5'
ﬁ Microsoft*
2 SQL Server2003r2
Server type: IDatabase Engine j
Server name: j
Authertication: I"Mnduws Authentication j
|ser name: IF:’-'-.EHII{AI"-"I"-au:Iministlatnr j
Password: I
I | Remember password
Connect I Cancel | Help | Options =» |

8. Inthe Object Explorer pane, right-click the parent server node (for example, TESTDB1), and
then click Restart.

Connect = _"!j gg BT IE £
= Lﬂ TESTDBE (S0QL Server 10,50, 2500 - FABRIKAM\administrator)

[Databases

[Security

3 Server Ohjects

[Replication

[Management

ﬁ SQL Server Agent

9. Inthe Microsoft SQL Server Management Studio dialog box, click Yes.

Microsoft SQL Server Management Studio

Are you sure you want to restart the MSS0QLSERVER service on TESTDE1?

EE| Yes

Mo

10. When the service has restarted, close SQL Server Management Studio.

139

To allow SQL Server traffic through a firewall, you first need to know which ports your SQL Server
instance is using. This will depend on how the SQL Server instance was created and configured:

e Adefault instance of SQL Server listens for (and responds to) requests on TCP port 1433.

e A named instance of SQL Server listens for (and responds to) requests on a dynamically assigned
TCP port.

e If the SQL Server Browser service is enabled, clients can query the service on UDP port 1434 to
find out which TCP port to use for a particular SQL Server instance. However, this service is
often disabled for security reasons.

Assuming that you're using a default instance of SQL Server, you need to configure your firewall to allow
traffic.

Direction From Port To Port Port Type
Inbound Any 1433 TCP
Outbound 1433 Any TCP

Note: Technically, a client computer will use a randomly assigned TCP port between 1024 and 5000 to
communicate with SQL Server, and you can restrict your firewall rules accordingly. For more
information on SQL Server ports and firewalls, see TCP/IP port numbers required to communicate to
SQL over a firewall and How to: Configure a Server to Listen on a Specific TCP Port (SQL Server
Configuration Manager).

In most Windows Server environments, you'll likely have to configure Windows Firewall on the database
server. By default, Windows Firewall allows all outbound traffic unless a rule specifically prohibits it. To
enable your web server to reach your database, you need to configure an inbound rule that allows TCP
traffic on the port number that the SQL Server instance uses. If you're using a default instance of SQL
Server, you can use the next procedure to configure this rule.

To configure Windows Firewall to allow communication with a default SQL Server instance

1. On the database server, on the Start menu, point to Administrative Tools, and then click
Windows Firewall with Advanced Security.

2. Inthe tree view pane, click Inbound Rules.

ﬁ Windows Firewall with Advanced Security

%l Inbound Rules

% Cuthound Rules
:'l.. Connection Security Rules
B Monitoring

3. Inthe Actions pane, under Inbound Rules, click New Rule.

140

http://go.microsoft.com/?linkid=9805125
http://go.microsoft.com/?linkid=9805125
http://msdn.microsoft.com/en-us/library/ms177440.aspx
http://msdn.microsoft.com/en-us/library/ms177440.aspx

4. Inthe New Inbound Rule Wizard, on the Rule Type page, select Port, and then click Next.

.‘.u Inbound Rule Wizard
Rule Type
Select the type of firewall nie to create.

5. Onthe Protocol and Ports page, ensure that TCP is selected, and in the Specific local ports box,
type 1433, and then click Next.

141

™ New Inbound Rule Wizard
Protocol and Ports
Specify the protocols and ponts to which this nue applies.

'@ FRule Type

‘;;,.._‘

‘@ Profile
‘O&me

6. On the Action page, leave Allow the connection selected and click Next.

7. On the Profile page, leave Domain selected, clear the Private and Public check boxes, and then
click Next.

142

* New Inbound Rule Wizard “ill

Profile
Specify the profies for which this nule applies

Steps:
» Rule Type When does this nide apply?

¢ Protocol and Ports
» Action V' Domain
+ Profile Applies when a computer is connected to its comporate domain.

¢ Name [~ Private
Foplies when a computer is connected to a prvate network location.

™ Public
Applies when a computer is connected to a public network location.

<o [[Het>]

Cancel

8. On the Name page, give the rule a suitably descriptive name (for example, SQL Server default
instance — network access), and then click Finish.

For more information on configuring Windows Firewall for SQL Server, particularly if you need to
communicate with SQL Server over non-standard or dynamic ports, see How to: Configure a Windows

Firewall for Database Engine Access.

Configure Logins and Database Permissions

When you deploy a web application to Internet Information Services (11S), the application runs using the
identity of the application pool. In a domain environment, application pool identities use the machine
account of the server on which they run to access network resources. Machine accounts take the form
[domain name]\[machine name]$—for example, FABRIKAM\TESTWEB1S. To allow your web application
to access a database across the network, you need to:

e Add alogin for the web server machine account to the SQL Server instance.

e Map the machine account login to any required database roles (typically db_datareader and
db_datawriter).
143

http://technet.microsoft.com/en-us/library/ms175043.aspx
http://technet.microsoft.com/en-us/library/ms175043.aspx

If your web application is running on a server farm, rather than a single server, you'll need to repeat
these procedures for every web server in the server farm.

Note: For more information on application pool identities and accessing network resources, see
Application Pool Identities.

You can approach these tasks in various ways. To create the login, you can either:

e Create the login manually on the database server, using Transact-SQL or SQL Server
Management Studio.

e Use aSQL Server 2008 Server Project in Visual Studio to create and deploy the login.

A SQL Server login is a server-level object, rather than a database-level object, so it's not dependent on
the database you want to deploy. As such, you can create the login at any point, and the easiest
approach is often to create the login manually on the database server before you start deploying
databases. You can use the next procedure to create a login in SQL Server Management Studio.

To create a SQL Server login for the web server machine account

1. On the database server, on the Start menu, point to All Programs, click Microsoft SQL Server
2008 R2, and then click SQL Server Management Studio.

2. Inthe Connect to Server dialog box, in the Server name box, type the name of the database
server, and then click Connect.

E!Connect to Server X
ﬁ Microsoft*
SQL Server2008Rr2

Servertype: IDataI:uase Engine j
Server name: j
Authentication: I‘.".-'inl:ll:nws Authentication j

lser name: IF.'—.EFEIH'—.I-J administrator j

Password: I

I" | Remember password
Connect I Cancel | Help Options =

3. Inthe Object Explorer pane, right-click Security, point to New, and then click Login.

4. Inthe Login — New dialog box, in the Login name box, type the name of your web server
machine account (for example, FABRIKAM\TESTWEB1S).
144

http://go.microsoft.com/?linkid=9805123

Selecup*f | éw.ﬁw

| & General 1
A Server Roles N
- i Login name: [FABRIKAM\TESTWEB1S Search... |
& Securables & Windows authentication
| & Status " SQL Server authentication
Password I
Confim password I
l_ 'j_»_.,, ity old password
Ol psssword '
IV Enforce pesewerd poiicy
V' Eforce pessword ex
¥V User mu aAr oGn
" Mappedto cerificate LI
" Mapped to asymmetric key LI
™ Map to Credentia R
Mopodrodere [s |
Server:
TESTDB1
Connection:
FABRIKAM\administrator
% View connection properties
Progress il
Ready Default database: lmasler El
Defaut language: | defak> B
[ok] cancel |
4
5. Click OK.

At this point, your database server is ready for Web Deploy publishing. However, any solutions you

deploy won't work until you map the machine account login to the required database roles. Mapping

the login to database roles requires a lot more thought, as you can't map roles until after you've
deployed the database. To map the machine account login to the required database roles, you can

either:

e Assign the database roles to the login manually, after you've deployed the database for the first

time.

e Use a post-deployment script to assign the database roles to the login.

For more information on automating the creation of logins and database role mappings, see Deploying

Database Role Memberships to Test Environments. Alternatively, you can use the next procedure to

145

map the machine account login to the required database roles manually. Remember that you can’t
perform this procedure until after you've deployed the database.

To map database roles to the web server machine account login

1. Open SQL Server Management Studio as before.

2. Inthe Object Explorer pane, expand the Security node, expand the Logins node, and then
double-click the machine account login (for example, FABRIKAM\TESTWEB1S).

Connect~ 33 3 m E ;

= | % TESTDB1 (SQL Server 10.50.2500 - FABRIKAM \administrator)
[Databases
= [Security
[= 3 Logins
##MS_PolicyEventProcessinglogin##
##MS_PolicyTsglExecutionLogin##
FABRIKAM\administrator
FABRIKAM\matt
MT AUTHORITY\SYSTEM
f‘!_rg] MT SERVICE\MSSQLSERVER

f;'_rg] MT SERVICE\SQLSERVERAGENT
£, sa
oW ABRIKAMYTESTWEB 1§
[Server Roles
[Credentials
[Cryptographic Providers
3 Audits
[Server Audit Specifications
3 Server Objects
[Replication
[Management
[S0L Server Agent

rErfplobs

3. Inthe Login Properties dialog box, click User Mapping.

4. Inthe Users mapped to this login table, select the name of your database (for example,
ContactManager).

5. Inthe Database role membership for: [database name] list, select the permissions required. In
the case of the Contact Manager sample solution, you must select the db_datareader and
db_datawriter roles.

146

=I5/
| Selectapage .5 Scipt « L) Help
& General
44 Server Roles
“_;, User Maops Users mapped to this login:
A Securables Map | Database | User | Default Schema
2 Status ¥ | ContactManager FABRIKAM\TESTWEB1S =
r master
r modei
I msdb
r tempdb
I~ Guest sccount ensbled for- ContaciManager

Server:
TESTDB1

Connection:
FABRIKAM\administrator

Ready

Database role membership for: ContactManager

[T] db_accessadmin

["] db_backupoperator
[l db_datareader

V2] db_datawriter
("] db_ddladmin
[[] db_denydatareader
[T] db_denydatawriter
7] db_owner

[[] db_securtyadmin
(vl public

6. Click OK.

While manually mapping database roles is often more than adequate for test environments, it's less
desirable for automated or one-click deployments to staging or production environments. You can find
more information on automating this kind of task using post-deployment scripts in Deploying Database
Role Memberships to Test Environments.

Note: For more information on server projects and database projects, see Visual Studio 2010 SQL
Server Database Projects.

Configure Permissions for the Deployment Account

If the account that you'll use to run the deployment is not a SQL Server administrator, you'll also need to
create a login for this account. In order to create the database, the account must be a member of the
dbcreator server role or have equivalent permissions.

147

http://msdn.microsoft.com/en-us/library/ff678491.aspx
http://msdn.microsoft.com/en-us/library/ff678491.aspx

Note: When you use Web Deploy or VSDBCMD to deploy a database, you can use Windows credentials
or SQL Server credentials (if your SQL Server instance is configured to support mixed mode
authentication). The next procedure assumes that you want to use Windows credentials, but there's
nothing stopping you from specifying a SQL Server user name and password in your connection string
when you configure the deployment.

To set up permissions for the deployment account

1. Open SQL Server Management Studio as before.
2. Inthe Object Explorer pane, right-click Security, point to New, and then click Login.

3. Inthe Login — New dialog box, in the Login name box, type the name of your deployment
account (for example, FABRIKAM\matt).

4. Inthe Select a page pane, click Server Roles.
5. Select dbcreator, and then click OK.

[F Lo Propertes - FhpRIkA\mate -l0/x]

Z 5.5 Script ~ L) Help

2 General

Server role is used to grant servervide security privileges to a user,

Server roles:

[[] bukadmin

[v] dbcreator

[7] diskadmin
[T] processadmin
v public

[] secuntyadmin
[] serveradmin
[[] setupadmin
[sysadmin

| Connecton

Server
STAGEDB1

Connection:
FABRIKAM\Administrator

%2 View connection properties

Ready

0K I Cancel

4

To support subsequent deployments, you'll also need to add the deploying account to the db_owner
role on the database after the first deployment. This is because on subsequent deployments you're

148

modifying the schema of an existing database, rather than creating a new database. As described in the
previous section, you can't add a user to a database role until you've created the database, for obvious
reasons.

To map the deployment account login to the db_owner database role

1. Open SQL Server Management Studio as before.

2. Inthe Object Explorer window, expand the Security node, expand the Logins node, and then
double-click the machine account login (for example, FABRIKAM\matt).

3. Inthe Login Properties dialog box, click User Mapping.

4. Inthe Users mapped to this login table, select the name of your database (for example,
ContactManager).

5. In the Database role membership for: [database name] list, select the db_owner role.

-loix
TR | o - e
4+ Server Roles
- i - Users mapped to this login:
Securables Map | Database [User [Defaut Schema |
& Status I CMAppServices
| master
' model
B msdb
[T tempdd
I Gues account enabied for- CortactMaiager
Database role membership for: Contact Manager
_] db_accessadmin
db_backupoperator
Server: P,
TESTDB! d_dutareader
] db_datawrter
Connection) db_ddladmin
FABRIKAM\administrator 1 db_denydatareader
4? View connection properties db_denydatawrter
] db_securityadmin
m v public

Ready

| OK I Cancel

I/,

6. Click OK.

149

Conclusion

Your database server should now be ready to accept remote database deployments and to allow remote
IIS web servers to access your databases. Before you attempt to deploy and use databases, you may
want to check these key points:

e Have you configured SQL Server to accept remote TCP/IP connections?
e Have you configured any firewalls to permit SQL Server traffic?
e Have you created a machine account login for every web server that will access SQL Server?

e Does your database deployment include a script to create user role mappings, or do you need
to create these manually after you deploy the database for the first time?

e Have you created a login for the deployment account and added it to the dbcreator server role?

Further Reading

For guidance on deploying database projects, see Deploying Database Projects. For guidance on creating

database role memberships by running a post-deployment script, see Deploying Database Role

Memberships to Test Environments. For guidance on how to meet the unique deployment challenges

that membership databases pose, see Deploying Membership Databases to Enterprise Environments.

Creating a Server Farm with the Web Farm Framework

This topic describes how to use the Web Farm Framework (WFF) 2.0 to create and configure a web
server farm from a collection of servers.

Why Should You Create a Server Farm?

WEFF lets you synchronize web platform products and components, web applications, websites, and
configuration settings across multiple load-balanced web servers. In scenarios where you need more
than one web server, like staging and production environments, this can vastly simplify your deployment
and configuration process. You can deploy a web application to a single server—the primary server—and
WEFF will automatically replicate that web application on all the other web servers in the server farm.

Understanding the Web Farm Framework

You can use WFF 2.0 to provision, manage, and deploy content to a group of web servers. A WFF
deployment consists of three key server roles:

e The controller server. You use this server to create and configure WFF server farms. The
controller server manages the synchronization of web platform components, configuration
settings, and applications between the web servers in a server farm. You install WFF 2.0 on the
controller server, and the controller server will in turn install the WFF agent on each of the
servers in a server farm. The controller server does not conceptually belong to any WFF server
farm, and a single controller server can manage multiple server farms. In this scenario, you use

150

a single WFF controller server to create and manage the staging server farm and the production
server farm.

e The primary server. Each WFF server farm includes a single primary server. When you install
web platform components or deploy applications to the primary server, the WFF synchronizes
your changes to all the other servers in the server farm.

e The secondary server. Each WFF server farm includes one or more secondary servers. Any
changes you make to the primary server are replicated to every secondary server within the
server farm.

This shows how these server roles relate to the Fabrikam, Inc. staging and production environments:

Controller

Primary

L ag

y&

Secondary Secondary

Staging Server Farm Production Server Farm

In this scenario, the staging environment and the production environment are both configured as WFF
server farms. A single WFF controller server manages both farms. Within each server farm, any changes
to the primary server are replicated to every secondary server.

Before you start to configure your staging and production environments, we recommend that you read
these articles to familiarize yourself with the key concepts of WFF 2.0:
151

e QOverview of the Web Farm Framework 2.0 for lIS 7

e Setting up a Server Farm with the Web Farm Framework 2.0 for 1IS 7

e System and Platform Requirements for the Web Farm Framework 2.0 for IS 7

Task Overview

To complete the tasks and walkthroughs in this topic, you'll need at least three servers—one WFF
controller, one primary web server for the server farm, and one or more secondary web servers for the
server farm. You can add more secondary servers to a WFF server farm at any time. At a high level, to
create and configure a WFF server farm for your staging or production environment you'll need to:

e Create a controller server by installing Internet Information Services (11S) 7.5 and WFF 2.0.

e Prepare primary and secondary servers by creating a common administrator account and
configuring firewall exceptions.

e Configure the server farm by using 1IS Manager on the controller server.

e Configure load balancing using IIS Application Request Routing (ARR) or an alternative load-
balancing technology.

The tasks and walkthroughs in this topic assume that you're starting with clean server builds running
Windows Server 2008 R2. Before you begin, for each server, ensure that:

e Windows Server 2008 R2 Service Pack 1 and all available updates are installed.
e The server is domain-joined.

e The server has a static IP address.

Note: For more information on joining computers to a domain, see Joining Computers to the Domain
and Logging On. For more information on configuring static IP addresses, see Configure a Static IP
Address.

Create the WFF Controller Server

To create a WFF controller server, you'll need to install both 1IS 7 or later and WFF 2.0 or later. Under
the covers, WFF uses the 1IS Web Deployment Tool (Web Deploy) 2.x to synchronize the servers in your
farm. If you use the Web Platform Installer to install WFF, the installer will automatically download and

install Web Deploy for you.

To create the WFF controller server

1. Download and install the Web Platform Installer.

2. At the top of the Web Platform Installer 3.0 window, click Products.

3. On the left side of the window, in the navigation pane, click Server.
152

http://go.microsoft.com/?linkid=9805126
http://go.microsoft.com/?linkid=9805127
http://go.microsoft.com/?linkid=9805128
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc725618(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc754203(v=ws.10).aspx
http://go.microsoft.com/?linkid=9739157

4.
5.

In the IS 7 Recommended Configuration row, click Add.

In the Web Farm Framework 2.x row, click Add.

§ Web Platform Installer 3.0 §

Spotlight Products Applications

LAl

Server

. Frameworks

14

Database
Tools

ms t

pe install

‘A

s e T

Name

IS 7 Recommended Cenfiguration
[S 7.5 Express

Web Deployment Tool 2.1

Web Farm Framework 2.2

URL Rewrite 2.0

Search Engine Optimization Toolkit
1IS: FTP Publishing Service 7.5

IS Media Services 4.1

[IS Smocth Streaming Client 1.5 (Update 2)

TIS: Static Content

Options

=loix)
[I
Relessed Install Al
09/11/2010 M
11/04/2011 L‘ -
11/04/2011 ﬁ
18/10/2011 M
30/06/2010 Add
28/01/2010 Add
03/08/2009 Add
04/11/2010 Add
06/09/2011 Add
27/02/2008 Add :J

Install | Exit

Click Install. Notice that the Web Platform Installer has added the Web Deployment Tool, along
with various other dependencies, to the installation list.

153

Web Platform Installation :

Review the following list of third party application software, Microsoft products and components to be installed and
Windows components to be turned on. Third party applications and products are provided by the third parties listed
here; Microsoft grants you no rights for third party software. You are responsible for and must separately locate, read
and accept these third party license terms

7% Web Farm Framework 2.2 13mM8 A
View license terms
Downloaded from:
hitp-//dox 5Cro
157F91/WebFam2 x64 msi
Web Deployment Tool 2.1 (Dependency) 2.59 MB
View license terms
Downloaded from:
//downl 1) /dowr /B/
2039AF /WebDeploy 2 10 amd64 en-US msi

SQL Server 2008 R2 Management Objects (Dependency) 15.67 MB

View license terms

-
e Vit el e Ve el e NI M INAADTIAA CACT AT A/SAD NATINY —I

By clicking "I Accept,” you agree to the license terms for the third party and Microsoft software listed above. If you do
not agree to all of the license terms, click "I Decline.”

IDecline I Accept

7. Review the license terms, and if you consent to the terms, click | Accept.

8. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0
window.

Configure the Primary and Secondary Servers

Before you create a WFF server farm, you should complete some preparation tasks on the web servers
that will make up the farm:

e Add firewall exceptions to allow the Core Networking, Remote Administration, and File and
Printer Sharing features to communicate with the WFF controller server.

e Create a domain account (for example, FABRIKAM\stagingfarm) in Active Directory and add it
to the local administrators group on each server. You'll use this account as the server farm
administrator account when you create the server farm.

For more information on how to configure these firewall exceptions in Windows Firewall, see System
and Platform Requirements for the Web Farm Framework 2.0 for IIS 7. For other firewall systems,
consult your product documentation.

You can use the next procedure to add a domain account to the local administrators group in Windows
Server 2008 R2. You should perform this procedure on every server that you want to add to the server
154

http://go.microsoft.com/?linkid=9805128
http://go.microsoft.com/?linkid=9805128

farm—in other words, add the same domain account to the local administrators group on the primary
server and on each secondary server.

To add a domain account to the local administrators group

1. On the Start menu, point to Administrative Tools, and then click Server Manager.

2. Inthe Server Manager window, in the tree view pane, expand Configuration, expand Local

Users and Groups, and then click Groups.

E:-: Server Manager

File Action View Help

&= | 2zlal=HE

i‘a Server Manager (STAGEWEE1)
f}.! Roles
l‘fl Features
= Diagnostics
= _:'_ﬁ’,_!; Configuration
% Task Scheduler

| Users

§c -

== Storage

Windows Firewall with Advanced Security

16 Group(s)

Groups

MName I Description

i pdministrators
:P'_, Backup Operators

s _1uses
:P'_, Performance Log Users

:P'_, Power Users

& Network Configuration ...

#performance Monitor U. .,

Administrators have complete and u...
Backup Operators can override secu...

:P'_, Certificate Service DCO..., Members of this group are allowed t...
:P'_, Cryptographic Operators

Members are authorized to perform ...

.:}._ Services % pistributed COM Users Members are allowed to launch, acti...
:E?i WMI Control :P'_, Event Log Readers Members of this group can read eve...
= # Local Users and Groups P Guests Guests have the same access as me...

Built-n group used by Internet Infor...
Members in this group can have som...
Members of this group may schedule. ..
Members of this group can access p...
Power Users are induded for backw. ..

Q‘_, Print Operators Members can administer domain prin. ..
:P'_, Remote Desktop Users Members in this group are granted t...
:P'_, Replicator Supports file replication in a domain
:P'_, |sers |Users are prevented from making ac...

3. Inthe Groups pane, double-click Administrators.

4. Inthe Administrators Properties dialog box, click Add.

5. Inthe Select Users, Computers, Service Accounts, or Groups dialog box, type (or browse) to

your domain account (for example, FABRIKAM\stagingfarm), and then click OK.

155

Administrators Properties 21x]

Description: Administrators have complete and unrestricted access
to the computer/domain
Members:
A Administrator

52, FABRIKAM\Domain Adming

=3 FABRIKAM \stagingfam (stagingfarm@&fabrikam net)

Changes to a user's group membership
Add... | Remaove are not effective until the next time the
user logs on.

oK | Cancel | Poply Help

6. Inthe Administrators Properties dialog box, click OK.

Your servers are now ready to be added to a server farm. In the case of the primary server, you can
configure the server to meet your application requirements before or after you create the server farm—
in both cases, the WFF will synchronize the servers by deploying the same products, components, or
configuration to your secondary servers. For the sake of simplicity, this tutorial assumes that you'll

configure the primary server when you've finished creating the server farm.

Create the WFF Server Farm
At this point, all your servers are ready to be added to a WFF server farm:

e You've installed WFF on the controller server.

e You've configured firewall exceptions on your primary and secondary web servers.

e You've added a domain account to the local administrators group on your primary and

secondary web servers.

The next step is to create the server farm in WFF. You can do this from IIS Manager on the WFF

controller server.

156

To create a WFF server farm

1. Onthe WFF controller server, on the Start menu, point to Administrative Tools, and then click
Internet Information Services (11S) Manager.

2. Inthe Connections pane, expand the local server node, right-click Server Farms, and then click
Create Server Farm.

3. Inthe Create Server Farm dialog box, type a meaningful name for the server farm (for example,
Staging Farm), and then select Provision server farm.

4. Type the user name and password of the domain account that you added to the local
administrators group on each server.

Create Server Farm ed |

Specify Server Farm Details

Spedfy server farm name:

IStaging Farm
¥ Server farm is available for load balancing

V' Provision server farm

—Server Farm Administrator

This account needs to exist on all servers partidpating in the server farm. A Windows credential store target
can be used instead of user name if you've stored administrator’s credentials in a credential store.,

Iser name or credential store target:
IFABRIKAM \stagingfarm

Password;:

Confirm password:

Frevious | | Mext I Fimish Cancel

5. Click Next.

6. On the Add Servers page, type the fully qualified domain name (FQDN) of the primary server,
select Primary Server, and then click Add.

At this point, WFF will attempt to contact the primary server using the credentials you provided.
If the connection succeeds, the primary server will be added to the table on the Add Servers
page.

157

Create Server Farm

Add Servers

r

Server name or address:

Add
!

W Serveris available for Load Balancing

Remove
™| Primary Server

Advanced settings. ..

Server Address | status | Role

STAGEWEB 1. fabrikam.net Online Primary

Previous Mext | Finish I Cancel

Note: You might have noticed that Server is available for Load Balancing is selected by
default. WFF uses the IIS ARR module to implement load balancing and thereby distribute
requests across the web servers in your server farm. In most scenarios, you'd only clear the

Server is available for Load Balancing option if you wanted to use a third-party load balancing
solution instead.

7. Onthe Add Servers page, type the FQDN of your first secondary server, and then click Add.

158

Create Server Farm

.
u:‘" Add Servers

x

Server name or address:

|| L}

W Serveris available for Load Balancing

™ Primary Server

Advanced settings. ..

Server Address | status | Role

STAGEWEE 1. fabrikam.net Online Primary

Previous Mext | Finish I Cancel

8. Repeat step 7 for any additional secondary servers in your farm, and then click Finish.

Your WFF server farm is now up and running. Any web platform products or components that you install
on the primary server, and any web applications or content that you deploy to the primary server, will
be automatically provisioned on all your secondary servers.

WEFF is a broad and complex topic, and you can learn more about it on the Microsoft Web Farm

Framework 2.0 for IIS 7 website. For the time being, however, there are two features areas that you
need to be aware of:

e Application provisioning is the process that replicates content from the primary server, like web
applications and configuration settings, across all the secondary servers in the server farm. For
example, if you deploy the Contact Manager sample solution to your primary staging server, the
WEFF application provisioning process will deploy this solution to all your secondary staging
servers. By default, the application provisioning process runs every 30 seconds.

e Platform provisioning is the process that synchronizes web platform products and components
from the primary server to all the secondary servers in the server farm. For example, if you
install ASP.NET MVC 3 on your primary staging server, the platform provisioning process will use

159

http://go.microsoft.com/?linkid=9805129
http://go.microsoft.com/?linkid=9805129

the Web Platform Installer to install ASP.NET MVC 3 on all your secondary staging servers. By
default, the platform provisioning process runs every five minutes.

You can manage basic application and platform provisioning settings from 1IS Manager on your WFF
controller server.

Explore application and platform provisioning settings

1. InlIS Manager, in the Connections pane, select your server farm.

Q- HiF 8 “g! Server Farm

-5 Start Page

=193 WFFCTRL (FABRIKAM\Administrator) Group by: Area - 8-
3 Application Pools Server Farm
- &] Sites - . .
LE By gh By
33 Servers Application Platform Workflow
Provisioning Provisioning Builder
2. Inthe Server Farm pane, double-click Application Provisioning.
I . [icoton Provisionin
PRI U‘j! pplication Provisioning
QJ Start Page
=93

5 WFFCTRL (FABRIKAM\Adminstrator)

Application provisioning Is the process of syndhronizing secondary servers from the Primary server,
L} Application Pools

This ndudes applications, configuration, and content, You can aiso speafy addtional Web Deploy

providers for syncrhonization on the secondary servers,
[+ & Sites
= 37/ Server Farms
= 36 Staging Farm W Enable application provisioning
33 Servers

W' Take server offine whie syncing appications

Synchronization interval:

|00:00:30

_ Additional Providers

N ¢

As you can see, the server farm is currently configured to synchronize web content and
configuration settings between the primary server and the secondary servers every 30 seconds.

3. Click Back, and then double-click Platform Provisioning.

160

Comnections .
Q- kil |8 q'i! Platform Provisioning

@ start Page
= i i " 2
585 WFFCTRL (FABRICAM\Administrat Platform provisioning is the process of provisioning a secondary server with the Web platform
=-%a F strator) components and additional modules installed on the primary server, You can also specify additional

o= Applcation Pools wieb server products to rstall on the servers,
@ Sites
=l ji Server Farmg
= =)
=1 3, Staging Fam ¥ Enable platform provisioning
H& Servers

¥ Take server offine whis instaling products

Synchronization interval:

[00:05:00

As you can see, the server farm is currently configured to synchronize web platform products
and components between the primary server and the secondary servers every five minutes.

4. Click Back.

5. To force the server farm to synchronize web platform products immediately, in the Actions
pane, click Provision Platform.

Eddit....
x Remove
Take Server Farm Offline

Reboot Server Farm
e FRepair Server Farm
%3 Provision Platform

; Provision Applications

r

Server Farm Operations...
Install Products...

® &

Help
Online Help

Note: Platform provisioning may take some time. The installer process runs in the background
on the secondary servers in your server farm.

6. Once you’ve allowed sufficient time for the provisioning process to complete, you can verify
that the products and components that you added to the primary server have now been
replicated on the secondary servers. For example, you can log on to a secondary server and use
the Server Manager window to verify that the web server role has been installed.

161

~ Roles Summary E Roles Summary Help

~ Roles: 1of 17 installed :r; Add Roles

7= Remowe Roles
‘\Web Server (115)

You can also check the installed programs list to verify that various web platform components
have been added.

Uninstall or change a program

To uninstall a program, select it from the list and then dick Uninstall, Change, or Repair.

Organize - == - ﬂ
MName = | v| Publisher | v| Install... | v| Size | v|
--?‘-Micrnsoft MET Framework 4 Client Profile Microsoft Corporation 14112011 33.8 MB
--E"'-Miu‘osoft .NET Framework 4 Extended Microsoft Corpaoration 14112011 51.9MB
‘EEE'Micmsoft ASP.MET MVC 3 Microsoft Corporation 14112011 598 KB
ﬁ'ﬁjMiu‘oso& ASP.MET Web Pages Microsoft Corpaoration 14112011 1.15 MB

w Microsoft Silverlight Microsoft Corporation 11112011 20,4 MB

3 Microsoft SQL Server 2008 R2 Management CObjec... Microsoft Corporation 14112011 19.8 MB

3 Microsoft SQL Server 2008 R2 Native Client Microsoft Corporation 14112011 5.81MB

|2 Microsoft SOL Server System CLR Types (x64) Microsoft Corpaoration 14112011 3.43 MB
&} Microsoft Web Deploy 2.0 Microsoft Corparation 14/11/2011 7.80 MB
&} Microsoft Web Farm Agent Version 2.2 Microsoft Corpaoration 14112011 708 KB

Configure Load Balancing

When you create a web farm, you need to set up some form of load balancing to distribute HTTP
requests between your web servers. This could be Windows Server 2008 network load balancing, IIS
ARR, or a third-party software-based or hardware-based load balancing solution.

WEFF is designed to integrate closely with 1IS ARR. To take advantage of this integration, you need to
install the ARR module on the WFF controller server. You then direct all your web traffic to the
controller server, typically by configuring Domain Name System (DNS) records. The controller server will
then distribute incoming requests among the servers in your farm, based on server availability and
various other criteria.

Note: You don't have to use ARR with WFF; you can configure WFF to work with third-party load
balancing solutions. For more information, see Overview of the Web Farm Framework 2.0 for IIS 7.

Load balancing using ARR is a complex topic, most of which is beyond the scope of this tutorial.
However, you can use the next procedure to install the ARR module and get started with load balancing.

To set up load balancing on the WFF controller server

1. Onthe WFF controller server, launch the Web Platform Installer.
2. Atthe top of the Web Platform Installer 3.0 window, click Products.
3. On the left side of the window, in the navigation pane, click Server.

162

http://go.microsoft.com/?linkid=9805126

4. Inthe Application Request Routing 2.5 row, click Add.

ol
Spotlight Products Applications | yo)
Name Released Install :J
Al &7 Application Request Routing 25 20/03/2011 Remove |
Server
Frameworks @ Dynamic IP Restriction 1.0 Beta 2 12/08/2010 Add
Database
| Tooks M Web Deployment Tool 1.1 02/02/2010 Add
WebsitePanel 1.2.0 15/07/2011 Add
:: Recommended Server Configuration for Web Hosting Provid... 11/04/2011 Add
&8 Windows Media Services 2008 R2 04/05/2010 Add
nJ Windows Server AppFabnc 23/07/2010 Add
SharePoint Foundation 2010 Standalone 07/03/2010 Add

SharePoint Foundation 2010 Farm 07/03/2010 Add

2 ltemsto be installed Options I Install I Exit l

5. Click Install, and then follow the instructions in the Web Platform Installation window.

6. When the installation is complete, launch IIS Manager, and in the Connections pane, click your
server farm node. Notice that several new icons have been added to the Server Farm pane.

CH T 93!_ Server Farm

S? et Groupby: Area v il
= %3 WFRCTRL (FABRIKAM \Administrator) =]
! Appication Pools Server Farm
#- | Sites
= a2 S —
=1-33] Server Farms - Lol f¢ {_—
e b y W S
@ §§ servers Application Caching HealthTest Load Balance Monitoring and
Provisioning Management
3 2 W 1=
=Y) ? L ,; B o
Platform Proxy Routing Rules Server Affinty Workflow
Provisioning Builder

7. Inthe Server Farm pane, double-click Load Balance.

8. Inthe Load Balance pane, select a load balance algorithm (for example, Least current request).

Note: For more information on load balancing algorithms and other configuration settings, see
Application Request Routing Module.

163

http://go.microsoft.com/?linkid=9805130

qg! Load Balance

Use this feature to configure which load balance algorithm Application Request
Routing should use.

Load Balance

Load balance algarithm:

9. Inthe Actions pane, click Apply.

You have now configured basic load balancing for the servers in your server farm. If you direct all your
web farm traffic to the controller server, the requests will be distributed between the servers in your
farm according to availability and the load balancing algorithm you selected.

For more information on how to configure load balancing with ARR, see Application Request Routing
Module.

Monitor the Server Farm

You can monitor the health of your server farm at any time through IIS Manager on the controller
server. In the Connections pane, expand your server farm, and then click Servers. The center pane will
show a summary of each server in the farm together with a trace log of recent activity.

Q’;‘ Servers
Server Address + Role Ready For Load Current Operation | Most Recent Errar |
"§ STAGEWEB1.fabrkam.net Primary Yes
3 STAGEWEB2. fabrkam.net Secondary No Failed to run method Microsoft, Web.Farm, SetupProxyRe. ..
Trace Messages A
Verbosity level filter:
Pause Resume Clear 'v_m
Timestamp Server Trace Level | Messag [a
17,’11/;011 15:07:56 STAGEWEB1.fab... |Info ;‘Runnhc operation RunRemote' {MethodType =Microsoft. Web,Farm.Getl. .,
17/11/2011 15:07:57 .SYAGEWEB 1.fab... ‘Info ERunnmg operation ‘InstallProducts’ {Products = (WDeployNoSMO}, StopO... u
= 17/11/2011 15:07:57 STAGEWEBL.fab... |Info {Running operation RunRemote' {MethodType=Microsoft.Web.Farm.Inst. ..
| 17/11/2011 15:07:57 'STAGEWEB 1.fab... |Info | Downloading product ‘Web Deployment Tool 2. 1 without bundied SQL su...
17/11/2011 15:08:16 I STAGEWEB1.fab... ‘mfo :Instaling product ‘Web Deployment Tool 2. 1 without bundled SQL support’ l
17/11j2011 15:08:21 ASTA(EWVEB Lfab... ‘lnfo ERumng oﬁera&:n 'Sen'u:eCmﬁol' (mnem, ServiceSta... A
] 17/11/2011 15:08:21 STAGEWEB1.fab... |Info |Running operation RunRemote’ {MethodType=Microsoft.Web,Farm.Con...
17/11/201115:08:21 | STAGEWEBZfab... |Info |Running operation "WebDepioyAgentState’ {ServiceState =False} '
17/11/2011 15:08:21 -STAGEWEBZ.fab... .!nfo Runnmg aperation ‘QuerylnstalledProducts’ 1
13lsslnss 1a. 00,0 ETACSUED £k lofe I Bl L Dot Jr £ b o Last | Bt

164

http://go.microsoft.com/?linkid=9805130
http://go.microsoft.com/?linkid=9805130

Conclusion

Your WFF server farm should now be up and running. You can configure the primary server to support
whichever deployment approach you prefer—see the Further Reading section for details—and your
configuration will be replicated on each secondary server in the server farm.

Further Reading

For more guidance on all aspects of configuring and using the WFF, see the Microsoft Web Farm

Framework 2.0 for IIS 7 website.

Configuring Deployment Properties for a Target Environment

This topic describes how to configure environment-specific properties in order to deploy the sample
Contact Manager solution to a specific target environment.

Process Overview

The project file that you'll use to build and deploy the Contact Manager solution is split into two physical
files:

e One that contains universal build settings and instructions (the Publish.proj file).

e One that contains environment-specific build settings (Env-Dev.proj, Env-Stage.proj, and so on).

At build time, the appropriate environment-specific project file is merged into the universal Publish.proj
file to form a complete set of build instructions. You can configure deployment to specific destination
environments by creating or customizing environment-specific project files with settings that describe
your own deployment scenario.

Lots of these values are determined by how your destination environment is configured—in particular,
whether your target web server is configured to use the Web Deployment Agent Service (the remote
agent) or the Web Deploy Handler. For more information on these approaches, and for guidance on
choosing the right approach for your own environment, see Choosing the Right Approach to Web

Deployment.

The Contact Manager scenario requires two environment-specific project files:

e Deployment to a developer test environment (Env-Dev.proj). The developer test environment is
configured to accept remote deployments using the remote agent, as described in Scenario:
Configuring a Test Environment for Web Deployment. This file needs to provide the remote

agent endpoint address as well as location-specific settings like connection strings and service
endpoints.

¢ Deployment to a staging environment (Env-Stage.proj). The staging environment is configured
to accept remote deployments using the Web Deploy Handler, as described in Scenario:
Configuring a Staging Environment for Web Deployment. This file needs to provide the Web

165

http://go.microsoft.com/?linkid=9805129
http://go.microsoft.com/?linkid=9805129

Deploy Handler endpoint address as well as location-specific settings like connection strings and
service endpoints.

It's important to note that the settings you configure in the environment-specific project file don't affect
the contents of the web package itself—instead, they control how the package is deployed and what
parameter values are provided when the package is extracted. You're importing the web package into
the production environment manually, as described in Scenario: Configuring a Production Environment

for Web Deployment and Manually Installing Web Packages, so it doesn't matter what settings you used

in the environment-specific project file when you generated the package. Internet Information Services
(11S) Manager will prompt you for any parameterized values, like connection strings and service
endpoints, when you import the package.

To deploy the Contact Manager solution to your own target environment, you can either customize this
file or use it as a template and create your own file.

To configure environment-specific deployment settings for the Contact Manager solution

1. Open the ContactManager-WCF solution in Visual Studio 2010.

2. Inthe Solution Explorer window, expand the Publish folder, expand the EnvConfig folder, and
then double-click Env-Dev.proj.

Solution Explorer 0 x

j Solution 'ContactManager-WCF' (4 projects)
= ¢ Publish

|#2| Publish.proj

3. Replace the property values in the Env-Dev.proj file with the correct values for your own test
environment.

Note: The table that follows this procedure provides more information on each of these
properties.

4. Save your work, and then close the Env-Dev.proj file.

Choosing the Right Deployment Properties

This table describes the purpose of each property in the sample environment-specific project file, Env-
Dev.proj, and provides some guidance on the values you should provide.

Property Name Details

166

Property Name

MSDeployComputerName

The name of the destination web
server or service endpoint.

MSDeployAuth

The method that Web Deploy should
use to authenticate to the remote
computer.

MSDeployUsername

If you use basic authentication, Web
Deploy will use this account on the
remote computer.

MSDeployPassword

If you use basic authentication, Web
Deploy will use this password on the
remote computer.

ContactManagerlisPath

The 1IS path on which you want to
deploy the Contact Manager MVC
application.

ContactManagerServicelisPath

The 1IS path on which you want to
deploy the Contact Manager WCF
service.

Details

If you’re deploying to the remote agent service on the destination web server,
you can specify the target computer name (for example, TESTWEB1 or
TESTWEB1.fabrikam.net), or you can specify the remote agent endpoint
(for example, http:// TESTWEB1/MSDEPLOYAGENTSERVICE). The
deployment works the same way in each case.

If you're deploying to the Web Deploy Handler on the destination web server,
you should specify the service endpoint and include the name of the IIS
website as a query string parameter (for example,
https://ISTAGEWEB1:8172/MSDeploy.axd?site=DemoSite).

This should be set to NTLM or Basic.

Typically, you'll use NTLM if you're deploying to the remote agent service
and Basic if you're deploying to the Web Deploy Handler.

If you use basic authentication, you also need to specify the user name and
password that the IIS Web Deployment Tool (Web Deploy) should
impersonate in order to perform the deployment. In this example, these
values are provided through the MSDeployUsername and
MSDeployPassword properties. If you use NTLM authentication, you can
omit these properties or leave them blank.

This should take the form DOMAIN\username (for example,
FABRIKAM\matt).

This value is only used if you specify basic authentication. If you use NTLM
authentication, the property can be omitted. If a value is supplied, it will be
ignored.

This is the password for the user account you specified in the
MSDeployUsername property.

This value is only used if you specify basic authentication. If you use NTLM
authentication, the property can be omitted. If a value is supplied, it will be
ignored.

This should be the path as it appears in IS Manager, in the form
[1IS website name]/[web application name].

Remember that the IIS website needs to exist before you deploy your
application. For example, if you've created an 1IS website named DemoSite,
you could specify the IIS path for the MVC application as
DemoSite/ContactManager.

For example, if you've created an IIS website named DemoSite, you could
specify the IIS path for the WCF service as
DemoSite/ContactManagerService.

167

Property Name

ContactManagerTargetUrl

The URL at which the WCF service
can be reached.

CmbDatabaseConnectionString

The connection string for the
database server.

CmTargetDatabase

The name you want to give the
database you'll create on the
database server.

Details

This will take the form
[IIS website root URL]/[service application name]/[service endpoint].

For example, if you've created an IIS website on port 85, the URL would take
the form http://localhost:85/ContactManagerService/ContactService.svc.

Remember that the MVC application and the WCF service are deployed to
the same server. As a result, this URL is only ever accessed from the
machine on which it's installed. Because of this, it's better to use localhost or
the IP address, rather than the machine name or a host header, in the URL.
If you use the machine name or a host header, the loopback check security
feature in IS may block the URL and return an HTTP 401.1 - Unauthorized
error.

The connection string determines both the credentials that VSDBCMD wiill
use to contact the database server and create the database and the
credentials that the web server application pool will use to contact the
database server and interact with the database. Essentially you have two
choices here. You can specify Integrated Security=true, in which case
integrated Windows authentication is used:

Data Source=TESTDB1;Integrated Security=true

In this case, the database will be created using the credentials of the user
who runs the VSDBCMD executable, and the application will access the
database using the identity of the web server machine account. Alternatively,
you can specify the user name and password of a SQL Server account. In
this case, the SQL Server credentials are used both by VSDBCMD to create
the database and by the application pool to interact with the database:

Data Source=TESTDB1;User Id=ASqlUser; Password=Pa$$wO0rd

The walkthroughs in this topic assume that you'll use integrated Windows
authentication.

The value you provide here is added to the VSDBCMD command as a
parameter. It's also used to build a full connection string that the application
pool on the web server can use to interact with the database.

These examples show how you might configure these properties for specific deployment scenarios.

Example 1—Deployment to the Remote Agent Service

In this example:

e You're deploying to the remote agent service on TESTWEBL.

e You're instructing Web Deploy to use NTLM authentication. Web Deploy will run using the
credentials you used to invoke the Microsoft Build Engine (MSBuild).

168

http://go.microsoft.com/?linkid=9805131

You're using integrated authentication to deploy the ContactManager database to TESTDB1.
The database will be deployed using the credentials you used to invoke MSBuild.

XML
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<MSDeployComputerName Condition=" '$(MSDeployComputerName)'=="'" ">

TESTWEB1.fabrikam.net

</MSDeployComputerName>
<MSDeployAuth Condition=" '$(MSDeployAuth)'=="'" ">NTLM</MSDeployAuth>

<ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'=="" ">

http://localhost:85/ContactManagerService/ContactService.svc

</ContactManagerTargetUrl>

<ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'==""

>
DemoSite/ContactManager

</ContactManagerIisPath>
<ContactManagerServiceIisPath

Condition=" '$(ContactManagerServiceIlisPath)'==""
DemoSite/ContactManagerService

>

</ContactManagerServiceIisPath>

<CmDatabaseConnectionString Condition=" '$(CmDatabaseConnectionString)'==""

>
Data Source=TESTDB1;Integrated Security=true</CmDatabaseConnectionString>

<CmTargetDatabase Condition=" '$(CmTargetDatabase)'=="'" ">

ContactManager

</CmTargetDatabase>
</PropertyGroup>
</Project>

Example 2—Deployment to the Web Deploy Handler Endpoint

In this example:

XML

You're deploying to the Web Deploy Handler service endpoint on STAGEWEB1.
You're instructing Web Deploy to use basic authentication.

You're specifying that Web Deploy should impersonate the FABRIKAM\stagingdeployer account
on the remote computer.

You're using SQL Server authentication to deploy the ContactManager database to STAGEDBI1.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<MSDeployComputerName Condition=" '$(MSDeployComputerName)'==""

>
https://STAGEWEB1:8172/MSDeploy.axd?site=DemoSite

</MSDeployComputerName>
<MSDeployAuth Condition=" '$(MSDeployAuth)'==""' ">Basic</MSDeployAuth>

169

<MSDeployUsername Condition=" '$(MSDeployUsername)'=="'" ">

FABRIKAM\stagingdeployer

</MSDeployUsername>
<MSDeployPassword Condition=" '$(MSDeployPassword)'=="" ">
Pas$$werd
</MSDeployPassword>
<ContactManagerTargetUrl Condition =" '$(ContactManagerTargetUrl)'==""'" ">

http://localhost:85/ContactManagerService/ContactService.svc
</ContactManagerTargetUrl>
<ContactManagerIisPath Condition=" '$(ContactManagerIisPath)'==""
DemoSite/ContactManager
</ContactManagerIisPath>
<ContactManagerServiceIisPath
Condition=" "'$(ContactManagerServiceIlisPath)'==""
DemoSite/ContactManagerService
</ContactManagerServiceIisPath>
<CmDatabaseConnectionString Condition=" '$(CmDatabaseConnectionString)'==""
Data Source=STAGEDB1;User ID=sa;Password=Pa$$word;
</CmDatabaseConnectionString>
<CmTargetDatabase Condition=" '$(CmTargetDatabase)'==""
ContactManager
</CmTargetDatabase>
</PropertyGroup>
</Project>

>

>

>

>

Conclusion

At this point, your project files are fully configured to build and deploy the Contact Manager solution to
one or more destination environments.

To use these project files as part of a single-step, repeatable deployment process, you need to execute
the Publish.proj file using MSBuild and pass in the location of the environment-specific project file as a
parameter. You can do this in various ways:

e Foran overview of MSBuild and an introduction to custom project files, see Understanding the
Project File.

e Forinformation on how to formulate an MSBuild command that executes your custom project
files, see Deploying Web Packages.

e Forinformation on how to incorporate your MSBuild commands into a command file for single-
step, repeatable deployments, see Create and Run a Deployment Command File.

e Forinformation on how to execute your custom project files from Team Build, see Creating a
Build Definition that Supports Deployment.

170

Configuring Team Foundation Server for Web Deployment

This tutorial will show you how to configure Team Foundation Server (TFS) 2010 to build solutions and
deploy web content to various target environments. This includes continuous integration (Cl) scenarios,
where you deploy content automatically every time a developer makes a change. It can also include
manual trigger scenarios, where an administrator may want to trigger deployment of a specific build to a
staging environment once the build has been verified and validated in the test environment. The topics
in this tutorial will guide you through the entire configuration process, including:

e How to create a new team project in TFS.

e How to add content to source control.

e How to configure a build server to support Cl and deployment.
e How to create a build definition that includes deployment logic.

e How to configure permissions for automated deployment.

Before You Begin

This tutorial assumes that you have installed TFS 2010 and created a team project collection as part of
the initial configuration process. The Team Foundation Installation Guide for Visual Studio 2010 provides

comprehensive guidance on these tasks.

Scenario Overview

The high-level scenario for these tutorials is described in Enterprise Web Deployment: Scenario
Overview. We recommend that you review this topic before you get started on this tutorial.

How to Use This Tutorial

If this is the first time you've performed the tasks described in this tutorial, or if you want to follow the
examples using the sample solution, you should work through the tutorial topics in order. Alternatively,
you can use individual topics as guidance for specific tasks. This tutorial includes these topics:

e Creating a Team Project in TFS. A team project is the core unit for source control, process

management, and build in TFS. You need to create a team project before you can add content
to source control or create build definitions.

e Adding Content to Source Control. Once you've created a team project, you can start adding

content to source control. You'll need to add your projects and solutions, together with any
external dependencies, before you can start configuring builds.

e Configuring a TFS Build Server for Web Deployment. If you want to build your team project

content, you'll need to configure a build server. In most cases, this should be on a separate

machine from your TFS installation. To configure a build server, you need to install and

configure the TFS build service, install Visual Studio 2010, create build controllers and build
171

http://go.microsoft.com/?linkid=9805132

agents, install any products or components that your code needs in order to build successfully,
and install the Internet Information Services (IIS) Web Deployment Tool (Web Deploy).

e Creating a Build Definition That Supports Deployment. Before you can start queuing or

triggering builds in TFS, you need to create at least one build definition for your team project.
The build definition defines every aspect of the build, including which things should be included
in the build, what should trigger the build, and where Team Build should send the build outputs.
You can configure a build definition to run custom Microsoft Build Engine (MSBuild) project
files, which lets you include deployment logic in your automated builds.

e Deploying a Specific Build. In a lot of scenarios, you'll want to deploy a specific build, rather than

the latest build, to a target environment. In this case, you can configure a build definition that
deploys content from a specific drop folder.

e Configuring Permissions for Team Build Deployment. If the build service is to deploy content as

part of an automated build process, you need to grant various permissions to the build service
account on any destination web servers and database servers.

Key Technologies

This tutorial focuses on how to use these products and technologies to support automated build and
web deployment:

e Visual Studio Team Foundation Server 2010
e Team Build and MSBuild

e Web Deploy

The tutorial also touches on the use of Windows Server 2008 R2, IIS 7.5, SQL Server 2008 R2, ASP.NET
4.0, and ASP.NET MVC 3.

Creating a Team Project in TFS

This topic describes how to create a new team project in Team Foundation Server (TFS) 2010.

Task Overview

To provision and use a new team project in TFS, you'll need to complete these high-level steps:
e Grant permissions to the user who will create the new team project.
e Create the team project.
e Grant permissions to the team members who will work on the project.

e Check in some content.

172

This topic will show you how to perform these procedures, and it will identify the users and job roles
that are likely to be responsible for each procedure. Be aware that, depending on the structure of your
organization, each of these tasks may be the responsibility of a different person.

The tasks and walkthroughs in this topic assume that you've installed and configured TFS, and that
you've created a team project collection as part of the configuration process. For more information on
these assumptions, and for more general background information on the scenario, see Configure a TFS
Build Server for Web Deployment.

Grant Permissions to the Team Project Creator
In order to create a new team project, you need these permissions:

e You must have the Create new projects permission on the TFS application tier. You typically
grant this permission by adding users to the Project Collection Administrators TFS group. The
Team Foundation Administrators global group also includes this permission.

e You must have permission to create new team sites within the SharePoint site collection that
corresponds to the TFS team project collection. You typically grant this permission by adding
the user to a SharePoint group with Full Control rights on the SharePoint site collection.

e If you're using SQL Server Reporting Services features, you must be a member of the Team
Foundation Content Manager role in Reporting Services.

Who Performs These Procedures?
Typically, the person or group who administers the TFS deployment also performs these procedures.

Because this is a highly privileged set of permissions, new team projects are typically created by a small
subset of users with responsibility for administering a TFS deployment. Developers will not usually be
granted the permissions required to create new team projects.

Grant Permissions in TFS

If you want to enable a user to create new team projects, the first high-level task is to add the user to
the Project Collection Administrators group for the team project collection.

To add a user to the Project Collection Administrators group

1. Onthe TFS server, on the Start menu, point to All Programs, click Microsoft Team Foundation
Server 2010, and then click Team Foundation Administration Console.

2. Inthe navigation tree view, expand Application Tier, and then click Team Project Collections.

173

= TF5
_:_El Application Tier
% Team Project Collections
i_—j SharePoint Web Applications
Reporting
E Lab Management
ii Extensions for SharePoint Products

=
i Logs

ok

3. Inthe Team Project Collections pane, select the team project collection you want to manage.

",;; Team Project Collections Refresh (D Hebp

(¥) Create Collection
Wi, Fabrikam Web Projects
08 Attach Collection

4. Onthe General tab, click Group Membership.

General | Status | Team Projects | SharePoint Site | Reports Folder |

L%ﬂ Fabrikam Web Projects (®) Stop Collection
URL: http: fftfs:8080/tfs/Fabrikam Web Projects/ " EditSet
SQL Server Instance: TFS

Web projects for packaging and deployment. .Li.) Detach Collection

5. Inthe Global Groups dialog box, select the Project Collection Administrators group, and then

click Properties.

6. Inthe Team Foundation Server Group Properties dialog box, select Windows User or Group,
and then click Add.

174

Team Foundation Server Group Properties _?lil

Team Project Collection: http:/flocalhost:8080/tFsffabrikam%20web%20projeds

Group name: [Project Collection Administrators

Members of this application group can perform all privileged operations on the Team Project
Description: Collection.

Members |Mﬂ-nbuu-r|

User or Group

18 [Fabrikam Web Projects] Project Collection Service Accounts
%[TEAM FOUNDATION] \Team Foundation Administrators

A FABRIKAM \Administrator

—Add member

" Team Foundation Server Group Remove | Proptrties...l
I * Windows User or Group ’
0K I Cancel I

4

7. Inthe Select Users, Computers, or Groups dialog box, type the user name of the user you want
to be able to create new team projects, click Check Names, and then click OK.

select Users, Computers, or Groups ﬂll
Select this object type:
IUs.ers or Groups Object Types... |
From this location:
IFabrik.amﬂ&t Locations... |

Enter the object names to select (examples):
Rob Walters {rob@fabrikam net) Checl Names

Mvanc:ed...l ok | cancel |

P

8. Inthe Team Foundation Server Group Properties dialog box, click OK.

9. Inthe Global Groups dialog box, click Close.

Grant Permissions in SharePoint Services

Next, you need to give the user permission to create new team sites in the SharePoint site collection
that corresponds to your TFS team project collection.

To grant Full Control permissions on the SharePoint site collection

175

1.

5.
6.

In the Team Foundation Server Administration Console, on the Team Project Collections page,
select the team project collection you want to manage.

On the SharePoint Site tab, note the value of the Current Default Site Location URL.

General | Status | Team Projects SharePoint Site Reports Folder |

=M SharePoint Web Applications - Default Site Location # Edit Default Site Location
The default site location for new team projects created in this team project a f)
collection. You should use a site collection for the team project collection. Clear Configuration

Current Default Site Locah’on(_l_ﬂth::fftfsfsitesfFabrikam Web Projects]

‘You must grant appropriate permissions to the default site location to those users whao
will create team projects. More Information

Open Internet Explorer, and then go to the URL you noted in step 2.

Note: If you're not logged on to Windows as the user who created the team project collection,
you'll need to sign in to SharePoint as this user in order to continue.

On the Site Actions menu, click Site Settings.

Welcome Administrator (FABRIKAM\Administ... ~ | (@)

[This site =] | 2|
“Site Actions - |
— i Create
Add a new library, list, or web page to
|.|ﬂ| this website,
—— Edit Page
| / Add, remove, or update Web Parts on
: this page.
i Site Settings
. -@ Manage site settings on this site,

On the Site Settings page, under Users and Permissions, click People and groups.

In the left navigation panel, click Groups.

176

Fabrikam Web Projects
#d@ Fabrikam Web Projects

=y

Fabrikam Web Projects > People and Groups

People and Groups: All People

m Use this page to view and manage all people for this site collection.
All People

Mew =+ Actions - Settings -

Site Permissions

L @) Name

View All Site Content r - Administrator (FABRIKAM\Administrator)
Documents
| &b

= Shared Documents

7. On the People and Groups: All Groups page, click Set Up Groups for this Site.

Fabrikam Web Projects > People and Groups

People and Groups: All Groups

Use this page to view and manage all groups for this site collection.

Mew =~ Settings +

Group

There are no groups in this site, To create a group, dicﬁet Up Groups for this Site)

Note: You may receive an HTTP 404 Not Found error due to a double HTTP encoding bug. If
this occurs, replace the URL with this:

[site collection URL]/_layouts/permsetup.aspx
For example:

http://tfs/sites/Fabrikam%20Web%20Projects/_layouts/permsetup.aspx

8. On the Set Up Groups for this Site page, add the user who will create team projects to the
Owners group, and then click OK.

177

Fabrikam Web Projects Visitors

8w
RAOO 3
™M b f this St n
cmbers ol ste . [Fabrikam Web Projects Members
Members can contribute content to the W Create a group of site
members, & 5 roup by byping their names, separated by
SEMMCO0NS.
P |
Dwners.of this She i Fabrikam Web Projects Owners
Cwners have full comtrol over the Web site, Create a group of owners. Add
users to the group by typing their user names, separated by semicolons. Rob Walters
KW
s

For more information on enabling users to create new team projects within a team project collection,
see Set Administrator Permissions for Team Project Collections.

Create a New Team Project and Add Users

Once you have the necessary permissions, you can use the Team Explorer window in Visual Studio 2010
to create a new team project. This approach provides a wizard that collects all the required information
and performs the necessary tasks in TFS, SharePoint, and SQL Server Reporting Services. You'll also need
to grant permissions on the new team project to members of the developer team, to enable them to
add and modify content.

Who Performs These Procedures?

Usually either a TFS administrator or a developer team leader performs these procedures.
Create a New Team Project
The next procedure describes how to create a new team project in TFS 2010.

To create a new team project

1. On the Start menu, point to All Programs, click Microsoft Visual Studio 2010, right-click
Microsoft Visual Studio 2010, and then click Run as administrator.

Note: If you don't run Visual Studio 2010 as an administrator, the New Team Project Wizard

will fail on the last step.

2. If the User Account Control dialog box appears, click Yes.

3. InVisual Studio, on the Team menu, click Connect to Team Foundation Server.

Note: If you have already configured a connection to a TFS server, you can omit steps 4-7.

178

http://msdn.microsoft.com/en-us/library/dd547204.aspx

4. Inthe Connection to Team Project dialog box, click Servers.
5. Inthe Add/Remove Team Foundation Server dialog box, click Add.

6. Inthe Add Team Foundation Server dialog box, provide the details of your TFS instance, and
then click OK.

Add Team Foundation Server ed A

Mame or URL of Team Foundation Server:

TFS

— Connection Details

Path: Itfs

Port number: IW

Pratocol: & HTTP (" HTTPS

Preview: |ht|q:|:ﬂth:BUBUIth

| Ok I Cancel

7. Inthe Add/Remove Team Foundation Server dialog box, click Close.

8. Inthe Connect to Team Project dialog box, select the TFS instance you want to connect to,
select the team project collection you want to add to, and then click Connect.

Connect to Team Project 21X

Select a Team Foundation Server:

Itfs j SErVErs.., |

Team Project Collections: Team Projects:
% Fabrikam Web Projects ¥ | (select ally

Connect I Cancel |

179

9. Inthe Team Explorer window, right-click the team project collection, and then click New Team

Project.
Team Explorer * 1 X
2] 14 | %55
= ‘\Fabrikam Web Projects

‘{_“’E"ﬁ Connect to Team Praject. .. j My Favorites
ﬁTﬁ‘ Mew Team Project. .. '

Disconnect
E Refresh

Team Project Collection Settings 3
Properties Alt+Enter

10. In the New Team Project dialog box, provide a name and a description for the team project, and
then click Next.

Note: If your team project includes spaces, you may face some issues when you come to use
the Internet Information Services (lIS) Web Deployment Tool (Web Deploy) to deploy packages
from the output path. Spaces in the path can make it a lot more difficult to run Web Deploy
commands.

Hew Team Project on tfs\Fabrikam Web Projects ﬂﬂ

ﬁgﬂ Specify the Team Project Settings

The Mew Team Project Wizard uses the team project name you type here when creating various
components. After the team project is created, the name is used by team members to locate the
team project.

Make sure that the name you pick for the team project is not already in use by Team Foundation
Server or any other software used in the deployment (for example, SharePoint Products or SQL
Server Reporting Services).

What is the name of the team project?

ContactManager

What is the description of the team project?

& web-based system for managing contact information.| ;I

< Previous | Mext = I Finish Cancel

180

11. On the Select a Process Template page, select the process template that you want to use to
manage the development process, and then click Next.

Note: For more information on process templates for TFS, see Process Templates and Tools.

12. On the Team Site Settings page, leave the default settings unchanged, and then click Next.

This setting creates, or identifies, a SharePoint team site that is associated with the TFS team
project. Your development team can use this site to manage documentation, participate in
discussion threads, create wiki pages, and perform various other tasks that are not related to
code. For more information, see Interactions Between SharePoint Products and Team

Foundation Server.

13. On the Specify Source Control Settings page, leave the default settings unchanged, and then
click Next.

This setting identifies or creates the location in the TFS folder hierarchy that will act as a root
folder for your content.

14. On the Confirm Team Project Settings page, click Finish.

15. When the new team project is successfully created, on the Team Project Created page, click
Close.

Add Users to a Team Project

Now that you've created the new team project, you can grant permissions to users to enable them to
start adding and collaborating on content.

To add users to a team project

1. In Visual Studio 2010, in the Team Explorer window, right-click the team project, point to Team
Project Settings, and then click Group Membership.

Team Explorer * 01X
2] %] | GG

'-?':ﬁ tfe\Fabrikam Web Projects
2] My Favorites

%l Show Project Portal...
¢ 'k Items
'@.‘i‘; Team Project Process Guidance ments
!4 Project Alerts... \orts
ds
>< remove = rce Control
£| Refresh
Security... Team Project Settings 5
(Group Membership...) i Properties Alt+Enter

Areas and Iterations. ..

Portal Settings. ..

Source Confral...

181

http://msdn.microsoft.com/en-us/vstudio/aa718795
http://msdn.microsoft.com/en-us/library/ms253177.aspx
http://msdn.microsoft.com/en-us/library/ms253177.aspx

To enable a user to add, modify, and remove code under source control, you need to add him or
her to the Contributors group.

2. Inthe Project Groups dialog box, select the Contributors group, and then click Properties.

Project Groups on ContactManager : llil

Team Project Collection: tfs\Fabrikam Web Projects

Team project: ContactManager
Groups:

| MName i | Description
% [ContactManager] \Builders Members of this group can create, modify and delete build
E? [ContactManager]\Contributors Members of this group can add, modify, and delete items »
% [ContactManager] Froject Administrators Members of this aroup can perform all operations in the te:
'_‘% [ContactManager] \Readers Members of this group have access to the team project.
q ! o

™ Show global groups Mew, .. | Remove ! Properties... |'

If your deployment utilizes SQL Server Reporting Services or SharePoint Products, you must also
configure permissions in that software for Team Foundation Server users. For more information, press
F1.

Close |

4

3. Inthe Team Foundation Server Group Properties dialog box, select Windows User or Group,
and then click Add.

182

Team Foundation Server Group Properties E _?lil

Team Project Collection: tfs\Fabrikam Web Projects

Team project: ContactManager
Group name: IConh‘lJuhors
Members of this group can add, modify, and delete items within the team project.
- group , madify, proj
256 characters maxamum
Members | Member of |
User or Group
Add member
" Team Foundation Server Group Add... | Remave I Properties. . |

4. Inthe Select Users, Computers, or Groups dialog box, type the user name of the user you want
to add to the team project, click Check Names, and then click OK.

select Users, Computers, or Groups llil
Select this object type:
IUsers or Groups Object Types. .. |
From this location:
IFabrikamnet Locations... |

Enter the object names to select (examples):
Matt Hink: {matt&fabrikam net) Checlc Names

Mvanced...l ok | Cancd |

P

5. Inthe Team Foundation Server Group Properties dialog box, click OK.

6. Inthe Project Groups dialog box, click Close.

Conclusion

At this point, your new team project is ready to use, and your developer team can start adding content
and collaborating on the development process.

The next topic, Adding Content to Source Control, describes how to add content to source control.

183

Further Reading

For broader guidance on creating team projects in TFS, see Create a Team Project. For more information
on enabling users to create new team projects within a team project collection, see Set Administrator
Permissions for Team Project Collections. For more information on adding users to team projects, see
Add Users to Team Projects.

Adding Content to Source Control

This topic explains how to add content to source control in Team Foundation Server (TFS) 2010. It
describes how to add solutions and projects to a team project in TFS, and it explains how to add external
dependencies like frameworks or assemblies to source control.

Task Overview

In most cases, every member of the developer team should be able to add content to source control. To
add a solution to source control in TFS, you'll need to complete these high-level steps:

e Connect to a team project.

e Map the team project folder structure on the server to a folder structure on your local
computer.

e Add the solution and its contents to source control.

e Add any external dependencies to source control.

This topic will show you how to perform these procedures.

The tasks and walkthroughs in this topic assume that you've already created a new TFS team project to
manage your content. For more information on creating a new team project, see Creating a Team
Project in TFS.

Who Performs These Procedures?

In most cases, every member of the developer team should be able to add and modify content within
specific team projects.

Connect to a Team Project and Create a Folder Mapping

Before you add any content to source control, you need to connect to a team project and create a
mapping between the folder structure on the server and the file system on your local machine.

To connect to a team project and map a local path

1. On your developer workstation, open Visual Studio 2010.

2. In Visual Studio, on the Team menu, click Connect to Team Foundation Server.

Note: If you have already configured a connection to a TFS server, you can omit steps 3-6.

184

http://msdn.microsoft.com/en-us/library/ms181477(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd547204.aspx
http://msdn.microsoft.com/en-us/library/dd547204.aspx
http://msdn.microsoft.com/en-us/library/bb558971.aspx

3. Inthe Connection to Team Project dialog box, click Servers.
4. Inthe Add/Remove Team Foundation Server dialog box, click Add.

5. Inthe Add Team Foundation Server dialog box, provide the details of your TFS instance, and
then click OK.

Add Team Foundation Server ed A

Mame or URL of Team Foundation Server:

TFS

— Connection Details

Path: Itfs

Port number: IW

Pratocol: & HTTP (" HTTPS

Preview: Ihtn:l:ﬂth:BUBU,.’th

| Ok I Cancel

6. Inthe Add/Remove Team Foundation Server dialog box, click Close.

7. Inthe Connect to Team Project dialog box, select the TFS instance you want to connect to,
select the team project collection, select the team project you want to add to, and then click
Connect.

Connect to Team Project ﬂﬂ

Select a Team Foundation Server:

Itfs ﬂ SErVers... |

Team Project Collections: Team Projects:

3l Fabrikam Web Projects v (Select All)
| ContactManager

Connect I Cancel |

4

8. Inthe Team Explorer window, expand your team project, and then double-click Source Control.

185

Team Explorer
2] 1< | P
% tfs\Fabrikam Web Projects
j My Favorites
=l _?ﬁ ContactManager
_'-"J Wark Items
Documents
g Reports
EE Builds
- Source Control

'i Solution Explorer _?ﬁTeam Explarer E Server Explorer

9. On the Source Control Explorer tab, click Not mapped.

sarce convaioorer < [
EE| w8 x|l f0an] 9| 20 @ %9 %] | (¢ ~ | Workspace: |DEVWORKSTATION

Source location: I g ContactManager

Folders x | Local Pathll Mot mapped

=18 tfs\Fabrikam Web Projects MName | Pending Change | Lser
=3} ContactManager [BuildProcessTemplates
B3 BuidProcessTemplates

10. In the Map dialog box, in the Local folder box, browse to (or create) a local folder to act as the
root folder for the team project, and then click Map.

2lx|
Create a workspace mapping.
Current status: The server folder is not mapped.
Server folder: |$.|"Cor113ctl'~"lanager
Local folder: IC:‘!.Conmv:h\"Ianager I
¥ Recursive Map | Cancel |
A

11. When you're prompted to download source files, click Yes.

186

Microsoft Visual Studio x|

- Mewly mapped items will not be downloaded until you execute a
get. Do you want to get §/ContactManager now?

Yes No | Help

At this point, you have mapped the server-side folder for the team project to a local folder on your
developer workstation. You've also downloaded any existing content from the team project to your local
folder structure. You can now start to add your own content to source control.

Add Projects and Solutions to Source Control

To add projects and solutions to source control, you first need to move them to the mapped folder for
the team project on your local machine. You can then check in the content to synchronize your additions
with the server.

To add projects to source control

1. On your developer workstation, move your projects and solutions to an appropriate location
within the mapped folder structure for the team project.

Note: Many organizations will have a preferred approach to how projects and solutions should
be organized in source control. For guidance on how to structure folders, see How To:
Structure Your Source Control Folders in Team Foundation Server.

2. Open the solution in Visual Studio 2010.

3. In the Solution Explorer window, right-click the solution, and then click Add Solution to Source
Control.

187

http://msdn.microsoft.com/en-us/library/bb668992.aspx
http://msdn.microsoft.com/en-us/library/bb668992.aspx

ko 'ContactManager’ (4 projects)
Build Solution Cirl+shift+8 blish
Rebuild Solution ntactManager. Common
ntactManager.Database

Deploy Solution ntactManager.Mvc

Clean Solution | Properties
Batch Build... | F‘.ef‘e.rences
} Service References
Configuration Manager... | App_Data
Calculate Code Metrics i b'T
.} ContactManager.Mvc.dl
Project Dependencies... _} ContactManager.Mvc.pdb
Praoject Build Order... | Content
| Controllers
Add b | Internal
Set StartUp Projects... ' M;_d'3|5
] J
KAI:II:I Solution to Source Control,.) Debug
e —— Release
o Feste e i AutoScripts
Rename CSAutoParameterize
[+ Datab
I_:I" Open Folder in Windows Explorer P: ckaga:E
Properties Alt+Enter TempPE
| TransformWebConfig ;

Note: In some cases, depending on how your organization likes to structure content in TFS,
you may need to add projects to source control individually to provide more fine-grained

control over how your source code is organized.

Verify that the Source Control Explorer tab displays the content you've added within the server
folder structure for the team project.

souce convapoore < IR
2l ce 8 % |Gl 5888 | @ | 20 - 28 €3 %] | [~ | Workspace: |DEVWORKSTATION

Source location: I _?ﬁ[:oniﬁcﬂ'ﬂanager

Folders x | Local Path: C:\ContactManager
=18 tfs\Fabrikam Web Projects Marme | Pending Change |
E_?ﬁ ContactManager [BuildProcessTemplates
B 'I W =

: & [Source
B & [F Source

4 | ContactManager.Common
@] ContactManager.Database
4 [ContactManager. Mvc

4 | ContactManager.Service
[#- ¢ [Publish

Note: The Source Control Explorer tab displays your content with no further prompting
because you added your solution to a mapped folder on the local file system. If your solution

188

was in an unmapped location, you'd be prompted to specify folder locations in both TFS and
your local file system.

5. On the Source Control Explorer tab, in the Folders pane, right-click the team project (for
example, ContactManager), and then click Check In Pending Changes.

6. Inthe Check In — Source Files dialog box, type a comment, and then click Check In.

Check In - Source Files - Workspace: DEVWORKSTATION . d |
= - 9 |E]d
Source Files Comment:
Adding entire solution to source control -
&l =
Wark Ttems Mame | Change | Folder | -~
: ;CDntacﬂ'ﬂanager.sln add C:\ContactManager \Source |-
Q ¥ ContactManager. vassce add C:\ContactManager\Source
.] Address.cs add C:\ContactManager \Sourcel,..
Cniisn i App.Config add C:\ContactManager\Source',..
#] Contact.cs add C:\ContactManager \Sourcel,..
L; @Contacﬂt‘lanager.Common.csp... add C:\ContactManager\Sourcel,..
| 7| ContactManager.Common.csp... add C:\ContactManager \Sourcel,..
chr,rl'ilggs #] ContactManager.cs add C:\ContactManager\Source',..
#] ContactManagerContext.cs add C:\ContactManager \Sourcel,..
i packages.config add C:\ContactManager\Source',..
#] state.c add C:\ContactManager \Sourcel,.. LI
L, WYL PR A - - - am A s
Chedk In I Cancel |
A

At this point you have added your solution to source control in TFS.

Add External Dependencies to Source Control

When you add a project or solution to source control, any files and folders within your project or
solution will also be added. However, in a lot of cases, projects and solutions also rely on external
dependencies, like local assembilies, to function properly. You need to add any such resources to source
control to let both Team Build and other members of the developer team build your code successfully.

For example, the folder structure for the Contact Manager sample solution includes a folder named
packages. This contains the assembly and various supporting resources for the ADO.NET Entity
Framework 4.1. The packages folder is not part of the Contact Manager solution, but the solution will
not build successfully without it. To enable Team Build to build the solution, you need to add the
packages folder to source control.

Note: The inclusion of a packages folder is typical of what happens when you add the Entity
Framework, or similar resources, to your solution using the NuGet extension for Visual Studio 2010.

To add non-project content to source control

189

Ensure that the items you want to add (for example, the packages folder) are in an appropriate
location within a mapped folder on your local file system.

In Visual Studio 2010, In the Team Explorer window, expand your team project, and then
double-click Source Control.

Team Explorer
2] 1< | P
% tfs\Fabrikam Web Projects
j My Favorites
=l _% ContactManager
_='J Wark Items
Documents
g Reports
EE Builds
Source Control

"i; Solution Explorer _% Team Explorer E Server Explorer

On the Source Control Explorer tab, in the Folders pane, select the folder that contains the item
or items you want to add.

Click the Add Items to Folder button.
Source Control Expirer < [

|G | 0G| @ | 22 - o8 €9 = | U2 - | Workspace: |DEVWORKSTATION

[J &/ContactManager /Source

Source location:

Folders x | Local Path: C:\ContactManager\Source
E=1-i) tfs\Fabrikam Web Projects Marme | Pending Change | Lser
E"'_ﬁ} ContactManager [ContactManager. Common
-] BuildProcessTemplates [ContactManager. Database
Sty Sour ce [ContactManager.Mvc
1 ContactManager. Comman [ContactManager. Service
{1 ContactManager Database 3 Publish

- ContactManager.Mvc
1 ContactManager. Service
-3 Publish

;Coniﬁcmanager.sln
'i_u ContactManager . vssscc

In the Add to Source Control dialog box, select the folder or items you want to add, and then
click Next.

190

Add to Source Control ﬂil

Look in: | C:\ContactManager \Source j E 4 [Browse...

Select items to add to source control, Files already in version contral are hidden,

Mame | Date modified | Type | Size |
) ContactManager. Common 07/02/2012 11:30:40 File folder
| ContactManager.Database 07022012 11:30:40 File folder
| ContactManager. Mvc 07022012 11:30:40 File folder
| ContactManager. Service 07/02/2012 11:30:40 File folder

. packages 07/02/2012 11:31:46 File folder

J Publish 02/02/2012 15:56:27 File folder

Automatically exdude from source contral;

IDEbug;REIEESE;CIientBin; * pdb;*.0bi;*. dll; * exe;*.res; * resources; =, cache; *.ilk; *.nch; *.lce; = xap

Destination source control folder:

IEICDnEcﬁ'ﬂanagerfSnurcE Browse. ..

Destination local folder:

IC:\ConEcﬁ'ﬂanager\Snurce Map. ..

<< Advanced | Mext = I Finish | Cancel |

P

6. On the Excluded items tab, select any required items that have been automatically excluded
(for example, assemblies), and then click Include item(s).

191

Add to Source Control el

Use the Indude/Exdude button at the bottom right to indude and exdude items. All items in the “items to
add” tab will be added to source control.

Items to add (3) Exduded items (1)

Mame Destination folder Type Size

EntityFramewark. dll &/ContactManager/Source/... Application extension 774KEB

L% Include item(s)

< Previous | Finish I Cancel |

A

Destination source control folder:
ImunmcﬂﬂanagerfSuurce

7. Onthe Items to add tab, verify that all the files you want to include are listed, and then click
Finish.

192

Add to Source Control 2x|

Use the Include Excude button at the bottom right to include and exdude items. All items in the “items to
add” tab will be added to source control.

Items to add (4) | Excluded items (0) |

Mame | Destination folder | Type | Size |
g_éjrepositories.conﬁg &(ContactManager Sourcef... XML Configuration File 207 bytes

|| EntityFramework.4.1.1... %/ContactManager/Source/... NUPKG File 454 KB

%) EntityFramework.dll &/ContactManager Sourcef... Application extension 774 KB

£ EntityFramework. xml &/ContactManager/Sourcef... XML Document 829KB

55 Exdude item(s)

Destination source control folder:
IﬁConmcﬂWanagerfSource

< Previous | Finish I Cancel

e

8. Inthe Source Control Explorer window, click the Check In button.

Source Control Explorer

=18 (Al Py j@q = o ¥4 9 | (g = | Workspace: |DEVWORKSTATION -
Source location: |_J5chn1.acH\r‘lmau=t,me.r-:= ﬂ

9. Inthe Check In — Source Files dialog box, type a comment, and then click Check In.

At this point, you have added the external dependencies for your solution to source control.

Conclusion

This topic described how to connect to a team project, map a folder structure, and add content to
source control. For more information on how to work with items under source control, see Using
Version Control.

The next topic, Configuring a TFS Build Server for Web Deployment, describes how to prepare a TFS

Team Build server to build and deploy your solution.

Further Reading

For more comprehensive information on working with source control in TFS, see Using Version Control.

193

http://msdn.microsoft.com/en-us/library/ms181368.aspx
http://msdn.microsoft.com/en-us/library/ms181368.aspx
http://msdn.microsoft.com/en-us/library/ms181368.aspx

Configuring a TFS Build Server for Web Deployment

This topic describes how to prepare a Team Foundation Server (TFS) build server to build and deploy
your solutions using Team Build and the Internet Information Services (11S) Web Deployment Tool (Web

Deploy).

Task Overview

To prepare a build server to build and deploy your solutions, you'll need to:
e Install and configure the TFS build service.
e Install Visual Studio 2010.

e Install any products or components that are required to build your solution, like versions of the
.NET Framework or ASP.NET MVC.

e Install Web Deploy 2.0 or later.

This topic will show you how to perform these procedures or point to other resources where they exist.
The tasks and walkthroughs in this topic assume that:

e You're starting with a clean server build running Windows Server 2008 R2 Service Pack 1.
e The server is domain-joined with a static IP address.

e You've installed the TFS application tier on a separate server, as described in Enterprise Web
Deployment: Scenario Overview.

Who Performs These Procedures?

In most cases, a TFS administrator will be responsible for configuring build servers. In some cases, the
developer team may take ownership of specific build servers.

Install and Configure the TFS Build Service

When you configure a build server, your first task is to install and configure the TFS build service. As part
of this process, you'll need to:

e Install the TFS build service and configure a service account. Any build tasks, including
deployment, will run using the identity of the build service account.

e Create a build controller and one or more build agents. Each build controller manages a set of
build agents. When you queue a build, the build controller assigns the build task to an available
build agent. Each team project collection in TFS is mapped to a single build controller.

e Configure a drop folder for your build outputs. This is a network share. Any build outputs, like
web deployment packages, are sent to the drop folder.

194

The Administering Team Foundation Build chapter on MSDN contains all the resources you need in

order to perform these tasks:

e For a conceptual overview of Team Foundation Build, including the build service, build
controllers, and build agents, see Understanding a Team Foundation Build System.

e Forinformation on installing and configuring the build service, see Configure a Build Machine.

e For information on creating build controllers, see Create and Work with a Build Controller.

e For information on creating build agents, see Create and Work with Build Agents.

e Forinformation on creating and configuring drop folders, see Set Up Drop Folders.

Install Required Products and Components

To enable the build server to build your solutions, you must install any products, components, or
assemblies that your solution requires. Before you install any web platform components, you should
install Visual Studio 2010 (any version) on the build server. This ensures that the core Microsoft Build
Engine (MSBuild) target files and the Web Publishing Pipeline (WPP) target files are available to the build
service. The Visual Studio installer should also install Web Deploy, which you'll need if you plan to
deploy web packages as part of your build process.

The best way to install common web platform components is to use the Web Platform Installer. This

ensures that you're installing the latest version of each product, and it also automatically detects and
installs any prerequisites for each product. In the case of the Contact Manager solution, you should use

the Web Platform Installer to install these products and components:

e .NET Framework 4.0. This is required to run applications that were built on this version of the
.NET Framework.

e Web Deployment Tool 2.1 or later. This installs Web Deploy (and its underlying executable,
MSDeploy.exe) on your server. As part of this process, it installs and starts the Web Deployment
Agent Service. This service lets you deploy web packages from a remote computer.

e ASP.NET MVC 3. This installs the assemblies you need to run ASP.NET MVC 3 applications.

To install the required products and components

1. Install Visual Studio 2010. When prompted to select features to install, you should include:
a. Any programming languages that you need to compile.

b. Visual Web Developer. This ensures that the WPP targets are added to your build server.

195

http://msdn.microsoft.com/en-us/library/ms252495.aspx
http://msdn.microsoft.com/en-us/library/dd793166.aspx
http://msdn.microsoft.com/en-us/library/ms181712.aspx
http://msdn.microsoft.com/en-us/library/ee330987.aspx
http://msdn.microsoft.com/en-us/library/bb399135.aspx
http://msdn.microsoft.com/en-us/library/bb778394.aspx
http://go.microsoft.com/?linkid=9805118

Select features to instalk:
oE
[% Visual Basic
-] 7 Visual C++
-1 Visual Fi#
-[7] % Visual Web Developer
-1 Graphice Library
-] Microsoft Office Developer Tools (x64)
-[1% Dotfuscator Scftware Services - Community
-] Microsoft SQL Server 2008 Express Service
[1% Microsoft SharePeint Developer Tools

When the installation of Visual Studio 2010 is complete, download and install Visual Studio 2010
Service Pack 1 (if it's not already included in your installation media).

Note: Visual Studio 2010 Service Pack 1 resolves a bug that can prevent MSBuild from locating
the MSDeploy executable.

Download and launch the Web Platform Installer.

At the top of the Web Platform Installer 3.0 window, click Products.
On the left side of the window, in the navigation pane, click Frameworks.

In the Microsoft .NET Framework 4 row, if the .NET Framework is not already installed, click
Add.

Note: You may have already installed the .NET Framework 4.0 through Windows Update. If a
product or component is already installed, the Web Platform Installer will indicate this by
replacing the Add button with the text Installed.

196

http://go.microsoft.com/?linkid=9805133
http://go.microsoft.com/?linkid=9805133
http://go.microsoft.com/?linkid=9805118

=lnix]

Spotlight Products Applications pe)
Name Released Instal A
Al AT ASPINET MVC 3 (Visual Studio 2010) 11/04/2011 Add
Server
Frameworks nJ Microsoft .NET Framework 4 12/04/2010 Installed
Database
Tools o PHP 538 29/08/2011 Add
AV ASP.NET MVC 3 Tools Update Language Packs 10/05/2011 Add
AV ASP.NET Web Pages 13/01/2011 Add
AV ASP.NET Web Pages Language Packs 13/01/2011 Add
& Windows Cache Extension 1.1 for PHP 5.2 28/06/2010 Add
< Windows Cache Extension 1.1 for PHP 5.3 28/06/2010 Add
nJ .NET Framework 35 5P 1 18/11/2008 Installed poon
- Windows PowerShell 2.0 16/04/2010 Installed _‘J
0 ltemsto be installed Options Install Bat |

7. Inthe ASP.NET MVC 3 (Visual Studio 2010) row, click Add.
8. Inthe navigation pane, click Server.
9. Inthe Web Deployment Tool 2.1 row, click Add.

Click Install. The Web Platform Installer will show you a list of products—together with any
associated dependencies—to be installed and will prompt you to accept the license terms.

10. Review the license terms, and if you consent to the terms, click | Accept.

11. When the installation is complete, click Finish, and then close the Web Platform Installer 3.0
window.

Note: If your deployment process includes the use of tools like VSDBCMD.exe or SQLCMD.exe, you'll

need to ensure that these are installed on your build server. VSDBCMD.exe is a Visual Studio tool and
is typically added to the server when you install Team Foundation Build. SQLCMD.exe is a SQL Server
tool. You can download a stand-alone version of SQLCMD.exe from the Microsoft SQL Server 2008 R2

Feature Pack page.

Conclusion

At this point, your build server is ready to start building and deploying your web application projects.
The next topic, Creating a Build Definition That Supports Deployment, describes how to create and

configure a build definition to control when and how your projects are built and deployed.

197

http://go.microsoft.com/?linkid=9805134
http://go.microsoft.com/?linkid=9805134

Further Reading

For more general guidance on working with Team Build, see Administering Team Foundation Build.

Creating a Build Definition That Supports Deployment

If you want to perform any kind of build in Team Foundation Server (TFS) 2010, you need to create a
build definition within your team project. This topic describes how to create a new build definition in TFS
and how to control web deployment as part of the build process in Team Build.

Task Overview

A build definition is the mechanism that controls how and when builds occur for team projects in TFS.
Each build definition specifies:

e The things you want to build, like Visual Studio solution files or custom Microsoft Build Engine
(MSBuild) project files.

e The criteria that determine when a build should take place, like manual triggers, continuous
integration (Cl), or gated check-ins.

e The location to which Team Build should send build outputs, including deployment artifacts like
web packages and database scripts.

e The amount of time that each build should be retained.

e Various other parameters of the build process.

Note: For more information on build definitions, see Define Your Build Process.

This topic will show you how to create a build definition that uses Cl, so that a build is triggered when a
developer checks in new content. If the build succeeds, the build service runs a custom project file to
deploy the solution to a test environment.

When you trigger a build, these actions need to happen:

e First, Team Build should build the solution. As part of this process, Team Build will invoke the
Web Publishing Pipeline (WPP) to generate web deployment packages for each of the web
application projects in the solution. Team Build will also run any unit tests associated with the
solution.

e [f the solution build fails, Team Build should take no further action. Unit test failures should be
treated as a build failure.

e If the solution build succeeds, Team Build should run the custom project file that controls the
deployment of the solution. As part of this process, Team Build will invoke the Internet
Information Services (1IS) Web Deployment Tool (Web Deploy) to install the packaged web
applications on the destination web servers, and it will invoke the VSDBCMD.exe utility to run
database creation scripts on the destination database servers.

198

http://msdn.microsoft.com/en-us/library/ms252495.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx

This illustrates the process:

Generata

Import
anvironment- .| |Fun database
‘ if - 5
settings

Daploy web
packages

The Contact Manager sample solution includes a custom MSBuild project file, Publish.proj, that you can
run from MSBuild or Team Build. As described in Understanding the Build Process, this project file

defines the logic that deploys your web packages and databases to a target environment. The file
includes logic that omits the building and packaging process if it's running in Team Build, leaving just the
deployment tasks to run. This is because when you automate deployment in this way, you'll typically
want to ensure that the solution builds successfully and passes any unit tests before the deployment

process commences.

The next section explains how to implement this process by creating a new build definition.

199

Note: This procedure—in which a single automated process builds, tests, and deploys a solution—is
likely to be most suited to deployment to test environments. For staging and production environments
you're a lot more likely to want to deploy content from a previous build that you've already verified
and validated in a test environment. This approach is described in the next topic, Deploying a Specific
Build.

Who Performs This Procedure?

Typically, a TFS administrator performs this procedure. In some cases, a developer team leader may take
responsibility for the team project collection in TFS. In order to create a new build definition, you need
to be a member of the Project Collection Build Administrators group for the team project collection
that contains your solution.

Create a Build Definition for CI and Deployment

The next procedure describes how to create a build definition that Cl triggers. If the build succeeds, the
solution is deployed using the logic in a custom MSBuild project file.

To create a build definition for Cl and deployment

1. In Visual Studio 2010, in the Team Explorer window, expand your team project node, right-
click Builds, and then click New Build Definition.

Team Explorer = I X

2] 1 |
_5'5 tfs'\Fabrikam Web Projects
] My Favorites
= _ﬁ___"._ﬁ ContactManager
— Y Work Items
| Documents
a Reports

-

ource Caontrol

View Builds
+Ii.ﬂ Queue Mew Build, ..
& New Build Definition. ..

L 4

% Manage Build Controllers...
¥4 Manage Build Qualities. ..
E Refresh

Security...
Alt+Enter

iz Properties

2. Onthe General tab, give the build definition a name (for example, DeployToTest) and an
optional description.

200

3. Onthe Trigger tab, select the criteria on which you want to trigger a new build. For example,
if you want to build the solution and deploy to the test environment every time a developer
checks in new code, select Continuous Integration.

4. On the Build Defaults tab, in the Copy build output to the following drop folder box, type
the Universal Naming Convention (UNC) path of your drop folder (for example,
\\TFSBUILD\Drops).

Spedfy the build controller and staging location for this build definition. These selections may

General
be modified by the person gqueuing the build.
Trigger Build controller:
Workspace ——
Build Defaults
pescriptn
& Process

Retention Policy

SR

W This build copies output files to a drop folder
Copy build output to the following drop folder (UMC path, such as \\serverishare):
I'n,'n,TFSEiUILD \Drops

Note: This drop location stores several builds, depending on the retention policy you
configure. When you want to publish deployment artifacts from a specific build to a staging or
production environment, this is where you'll find them.

5. On the Process tab, in the Build process file dropdown list, leave DefaultTemplate.xaml
selected. This is one of the default build process templates that get added to all new team
projects.

6. Inthe Build process parameters table, click in the Items to Build row, and then click the
ellipsis button.

Build process parameters:

E 1. Reqguired
Items to Build !
E 2. Basic
Automated Tests Run tests in assemblies matching =\ test™.dll
Build Mumber Format &(BuildDefinitonMame)_s(Date:yyyyMMdd)S(Rev:.r)
Clean Workspace All
Logging Verbosity Mormal
Perform Code Analysis AsConfigured
Source And Symbal Server Settings Index Sources

7. Inthe Items to Build dialog box, click Add.

8. Browse to the location of your solution file, and then click OK.

201

Look in: I[j Source j o4

|| ContactManager.Common
| ContactManager . Database
| ContactManager.Mwvc

| ContactManager . Service
1 Publish
ContactManager.sin

Itemn name: Immmcﬂﬂanager;‘Source;‘Conmch‘ﬂanager.sln

Items of type: ISquﬁnn Files (*.sln) j

9. Inthe Items to Build dialog box, click Add.
10. In the Items of type dropdown list, select MSBuild Project files.

11. Browse to the location of the custom project file with which you control the deployment
process, select the file, and then click OK.

21x
Look in: I[j Publish j ¥
|1 EnvConfig
. Publish.praj
Item name: Immhcﬂﬂanagerﬂmrceﬁubliﬁfpubliﬁ.pmj
Items of type: IMSEuiId Project files (*. *proj) j
oK Cancel |
A

12. The Items to Build dialog box should now show two items. Click OK.

202

Ttems to Build ed bt

Solutions Projects Cunﬁguratiunsl
Solution or project files to build:

¢/ContactManager Source /ContactManager. sin Add...

¢ /ContactManaager Source Publish/Publish. proj

Remowve

Ll

Mave Lip

Mowve Down

K I Cancel |

4

13. On the Process tab, in the Build process parameters table, expand the Advanced section.

14. In the MSBuild Arguments row, add any MSBuild command-line arguments that either of
your items to build requires. In the Contact Manager solution scenario, these arguments are
required:

/p:DeployOnBuild=true;DeployTarget=Package;
TargetEnvPropsFile=EnvConfig\Env-Dev.proj

Build process parameters:

Perform Code Analysis AsConfigured
Source And Symbol Server Settings Index Sources
B 3. Advanced
Agent Settings Use agent where Name=" and Tags is empty; Max Wait Time: 04:00:00
Analyze Test Impact True
Associate Changesets and Work Items True
Copy Outputs to Drop Folder True
Create Work Item on Failure True
Disable Tests False
Get Version
Label Sources True
MSBuild Arguments / p:DeployOnBuild =true;DeployTarget=package;TargetEnvPropsFile=EnvConfig\Env-Dev.proj
MSBuild Platfarm Auto
Private Drop Location

In this example:

a. The DeployOnBuild=true and DeployTarget=package arguments are required when you
build the Contact Manager solution. This instructs MSBuild to create web deployment
packages after building each web application project, as described in Building and
Packaging Web Application Projects.

203

15.

16.

b. The TargetEnvPropsFile argument is required when you build the Publish.proj file. This
property indicates the location of the environment-specific configuration file, as
described in Understanding the Build Process.

On the Retention Policy tab, configure how many builds of each type you want to retain as
required.

Click Save.

Queue a Build

At this point, you have created at least one new build definition. The build process you defined will now
run according to the triggers you specified in the build definition.

If you've configured your build definition to use Cl, you can test your build definition in two ways:

e Check in some content to the team project to trigger an automatic build.

e Queue a build manually.

To queue a build manually

1.

2.

In the Team Explorer window, right-click the build definition, and then click Queue New
Build.

Team Explorer * 0 X

2] 14 | %
% tfe\Fabrikam Web Projects
j My Favorites
=l _Tj ContactManager
___h Work Items
Documents
% Reports
= Builds
*:13 All Build Definitions

View Builds

+Iii| Queue Mew Build...

Edit Build Definition. ..

= Control

Open Process File Location
>(Delete Del
j Add to My Favorites

Security...
iz=| Properties Alt+Enter

In the Queue Build dialog box, review the build properties, and then click Queue.

204

Queue Build "ContactManager™ 2

General | Parameters

Build definition:

IDEponToSBging j
=
LI

What do you want to build?

ILahest SOUrces ﬂ

Build controller:

[TFSBUILD - Controller =l

Priority in queue: Position:

INormaI ﬂ Il

Drop folder for this build:

I‘n,‘n,TFSBUILD‘n,Drops

Queue I Cancel

To review the progress and the outcome of a build—regardless of whether it was triggered manually or
automatically—double-click the build definition in the Team Explorer window. This will open a Build

Explorer tab.
Butd Exore -Contoctianncer < [
2] | setpriority~ 1 w) | 5 X | Hy | 32 B
4 Queued || @) Completed

Build definiton: Quality fiter: Date filter:

[<any Build Definition> =] |<any Buid quaiity> = [Today |

- Only show builds requested by me

8] % @] Name | Build Definition [Buid Quality | Date Completed | RequestedBy |
) DeployToStaging_20120123.1 DeployToStaging 23/01/2012 16:17 matt

From here, you can troubleshoot failed builds. If you double-click an individual build, you can view
summary information and click through to detailed log files.

205

@ DeployToStaging_20120123.1 - Build failed - |<F'.|:| Quality Assigned= j
View Summary | View Log - Open Drop Folder | Delete Build

I matt triggered DeployToStaging (ContactManager) for changeset 23
Ran for 72 seconds (TFSBUILD - Controller), completed 2.8 minutes ago

Latest Activity

Build last modified by TFSBUILDS 2.8 minutes ago.

Bug 26, New Bug created during the build
Current state is Active. Currently assigned to Matt Hink

Summary

Release
¥ 1 error(s), 0 waming(s)
4/ContactManager/Source/Publish/Publish.proj - 1 error(s), 0 waming(s), View Log File
W} C:\Builds\2\ContactManager\DeployToStaging Sources'\Source\Publish\Publish.praj (111): The command " C:

\Program Files (x86)\Microsoft Visual Studio 10.0\vSTSDB\Deploy'vsdbemd.exe” fa:Deploy /cs:"Data
Source=5TAGEDB1;Integrated Security=true”™ /p:TargetDatabase=ContactManager /manifest:"C:\Builds\2
\ContactManager\DeployToStaging'Binaries\ContactManager.Database.deploymanifest” /script:”C:\Builds\2
\CentactManager\DeployToStaging'\Binaries\Publish-ContactManager-Db.sgl” (dd" exited with code 1.

» 1 projects/solutions compiled
Mo Test Results
Mo Code Coverage Results
Debug | Any CPU
0 error(s), 0 warning(s)
» 1 projects/solutions compiled
Mo Test Results
Mo Code Coverage Results
Other Errors and Warnings
w 1 error(s), 0 warning(s)
W} TF270015: ‘M5Build.exe’ returned an unexpected exit code. Expected '07; actual "1'.

You can use this information to troubleshoot failed builds and address any problems before you attempt
another build.

Note: Builds that execute deployment logic are likely to fail until you have granted the build server any
permissions required in the destination environment. For more information, see Configuring
Permissions for Team Build Deployment.

Monitor the Build Process

TFS provides a broad range of functionality to help you monitor the build process. For example, TFS can
send you an email or display alerts in your taskbar notification area when a build has completed. For
more information, see Run and Monitor Builds.

Conclusion

This topic described how to create a build definition in TFS. The build definition is configured for Cl, so
the build process runs whenever a developer checks in content to the team project. The build definition
executes a custom MSBuild project file to deploy web packages and database scripts to a target server
environment.

206

http://msdn.microsoft.com/en-us/library/ms181721.aspx

In order for an automated deployment to succeed as part of a build process, you'll need to grant
appropriate permissions to the build service account on the target web servers and the target database
server. The final topic in this tutorial, Configuring Permissions for Team Build Deployment, describes
how to identify and configure the permissions required for automated deployment from a Team Build

server.

Further Reading

For more information on creating build definitions, see Create a Basic Build Definition and Define Your

Build Process. For more guidance on queuing builds, see Queue a Build.

Deploying a Specific Build

This topic describes how to deploy web packages and database scripts from a specific previous build to a
new destination, like a staging or production environment.

Task Overview

Until now, the topics in this tutorial set have focused on how to build, package, and deploy web
applications and databases as part of a single-step or automated process. However, in some common
scenarios, you'll want to select the resources that you deploy from a list of builds in a drop folder. In
other words, the latest build may not be the build you want to deploy.

Consider the continuous integration (Cl) scenario described in the previous topic, Creating a Build
Definition That Supports Deployment. You've created a build definition in Team Foundation Server (TFS)

2010. Every time a developer checks code into TFS, Team Build will build your code, create web
packages and database scripts as part of the build process, run any unit tests, and deploy your resources
to a test environment. Depending on the retention policy you configured when you created the build
definition, TFS will retain a certain number of previous builds.

DeployToTest_20120221.2 21022012 13:42 File folder
DeployTaTest_20120228.1 28/02/2012 13:29 File folder
DeployToTest_20120228.2 268/02/2012 13:30 File folder
DeployToTest_20120228.3 28/02/2012 13:31 File folder
DeployToTest_201202258.4 28022012 13:31 File folder
DeployTaTest_20120228.5 28/02/2012 13:32 File folder
DeployToTest_20120228.6 28/02/2012 13:32 File folder

Now, suppose you've performed verification and validation testing against one of these builds in your
test environment, and you're ready to deploy your application to a staging environment. In the
meantime, developers may have checked in new code. You don't want to rebuild the solution and
deploy to the staging environment, and you don't want to deploy the latest build to the staging
environment. Instead, you want to deploy the specific build that you've verified and validated on the
test servers.

207

http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181722.aspx

To accomplish this, you need to tell the Microsoft Build Engine (MSBuild) where to find the web
packages and database scripts that a specific build generated.

Overriding the OutputRoot Property

In the sample solution, the Publish.proj file declares a property named OutputRoot. As the name
suggests, this is the root folder that contains everything that the build process generates. In the
Publish.proj file, you can see that the OutputRoot property refers to the root location for all deployment
resources.

Note: OutputRoot is a commonly used property name. Visual C# and Visual Basic project files also
declare this property to store the root location for all build outputs.

XML

<PropertyGroup>
<!--This is where the .deploymanifest file will be written to during a build-->
<_DbDeployManifestPath>
$(OutputRoot)ContactManager.Database.deploymanifest
</_DbDeployManifestPath>

<!-- The folder where the .zip and .cmd file will be located for
ContactManager.Mvc Web project -->
<_ContactManagerDest>
$(OutputRoot)_ PublishedWebsites\ContactManager.Mvc_Package\
</_ContactManagerDest>

<!-- The folder where the .zip and .cmd file will be located for
ContactManager.Service Web project -->
<_ContactManagerSvcDest>
$(OutputRoot) PublishedWebsites\ContactManager.Service_Package\
</_ContactManagerSvcDest>

<l-- ... -->
</PropertyGroup>

If you want your project file to deploy web packages and database scripts from a different location—like
the outputs of a previous TFS build—you simply need to override the OutputRoot property. You should
set the property value to the relevant build folder on the Team Build server. If you were running
MSBuild from the command line, you could specify a value for OutputRoot as a command-line
argument:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj
/p:0utputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest 20120228.3\

In practice, however, you'd also want to skip the Build target—there's no point in building your solution
if you don't plan to use the build outputs. You could do this by specifying the targets you want to
execute from the command line:

msbuild.exe Publish.proj /p:TargetEnvPropsFile=EnvConfig\Env-Dev.proj
208

/p:0utputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest 20120228.3\
/target:GatherPackagesForPublishing;PublishDBPackages;PublishiWebPackages

However, in most cases, you'll want to build your deployment logic into a TFS build definition. This
enables users with the Queue builds permission to trigger the deployment from any Visual Studio
installation with a connection to the TFS server.

Creating a Build Definition to Deploy Specific Builds

The next procedure describes how to create a build definition that enables users to trigger deployments
to a staging environment with a single command.

In this case, you don't want the build definition to actually build anything—you just want it to execute
the deployment logic in your custom project file. The Publish.proj file includes conditional logic that
skips the Build target if the file is running in Team Build. It does this by evaluating the built-in
BuildingInTeamBuild property, which is automatically set to true if you run your project file in Team
Build. As a result, you can skip the build process and simply run the project file to deploy an existing
build.

To create a build definition to trigger deployment manually

1. InVisual Studio 2010, in the Team Explorer window, expand your team project node, right-click
Builds, and then click New Build Definition.

Team Explorer * 0 X

21 1] | Pad

35 tfs'\Fabrikam Web Projects
j My Fawvorites

= _?ﬁ ContactManager

_:j Work Items

1 Documents

1 B FH

View Builds ource Control

:::::Iﬁ Queue New Build..

_,’?' Mew Build Definition. . ’

Manage Build Controllers..

-,;f

Manage Build Qualities...

ey
T

#] Refresh

Security...

i Properties Alt+Enter

2. Onthe General tab, give the build definition a name (for example, DeployToStaging) and an
optional description.

3. On the Trigger tab, select Manual — Check-ins do not trigger a new build.

209

4. On the Build Defaults tab, in the Copy build output to the following drop folder box, type the
Universal Naming Convention (UNC) path of your drop folder (for example, \\TFSBUILD\Drops).

Spedfy the build controller and staging location for this build definition. These selections may

General
be modified by the person gqueuing the build.
Trigger Build controller:
Warkspace i —
Build Defaults
pescrpton:
&y Process

Retention Policy

ST

¥ This build copies output files to a drop folder
Copy build output to the following drop folder (UNC path, such as \\serverishare):
I'n,'n,TFSE!UILD \Drops

5. On the Process tab, in the Build process file dropdown list, leave DefaultTemplate.xaml
selected. This is one of the default build process templates that get added to all new team
projects.

6. Inthe Build process parameters table, click in the Items to Build row, and then click the
ellipsis button.

Build process parameters:

E 1. Reqguired
Items to Build !
Bl 2. Basic
Automated Tests Run tests in assemblies matching = *test=.dll
Build Mumber Farmat &(BuildDefinitonMame)_s(Date:yyyyMMdd) S(Rev:.r)
Clean Waorkspace All
Logging Verbosity Mormal
Perform Code Analysis AsConfigured
Source And Symbaol Server Settings Index Sources

7. Inthe Items to Build dialog box, click Add.
8. Inthe Items of type dropdown list, select MSBuild Project files.

9. Browse to the location of the custom project file with which you control the deployment
process, select the file, and then click OK.

210

Look in: Ifj Publish j o4

|1 EnvConfig
. Publish. prag

Ttem name: |$mmmcmanagammroepuuimmuimpmj

Items of type: IMSEuiId Project files (*. *proj) j

10. In the Items to Build dialog box, click OK.
11. In the Build process parameters table, expand the Advanced section.

12. In the MSBuild Arguments row, specify the location of your environment-specific project file
and add a placeholder for the location of your build folder:

/p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj;
OutputRoot=PLACEHOLDER

Build process parameters:
Perform Code Analysis AsConfigured :]
& Source And Symbol Server Settings Index Sources
Bl 3. Advanced |
[Agent Settings Use agent where Name=" and Tags is empty; Max Wait Time: 04:00:00
Analyze Test Impact True
Associate Changesets and Work Ttems True
Copy Outputs to Drop Folder True
Create Work Item on Failure True
Disable Tests False
Get Version
Label Sources True
MSBuild Arguments I p-TargetEnvPropsFile=EnvConfig\Env-Stage.proj;,OutputRoot =PLACEHOLDER
MSBuild Platform Auta

Private Drop Location

3. Advanced

211

Note: You'll need to override the OutputRoot value every time you queue a build. This is

covered in the next procedure.

13. Click Save.

When you trigger a build, you need to update the OutputRoot property to point to the build you want
to deploy.
To deploy a specific build from a build definition

1. Inthe Team Explorer window, right-click the build definition, and then click Queue New Build.

Team Explorer * 0 X
2] %] | GG

'-?':ﬁ tfe\Fabrikam Web Projects
2] My Favorites
El [} ContactManager
% Work Items
Documents
% Reports
=] Builds
*":1; All Build Definitions

View Builds

:i;j:ﬁ Queue Mew Build...

Edit Build Definition. ..

e Control

Open Process File Location
>(Delete Del
j Add to My Favorites

Security...
iz=| Properties Alt+Enter

2. Inthe Queue Build dialog box, on the Parameters tab, expand the Advanced section.

3. Inthe MSBuild Arguments row, replace the value of the OutputRoot property with the location
of your build folder. For example:

/p:TargetEnvPropsFile=EnvConfig\Env-Stage.proj;
OutputRoot=\\TFSBUILD\Drops\DeployToTest\DeployToTest_20120228.3\

212

Queue Build "ContactManager™ 21X

General Parameters

Build process parameters:

E 1. Basic
Clean Workspace All
Logaing Verbosity Maormal
Perform Code Analysis AsConfigured
Source And Symbal Server Setting Index Sources
= 2. Advanced
Agent Settings IUse agent where Mame="and Tags is e
Analyze Test Impact True

Assodate Changesets and Work I True
Copy Outputs to Drop Folder True

Create Work Item on Failure True
Disable Tests False
Get Version

Label Sources True

MSBuild Arguments ployToTest\DeployToTest_20120228. 3
Private Drop Location

MSBuild Arguments
Spedify any additional command line arguments to pass to MSBuild. exe.

Queue I Cancel

Note: Be sure to include a trailing slash at the end of the path to your build folder.

4. Click Queue.

When you queue the build, the project file will deploy the database scripts and web packages from the
build drop folder you specified in the OutputRoot property.
Conclusion

This topic described how to publish deployment resources, like web packages and database scripts, from
a specific previous build using the split project file deployment model. It explained how to override the
OutputRoot property and how to incorporate the deployment logic into a TFS build definition.

213

Further Reading

For more information on creating build definitions, see Create a Basic Build Definition and Define Your

Build Process. For more guidance on queuing builds, see Queue a Build.

Configuring Permissions for Team Build Deployment

This topic describes how to configure permissions to enable your build server to deploy content to web
servers and database servers as part of an automated build process.

Task Overview

When you install the Team Foundation Server (TFS) 2010 build service, you specify the identity with
which you want the service to run. By default, this is the Network Service account. Alternatively, you can
configure the build service to run using a domain account.

Any deployment tasks that require Windows authentication, and that you plan to automate using Team
Build, will run using the build service identity. As such, you'll need to grant the build service identity any
required permissions on your web servers and your database servers.

Note: The Network Service account uses the machine account to authenticate to other computers.
Machine accounts take the form [domain name]\[machine name]$—for example,
FABRIKAM\TFSBUILDS. As such, if your build service runs using the Network Service identity, you
should grant any required permissions to the machine account identity for your build server.

Configuring Web Server Permissions

As described in Choosing the Right Approach to Web Deployment, there are two main approaches you

can use if you want to deploy web packages to a remote web server:

e Deploy the application from a remote location by targeting the Web Deployment Agent Service
(also known as the remote agent) on the destination server.

e Deploy the application from a remote location by targeting the Internet Information Services
(1IS) Web Deploy Handler on the destination server.

The remote agent has two key limitations in this case:

e The remote agent supports only NTLM authentication. In other words, the deployment must
use the build service identity—you can't impersonate another account.

e To use the remote agent, the account that performs the deployment must be an administrator
on the target server.

Together, these two limitations make the remote agent approach undesirable for an automated Team
Build deployment. To use this approach, you'd need to make the build service account an administrator
on any target web servers.

214

http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181715.aspx
http://msdn.microsoft.com/en-us/library/ms181722.aspx

In contrast, the Web Deploy Handler approach offers various advantages:

e The Web Deploy Handler supports basic authentication over HTTPS, which allows you to pass
the credentials of an alternative account to the IS Web Deployment Tool (Web Deploy).

e You can configure target web servers to allow non-administrator users to deploy content to
specific IIS websites using the Web Deploy Handler.

As a result, it's clearly preferable to target the Web Deploy Handler when you automate web package
deployment from Team Build. This is the recommended process:

1. Create a low-privileged domain account to use for the deployment.

2. Configure the Web Deploy Handler and grant the account the required permissions to deploy
content to a specific IS website, as described in Configuring a Web Server for Web Deploy
Publishing (Web Deploy Handler).

3. Invoke Web Deploy and target the Web Deploy Handler, using basic authentication and
supplying the credentials of the domain account you created, to perform the deployment.

In the Contact Manager sample solution, you specify the authentication type (basic or NTLM), the Web
Deploy credentials, and the endpoint address (remote agent or Web Deploy Handler) in the
environment-specific project file. These values are used to formulate and run a Web Deploy command
when the project file is executed. For more information, see Deploying Web Packages.

For more information on configuring the Web Deploy Handler, including how to configure permissions,
see Configuring a Web Server for Web Deploy Publishing (Web Deploy Handler). For more information
on configuring the remote agent, see Configuring a Web Server for Web Deploy Publishing (Remote

Agent).

Configuring Database Server Permissions

To deploy a database to SQL Server, you must:
e Create a login for the deploying account on the SQL Server instance.
e Grant the login DBCreator permissions on the SQL Server instance.

e After the initial deployment, add the login to the db_owner role on the target database. This is
required because on subsequent deployments, you're modifying an existing database rather
than creating a new database.

You can authenticate to a SQL Server instance using either NTLM authentication or SQL Server

authentication:

e If you use NTLM authentication, you need to grant the permissions described above to the build

service account.

215

e If you use SQL Server authentication, you need to grant the permissions described above to the
SQL Server account. You also need to include the SQL Server user name and password in the
connection string you use to deploy the database.

For step-by-step details on how to configure permissions for database deployment, see Configuring a
Database Server for Web Deploy Publishing.

Conclusion

At this point, you should understand the permissions required, together with the authentication options
open to you, when you automate web application and database deployments from Team Build. You
should also be able to implement the necessary permissions on IIS web servers and SQL Server database

servers.

Further Reading

For more information on configuring Windows server environments to support remote deployment, see
Configuring Server Environments for Web Deployment.

216

Advanced Enterprise Web Deployment

This tutorial will show you how to perform various tasks that are required or desirable in a lot of
enterprise deployment scenarios.

Scenario Overview

The high-level scenario for these tutorials is described in Enterprise Web Deployment: Scenario

Overview. We recommend that you review this topic before you get started on this tutorial.

How to Use This Tutorial

Each of the topics in this tutorial is self-contained and addresses a particular challenge or problem that
occurs in enterprise deployment scenarios. You don't need to work through these topics in any
particular order. However, this tutorial covers some advanced tasks. As such, you should familiarize
yourself with the concepts and techniques that the Web Deployment in the Enterprise tutorial covers in

order to gain the most benefit from this content.
This tutorial includes these topics:

e Performing a "What If" Deployment. In a lot of scenarios, you'll want to determine the impact of

a proposed deployment on a target environment or any existing content before you actually
make any changes. This topic describes how you can run a "what if" deployment to generate log
files and database update scripts as if you had deployed content to a target environment,
without actually making any changes. Analyzing these resources can help you to spot any
potential problems in advance of a live deployment.

e Customizing Database Deployments for Multiple Environments. When you deploy a database

project to multiple destinations, you'll often want to customize the deployment properties for
each target environment. For example, in test environments you'd typically recreate the
database on every deployment, whereas in staging or production environments you'd be a lot
more likely to make incremental updates to preserve your data. This topic describes how you
can incorporate these property changes into your deployment logic by creating an
environment-specific deployment configuration (.sgldeployment) file for each target
environment.

e Deploying Database Role Memberships to Test Environments. When you recreate a database on

every deployment—for example, as part of a continuous integration (Cl) build and deploy to a
test environment—you'll typically need to configure database role memberships every time. For
example, you'll usually need to grant permissions to the application pool identity associated
with your web application. This topic describes how you can automate this process by adding a
post-deployment SQL script to your deployment logic.

e Deploying Membership Databases to Enterprise Environments. ASP.NET membership databases

have various characteristics that can complicate the deployment process. For example, a
schema-only deployment will leave the database in a non-operational state. In most scenarios,

217

it's preferable to create a membership database directly in each destination environment.
However, if you do have to deploy a membership database, this topic describes some of the
approaches you can use to meet the inherent challenges.

Excluding Files and Folders from Deployment. In some scenarios, you'll want to tailor the

contents of your web package to specific destination environments. For example, you might
want to include full versions of JavaScript libraries when you deploy to a test environment, to
support client-side debugging, but use minified versions of the libraries when you deploy to a
staging or production environment. This topic describes how you can exclude specific files and
folders from the package creation process.

Taking Web Applications Offline with Web Deploy. When you deploy solutions to a staging or

production environment, you'll often want to take your web applications offline for the
duration of the deployment process. This topic describes how you can add an App_offline.htm
file to your web application at the start of the deployment process and remove it at the end.
While the App_offline.htm file is in place, any users who browse to the web application are
automatically redirected to the App_offline.htm file.

Running Windows PowerShell Scripts from MSBuild. Many deployment scenarios require more

complex post-deployment actions, like adding custom event sources to the registry or
configuring replication between SQL Server instances. These actions are often accomplished
through Windows PowerShell scripts. This topic describes how to run Windows PowerShell
scripts from a Microsoft Build Engine (MSBuild) project file as part of the build and deployment
process.

Troubleshooting the Packaging Process. The Web Publishing Pipeline (WPP) defines an MSBuild
property named EnablePackageProcessLoggingAndAssert that you can use to generate in-

depth information about the packaging process for web application projects. This topic
describes what the property does and how to use it.

Key Technologies

This tutorial focuses on how to use these products and technologies to support automated build and

web deployment:

Visual Studio 2010 and Team Foundation Server (TFS) 2010
MSBuild and TFS Team Build

Internet Information Services (l1S) 7.5

IIS Web Deployment Tool (Web Deploy) 2.1

The VSDBCMD.exe database deployment utility

218

Performing a "What If" Deployment

This topic describes how to perform "what if" (or simulated) deployments using the Internet Information
Services (11S) Web Deployment Tool (Web Deploy) and VSDBCMD. This lets you determine the effects of
your deployment logic on a particular target environment before you actually deploy your application.

Performing a "What If* Deployment for Web Packages

Web Deploy includes functionality that lets you perform deployments in "what if" (or trial) mode. When
you deploy artifacts in "what if" mode, Web Deploy generates a log file as if you had performed the
deployment, but it doesn't actually change anything on the destination server. Reviewing the log file can
help you to understand what impact your deployment will have on the destination server, in particular:

e What will get added.
e What will get updated.

e What will get deleted.

Because a "what if" deployment doesn't actually change anything on the destination server, what it
can't always do is predict whether a deployment will succeed.

As described in Deploying Web Packages, you can deploy web packages using Web Deploy in two
ways—Dby using the MSDeploy.exe command-line utility directly or by running the .deploy.cmd file that
the build process generates.

If you're using MSDeploy.exe directly, you can run a "what if" deployment by adding the —whatif flag to
your command. For example, to evaluate what would happen if you deployed the
ContactManager.Mvc.zip package to a staging environment, the MSDeploy command should resemble
this:

MSDeploy.exe

-whatif

-source:package="[path]\ContactManager.Mvc.zip"

-dest:auto,
computerName="https://stagewebl:8172/MSDeploy.axd?site=DemoSite",
username="FABRIKAM\stagingdeployer",
password="Pa$$word",
authtype="Basic",
includeAcls="False"

-verb:sync

-disablelLink:AppPoolExtension

-disablelLink:ContentExtension

-disablelLink:CertificateExtension

-setParamFile:"[path]\ContactManager.Mvc.SetParameters.xml"

-allowUntrusted

When you're satisfied with the results of your "what if" deployment, you can remove the —whatif flag to
run a live deployment.

219

Note: For more information on command-line options for MSDeploy.exe, see Web Deploy Operation
Settings.

If you're using the .deploy.cmd file, you can run a "what if" deployment by including the /t flag (trial
mode) flag instead of the /y flag ("yes," or update mode) in your command. For example, to evaluate
what would happen if you deployed the ContactManager.Mvc.zip package by running the .deploy.cmd
file, your command should resemble this:

ContactManager.Mvc.deploy.cmd /t /m:TESTWEB1 /a:NTLM

When you're satisfied with the results of your "trial mode" deployment, you can replace the /t flag with
a /y flag to run a live deployment:

ContactManager.Mvc.deploy.cmd /y /m:TESTWEB1 /a:NTLM

Note: For more information on command-line options for .deploy.cmd files, see How to: Install a

Deployment Package Using the deploy.cmd File. If you run the .deploy.cmd file without specifying any

flags, the command prompt will display a list of available flags.

Performing a "What If' Deployment for Databases

This section assumes that you're using the VSDBCMD utility to perform incremental, schema-based
database deployment. This approach is described in more detail in Deploying Database Projects. We

recommend that you familiarize yourself with this topic before you apply the concepts described here.

When you use VSDBCMD in Deploy mode, you can use the /dd (or /DeployToDatabase) flag to control
whether VSDBCMD actually deploys the database or just generates a deployment script. If you're
deploying a .dbschema file, this is the behavior:

e If you specify /dd+ or /dd, VSDBCMD will generate a deployment script and deploy the
database.

e If you specify /dd- or omit the switch, VSDBCMD will generate a deployment script only.

Note: If you're deploying a .deploymanifest file rather than a .dbschema file, the behavior of the /dd
switch is a lot more complicated. Essentially, VSDBCMD will ignore the value of the /dd switch if the
.deploymanifest file includes a DeployToDatabase element with a value of True. Deploying Database

Projects describes this behavior in full.

For example, to generate a deployment script for the ContactManager database without actually
deploying the database, your VSDBCMD command should resemble this:

vsdbcmd.exe /a:Deploy
/manifest:"..\ContactManager.Database.deploymanifest"
/cs:"Data Source=TESTDB1;Integrated Security=true"
/p:TargetDatabase=ContactManager
/dd-
/script:"..\Publish-ContactManager-Db.sql"

220

http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx

VSDBCMD is a differential database deployment tool, and as such the deployment script is dynamically
generated to contain all the SQL commands necessary to update the current database, if one exists, to
the specified schema. Reviewing the deployment script is a useful way to determine what impact your
deployment will have on the current database and the data it contains. For example, you might want to
determine:

e Whether any existing tables will be removed, and whether that will result in data loss.

e Whether the order of operations carries a risk of data loss, for example, if you're splitting or
merging tables.

If you're happy with the deployment script, you can repeat the VSDBCMD with a /dd+ flag to make the
changes. Alternatively, you can edit the deployment script to meet your requirements and then execute
it manually on the database server.

Integrating "What If" Functionality into Custom Project Files

In more complex deployment scenarios, you'll want to use a custom Microsoft Build Engine (MSBuild)
project file to encapsulate your build and deployment logic, as described in Understanding the Project

File. For example, in the Contact Manager sample solution, the Publish.proj file:

e Builds the solution.
e Uses Web Deploy to package and deploy the ContactManager.Mvc application.
e Uses Web Deploy to package and deploy the ContactManager.Service application.

e Deploys the ContactManager database.

When you integrate the deployment of multiple web packages and/or databases into a single-step
process in this way, you may also want the option of performing the entire deployment in a "what if"
mode.

The Publish.proj file demonstrates how you can do this. First, you need to create a property to store the
"what if" value:

XML

<PropertyGroup>
<WhatIf Condition=" '$(WhatIf)'==""' ">false</WhatIf>
</PropertyGroup>
In this case, you've created a property named Whatlf with a default value of false. Users can override
this value by setting the property to true in a command-line parameter, as you'll see shortly.

The next stage is to parameterize any Web Deploy and VSDBCMD commands so that the flags reflect the
Whatlf property value. For example, the next target (taken from the Publish.proj file and simplified) runs
the .deploy.cmd file to deploy a web package. By default, the command includes a /Y switch ("yes," or
update mode). If Whatlf is set to true, this is replaced by a /T switch (trial, or "what if" mode).

221

XML

<Target Name="PublishWebPackages" Outputs="%(PublishPackages.Identity)">
<PropertyGroup>

<_WhatIfSwitch>/Y</_WhatIfSwitch>

< _WhatIfSwitch Condition=" '$(WhatIf)'=="true' ">/T</ WhatIfSwitch>

<_Cmd>%(PublishPackages.FullPath) $(_WhatifSwitch)
/M:$(MSDeployComputerName)
/U:$(MSDeployUsername)
/P:$(MSDeployPassword)
/A:$(MSDeployAuth)
%(PublishPackages.AdditionalMSDeployParameters)

</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

Similarly, the next target uses the VSDBCMD utility to deploy a database. By default, a /dd switch is not
included. This means that VSDBCMD will generate a deployment script but will not deploy the
database—in other words, a "what if" scenario. If the Whatlf property is not set to true, a /dd switch is
added and VSDBCMD will deploy the database.

XML
<Target Name="PublishDbPackages" Outputs="%(DbPublishPackages.Identity)">
<PropertyGroup>

<_DbDeployOrScript></_DbDeployOrScript>

<_DbDeployOrScript Condition=" '$(Whatif)'!="'true' ">/dd</_DbDeployOrScript>

<_Cmd>"$(VsdbCmdExe)" /a:Deploy
/cs:"%(DbPublishPackages.DatabaseConnectionString)"
/p:TargetDatabase=%(DbPublishPackages.TargetDatabase)
/manifest:"%(DbPublishPackages.FullPath)"
/script:"$(_CmDbScriptPath)"
$(_DbDeployOrScript)

</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

You can use the same approach to parameterize all the relevant commands in your project file. When
you want to run a "what if" deployment, you can then simply provide a Whatlf property value from the

command line:

MSBuild.exe Publish.proj /p:WhatIf=true;TargetEnvPropsFile=EnvConfig\Env-Dev.proj

In this way, you can run a "what if" deployment for all your project components in a single step.

222

Conclusion

This topic described how to run "what if" deployments using Web Deploy, VSDBCMD, and MSBuild. A
"what if" deployment lets you evaluate the impact of a proposed deployment before you actually make
any changes to the destination environment.

Further Reading

For more information on Web Deploy command-line syntax, see Web Deploy Operation Settings. For

guidance on command-line options when you use the .deploy.cmd file, see How to: Install a Deployment

Package Using the deploy.cmd File. For guidance on VSDBCMD command-line syntax, see Command-
Line Reference for VSDBCMD.EXE (Deployment and Schema Import).

Customizing Database Deployments for Multiple Environments

This topic describes how to tailor the properties of a database to specific target environments as part of
the deployment process.

Note: The topic assumes that you're deploying a Visual Studio 2010 database project using
MSBuild.exe and VSDBCMD.exe. For more information on why you might choose this approach, see
Web Deployment in the Enterprise and Deploying Database Projects.

When you deploy a database project to multiple destinations, you'll often want to customize the
database deployment properties for each target environment. For example, in test environments you'd
typically recreate the database on every deployment, whereas in staging or production environments
you'd be a lot more likely to make incremental updates to preserve your data.

In a Visual Studio 2010 database project, deployment settings are contained within a deployment
configuration (.sgldeployment) file. This topic will show you how to create environment-specific
deployment configuration files and specify the one you want to use as a VSDBCMD parameter.
Task Overview

This topic assumes that:

e You use the split project file approach to solution deployment, as described in Understanding
the Project File.

e You call VSDBCMD from the project file to deploy your database project, as described in
Understanding the Build Process.

To create a deployment system that supports varying the database deployment properties between
target environments, you'll need to:

e Create a deployment configuration (.sgldeployment) file for each target environment.

e Create a VSDBCMD command that specifies the deployment configuration file as a command-
line switch.

223

http://technet.microsoft.com/en-us/library/dd569089(WS.10).aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/ff356104.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx

Parameterize the VSDBCMD command in a Microsoft Build Engine (MSBuild) project file, so that
the VSDBCMD options are appropriate to the target environment.

This topic will show you how to perform each of these procedures.

Creating Environment-Specific Deployment Configuration Files

By default, a database project contains a single deployment configuration file named

Database.sqldeployment. If you open this file in Visual Studio 2010, you can see the different

deployment options that are available to you:

Deployment comparison collation. This lets you choose whether to use the database collation
of your project (the source collation) or the database collation of your destination server (the
target collation). In most cases, you'll want to use the source collation when you deploy to a
development or test environment. When you deploy to a staging or production environment,
you'll usually want to leave the target collation unchanged to avoid any interoperability issues.

Deploy database properties. This lets you choose whether to apply the database properties, as
defined in the Database.sqlsettings file. When you deploy a database for the first time, you
should deploy the database properties. If you're updating an existing database, the properties
should already be in place, and you shouldn't need to deploy them again.

Always re-create database. This lets you choose whether to re-create the target database every
time you deploy or make incremental changes to bring the target database up to date with your
schema. If you re-create the database, you'll lose any data in the existing database. As such, you
should usually set this to false for deployments to staging or production environments.

Block incremental deployment if data loss might occur. This lets you choose whether
deployment should stop if a change to the database schema will cause the loss of data. You
typically set this to true for a deployment to a production environment, to give you the
opportunity to intervene and protect any important data. If you have set Always re-create
database to false, this setting will have no effect.

Execute deployment in single-user mode. This is not usually an issue in development or test
environments. However, you should typically set this to true for deployments to staging or
production environments. This prevents users from making changes to the database while the
deployment is underway.

Back up database before deployment. You typically set this to true when you deploy to a
production environment, as a precaution against data loss. You may also want to set it to true
when you deploy to a staging environment, if your staging database contains a lot of data.

Generate DROP statements for objects that are in the target database but that are not in the
database project. In most cases, this is an integral and essential part of making incremental
changes to a database. If you have set Always re-create database to false, this setting will have
no effect.

224

e Do not use ALTER ASSEMBLY statements to update CLR types. This setting determines how
SQL Server should update common language runtime (CLR) types to newer assembly versions.

This should be set to false in most scenarios.

This table shows typical deployment settings for different destination environments. However, your

settings may be different depending on your exact requirements.

Developer/Test

Staging/Integration

Production

Deployment comparison collation Source

Target

Target

Deploy database True
properties

First time only

First time only

Always re-create True
database

False

False

Block incremental False
deployment if data
loss might occur

Maybe

True

Execute False
deployment script
in single-user mode

True

True

Back up database False
before deployment

Maybe

True

Generate DROP False
statements for
objects that are in
the target database
but that are not in
the database
project

True

True

Do not use ALTER False
ASSEMBLY
statements to
update CLR types

False

False

Note: For more information on database deployment properties and environment considerations, see
An Overview of Database Project Settings, How to: Configure Properties for Deployment Details, Build

and Deploy Database to an Isolated Development Environment, and Build and Deploy Databases to a

Staging or Production Environment.

To support the deployment of a database project to multiple destinations, you should create a

deployment configuration file for each target environment.

To create an environment-specific configuration file
225

http://msdn.microsoft.com/en-us/library/aa833291(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd172125.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx

1. In Visual Studio 2010, in the Solution Explorer window, right-click your database project, and
then click Properties.

2. On the database project properties page, on the Deploy tab, in the Deployment configuration
file row, click New.

Project Settings
Configuration; I.fn:m-e {Debug) ﬂ Platform: |m:t1ne (Any CPU) ﬂ
Build Events
Configure deployment settings for:
References -
|M',' project settings :I
Build Deploy action:
|Cr:a1t a deployment script (.sql) j
Deptoy Deployment soript name:
Code Analysis [Cmracﬂar'ager.l:laﬁ:ase.sql
—Target Database Settings
Target connection:
| Edit. .. |
Target database name:

ContactManager. Database

Deployment configuration file:
|Prooerbes'Database.sql:IEplnmer‘t ﬂ m
5ql command variables file:

|Properbes'ﬂaraba=e.cql:rnd\-ars ﬂ | New.., |

3. Inthe New Deployment Configuration File dialog box, give the file a meaningful name (for
example, TestEnvironment.sqldeployment), and then click Save.

4. Onthe [Filename].sqldeployment page, set the deployment properties to match the
requirements of your destination environment, and then save the file.

I
restEnerment socepoment <

Deployment comparision collation:
IUSE the collation of my project j

v Deploy database properties

Always re-create database

Blodk incremental deployment if data loss might ocour
Execute deployment script in single-user mode

Back up database before deployment

Gernerate DROP statements for objects that are in the target database but
that are not in the database project

I I B (i Bl BER

Do not use ALTER ASSEMEBLY statements to update CLR types

5. Notice that the new file is added to the Properties folder in your database project.

226

-
Solution Explorer * 1 X

2 SElEEE
_j Solution 'ContactManager-WCF' (4 projects) -
{7% Publish

| ContactManager. Comman
= _j ContactManager.Database
= |F Properties

#}y Database.sglomdvars
+:) Database.sgldeployment
;3;!1\ Database.sglpermissions
= Database.sglsettings
FRY TestEnvironment. sgldeployment

Specifying the Deployment Configuration File in VSDBCMD

When you use solution configurations (like Debug and Release) within Visual Studio 2010, you can
associate a deployment configuration file with each configuration. When you build a particular
configuration, the build process generates a configuration-specific deployment manifest file that points
to the configuration-specific deployment configuration file. However, one of the main aims of the
approach to deployment described in these tutorials is to give people the ability to control the
deployment process without using Visual Studio 2010 and solution configurations. In this approach, the
solution configuration is the same regardless of the target deployment environment. To tailor your
database deployment to a specific destination environment, you can use the VSDBCMD command-line
options to specify your deployment configuration file.

To specify a deployment configuration file in your VSDBCMD, use the p:/DeploymentConfigurationFile
switch and provide the full path to your file. This will override the deployment configuration file that the
deployment manifest identifies. For example, you could use this VSDBCMD command to deploy the
ContactManager database to a test environment:

vsdbcmd.exe /a:Deploy
/manifest:"..\ContactManager.Database.deploymanifest"
/cs:"Data Source=TESTDB1;Integrated Security=true"
/p:TargetDatabase=ContactManager
/p:DeploymentConfigurationFile=

"..\ContactManager.Database_TestEnvironment.sqldeployment”

/dd+
/script:"..\Publish-ContactManager-Db.sql"

Note: Note that the build process may rename your .sqldeployment file when it copies the file to the
output directory.

If you use SQL command variables in your pre-deployment or post-deployment SQL scripts, you can use
a similar approach to associate an environment-specific .sqlcmdvars file with your deployment. In this
case, you use the p:/SqlCommandVariablesFile switch to identify your .sqlcmdvars file.

227

Running the VSDBCMD Command from an MSBuild Project File

You can invoke a VSDBCMD command from an MSBuild project file by using an Exec task within an
MSBuild target. In its simplest form, it would look like this:

XML

<Target Name="DeployDatabase">
<PropertyGroup>
<_Cmd>
Add your VSDBCMD command here
</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

In practice, to make your project files easy to read and reuse, you'll want to create properties to store
the various command-line parameters. This makes it easier for users to provide property values in an
environment-specific project file or to override default values from the MSBuild command line. If you
use the split project file approach described in Understanding the Project File, you should divide your

build instructions and properties between the two files accordingly:

e Environment-specific settings, like the deployment configuration filename, the database
connection string, and the target database name, should go in the environment-specific project
file.

e The MSBuild target that runs the VSDBCMD command, together with any universal properties
like the location of the VSDBCMD executable, should go in the universal project file.

You should also ensure that you build the database project before you invoke VSDBCMD so that the
.deploymanifest file is created and ready to use. You can see a full example of this approach in the topic
Understanding the Build Process, which walks you through the project files in the Contact Manager

sample solution.

Conclusion

This topic described how you can tailor database properties to different destination environments when
you deploy database projects using MSBuild and VSDBCMD. This approach is useful when you need to
deploy database projects as part of larger, enterprise-scale solutions. These solutions are often deployed
to multiple destinations, like sandboxed development or test environments, staging or integration
platforms, and production or live environments. Each of these target environments typically requires a
unique set of database deployment properties.

Further Reading

For more information on deploying database projects using VSDBCMD.exe, see Deploying Database

Projects. For more information on using custom MSBuild project files to control the deployment
process, see Understanding the Project File and Understanding the Build Process.

228

These articles on MSDN provide more general guidance on database deployment:

e An Overview of Database Project Settings

e How to: Configure Properties for Deployment Details

e Build and Deploy Databases to an Isolated Development Environment

e Build and Deploy Databases to a Staging or Production Environment

Deploying Database Role Memberships to Test Environments

This topic describes how to add user accounts to database roles as part of a solution deployment to a
test environment.

When you deploy a solution containing a database project to a staging or production environment, you
typically don't want the developer to automate the addition of user accounts to database roles. In most
cases, the developer won't know which user accounts need to be added to which database roles, and
these requirements could change at any time. However, when you deploy a solution containing a
database project to a development or test environment, the situation is usually rather different:

e The developer typically re-deploys the solution on a regular basis, often several times a day.

e The database is typically re-created on every deployment, which means that database users
must be created and added to roles after every deployment.

e The developer typically has full control over the target development or test environment.

In this scenario, it's often beneficial to automatically create database users and assign database role
memberships as part of the deployment process.

The key factor is that this operation needs to be conditional based on the target environment. If you're

deploying to a staging or a production environment, you want to skip the operation. If you're deploying
to a developer or test environment, you want to deploy role memberships without further intervention.
This topic describes one approach you can use to address this challenge.

Task Overview
This topic assumes that:

e You use the split project file approach to solution deployment, as described in Understanding
the Project File.

e You call VSDBCMD from the project file to deploy your database project, as described in
Understanding the Build Process.

To create database users and assign role memberships when you deploy a database project to a test
environment, you'll need to:

229

http://msdn.microsoft.com/en-us/library/aa833291(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd172125.aspx
http://msdn.microsoft.com/en-us/library/dd193409.aspx
http://msdn.microsoft.com/en-us/library/dd193413.aspx

Create a Transact Structured Query Language (Transact-SQL) script that makes the necessary
database changes.

Create a Microsoft Build Engine (MSBuild) target that uses the sglcmd.exe utility to run the SQL
script.

Configure your project files to invoke the target when you're deploying your solution to a test
environment.

This topic will show you how to perform each of these procedures.

Scripting the Database Role Memberships

You can create a Transact-SQL script in a lot of different ways, and in any location you choose. The

easiest approach is to create the script within your solution in Visual Studio 2010.

To create a SQL script

1.
2.
3.

In the Solution Explorer window, expand your database project node.
Right-click the Scripts folder, point to Add, and then click New Folder.
Type Test as the folder name, and then press Enter.

Right-click the Test folder, point to Add, and then click Script.

In the Add New Item dialog box, give your script a meaningful name (for example,
AddRoleMemberships.sql), and then click Add.

230

6.

Add New Item - ContactManager.Database

Installed Templates Sortby: I Default j

=l Database Project
Data Generation Plan
Programmability
Schema Comparisan
Security
Service Broker
Storage
Tables and Views

User Scripts
Visual Studio Templates

Online Templates

Script Database Project

Mame: I AddRoleMemberships. sql

In the AddRoleMemberships.sql file, add Transact-SQL statements that:

a. Create a database user for the SQL Server login that will access your database.

b. Add the database user to any required database roles.
The file should resemble this:

Transact-SQL

USE $ (DatabaseName)

GO

CREATE USER [FABRIKAM\TESTWEB1S$] FOR LOGIN[FABRIKAM\TESTWEB1S]
GO

USE [ContactManager]

GO

EXEC sp addrolemember N'db datareader', N'FABRIKAM\TESTWEB1S'
GO

USE [ContactManager]

GO

EXEC sp addrolemember N'db datawriter', N'FABRIKAM\TESTWEBLS'
GO

7. Save the file.

231

Executing the Script on the Target Database

Ideally, you'd run any required Transact-SQL scripts as part of a post-deployment script when you deploy
your database project. However, post-deployment scripts don't allow you to execute logic conditionally
based on solution configurations or build properties. The alternative is to run your SQL scripts directly
from the MSBuild project file, by creating a Target element that executes a sqlcmd.exe command. You
can use this command to run your script on the target database:

sqlcmd.exe -S [Database server] -d [Database name] -i [SQL script]
Note: For more information on sqlcmd command-line options, see sglcmd Utility.

Before you embed this command in an MSBuild target, you need to consider under what conditions you
want the script to run:

e The target database must exist before you change its role memberships. As such, you need to
run this script after the database deployment.

e You need to include a condition so that the script is only executed for test environments.

e Ifyou're running a "what if" deployment—in other words, if you're generating deployment
scripts but not actually running them—you shouldn't run the SQL script.

If you're using the split project file approach described in Understanding the Project File, as

demonstrated by the Contact Manager sample solution, you can split the build instructions for your SQL
script like this:

e Any required environment-specific properties, together with the property that determines
whether to deploy permissions, should go in the environment-specific project file (for example,
Env-Dev.proj).

e The MSBuild target itself, together with any properties that will not change between
destination environments, should go in the universal project file (for example, Publish.proj).

In the environment-specific project file, you need to define the database server name, the target
database name, and a Boolean property that lets the user specify whether to deploy role memberships.

XML

<PropertyGroup>

<CmTargetDatabase Condition=" '$(CmTargetDatabase)'=="'"' ">
ContactManager

</CmTargetDatabase>

<DatabaseServer Condition=" '$(DatabaseServer)'==""
TESTDB1

</DatabaseServer>

<DeployTestDBRoleMemberships Condition=""'$(DeployTestDBRoleMemberships)'==
true

>

>

232

http://msdn.microsoft.com/en-us/library/ms162773.aspx

</DeployTestDBRoleMemberships>
</PropertyGroup>
In the universal project file, you need to provide the location of the sqlcmd executable and the location
of the SQL script you want to run. These properties will remain the same regardless of the destination
environment. You also need to create an MSBuild target to execute the sqlcmd command.

XML
<PropertyGroup>
<SglCmdExe Condition=" '$(SqlCmdExe)‘'=='"' ">
C:\Program Files\Microsoft SQL Server\100\Tools\Binn\sqglcmd.exe
</SqlCmdExe>
</PropertyGroup>

<Target Name="DeployTestDBPermissions"
Condition=" '$(DeployTestDBRoleMemberships)'=="true' AND
'$(Whatif)'!="true' ">
<PropertyGroup>
<SqlScript>
$(SourceRoot)ContactManager.Database\Scripts\Test\AddRoleMemberships.sql
</SqlScript>
<_Cmd>"$(SqlCmdExe)" -S "$(DatabaseServer)"
-d "$(CmTargetDatabase)"
-i "$(SqlScript)"

</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)" ContinueOnError="false" />
</Target>

Notice that you add the location of the sqlcmd executable as a static property, as this could be useful to
other targets. In contrast, you define the location of your SQL script and the syntax of the sqlcmd
command as dynamic properties within the target, as they will not be required before the target is
executed. In this case, the DeployTestDBPermissions target will only be executed if these conditions are
met:

e The DeployTestDBRoleMemberships property is set to true.

e The user hasn't specified a Whatlf=true flag.

Finally, don't forget to invoke the target. In the Publish.proj file, you can do this by adding the target to
the dependency list for the default FullPublish target. You need to ensure that the
DeployTestDBPermissions target is not executed until the PublishDbPackages target has been
executed.

XML

<Project ToolsVersion="4.0"
DefaultTargets="FullPublish"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" >

233

<PropertyGroup>
<FullPublishDependsOn>
Clean;
BuildProjects;
GatherPackagesForPublishing;
PublishDbPackages;
DeployTestDBPermissions;
PublishWebPackages;
</FullPublishDependsOn>
</PropertyGroup>
<Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />
</Project>

Conclusion

This topic described one way in which you can add database users and role memberships as a post-
deployment action when you deploy a database project. This is typically useful when you regularly re-
create a database in a test environment, but it should usually be avoided when you deploy databases to
staging or production environments. As such, you should ensure that you use the necessary conditional
logic so that database users and role memberships are only created when it's appropriate to do so.

Further Reading

For more information on using VSDBCMD to deploy database projects, see Deploying Database Projects.
For guidance on customizing database deployments for different target environments, see Customizing

Database Deployments for Multiple Environments. For more information on using custom MSBuild

project files to control the deployment process, see Understanding the Project File and Understanding

the Build Process. For more information on sqlcmd command-line options, see sqlcmd Utility.

Deploying Membership Databases to Enterprise Environments

This topic explains the key considerations and challenges you'll need to overcome when you provision
ASP.NET application services databases (more commonly referred to as membership databases) in test,
staging, or production environments. It also describes approaches you can use to meet these challenges.

What Are the Issues When You Deploy a Membership Database?

In most cases, when you devise a deployment strategy for a database, the first thing you need to
consider is what data you want to deploy. In a development or test environment, you might want to
deploy user account data to facilitate quick and easy testing. In a staging or production environment, it's
very unlikely that you'd want to deploy user account data.

Unfortunately, ASP.NET membership databases introduce some specific challenges that make this
decision a lot more complex:

e A schema-only deployment will leave the membership database in a non-operational state. This
is because the membership database includes some configuration data (in the

234

http://msdn.microsoft.com/en-us/library/ms162773.aspx

aspnet_SchemaVersions table) that the database requires in order to function. As such, if you
perform a schema-only deployment of your membership database in order to exclude user
account data, you'll need to run a post-deployment script to add the essential configuration
data.

e Depending on how your membership database is configured, the membership provider may use
the machine key to encrypt passwords and store them in the database. In this case, any user
account data you deploy with the database will become unusable on the destination server. For
this reason, deploying user account data is not a supported scenario.

Choosing a Membership Database Strategy

Use these guidelines when you choose how to provision a membership database in an enterprise server
environment:

e Wherever possible, do not deploy membership databases. Instead, create the membership
database manually on the target database server. If you haven't customized your membership
database schema, you can simply create a new one in situ at the destination using the ASP.NET
SQL Server Registration Tool (aspnet regsal.exe).

e If you have no option but to deploy a membership database—for example, if you've made
extensive modifications to the database schema—you should perform a schema-only
deployment of the membership database, to exclude user account data, and then run a post-
deployment script to add any required configuration data. You can find broad guidance on
these approaches in How to: Deploy the ASP.NET Membership Database Without Including User

Accounts.

It's important to remember that the schema of your membership database is likely to be fairly static.
Even if you've customized the membership database, it's unlikely that you'll need to update the schema
on a regular basis—it's not going to change with the same frequency as the code in a web application or
a database project. As such, you shouldn't need to include the membership database in any automated
or single-step deployment processes.

Using VSDBCMD to Update a Membership Database Schema

If you modify the structure of your membership database after your first deployment, you may not want
to use the Internet Information Services (1IS) Web Deployment Tool (Web Deploy) to redeploy the
database. The database deployment functionality in Web Deploy doesn't include the capability to make
differential updates to a destination database—instead, Web Deploy must drop and re-create the
database. This means that you lose any existing user account data, which is typically undesirable in
staging or production environments.

The alternative is to use the VSDBCMD utility to update the schema of your destination database.

VSDBCMD includes two important capabilities. First, it can import the schema of an existing database

into a .dbschema file. Second, it can deploy a .dbschema file to an existing database as a differential
235

http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx

update, which means that it only makes the changes required to bring the target database up to date
and you don't lose any data.

You can use these high-level steps to update a membership database schema:

1. Use the VSDBCMD Import action to generate a .dbschema file for your source membership
database. This procedure is described in How to: Import a Schema from a Command Prompt.

2. Use the VSDBCMD Deploy action to deploy the .dbschema file to your destination membership
database. This procedure is described in Command-Line Reference for VSDBCMD.EXE
(Deployment and Schema Import).

Conclusion

This topic described some of the challenges you may face when you need to provision ASP.NET
membership databases in various target environments. In particular, it explained why schema-only
deployments will leave the membership database in a non-operational state and why deploying user
account data is not supported. The topic also presented guidance on how to provision, deploy, and
update membership databases in different scenarios.

Further Reading

For more guidance and examples of how to use VSDBCMD, see Command-Line Reference for

VSDBCMD.EXE (Deployment and Schema Import) and How to: Import a Schema from a Command

Prompt. For more information on using aspnet_regsql.exe to create membership databases, see
ASP.NET SQL Server Registration Tool (aspnet regsgl.exe). For more general guidance on deploying

membership databases, see How to: Deploy the ASP.NET Membership Database Without Including User

Accounts.

Excluding Files and Folders from Deployment

This topic describes how you can exclude files and folders from a web deployment package when you
build and package a web application project.

Overview

When you build a web application project in Visual Studio 2010, the Web Publishing Pipeline (WPP) lets
you extend this build process by packaging your compiled web application into a deployable web
package. You can then use the Internet Information Services (1IS) Web Deployment Tool (Web Deploy)
to deploy this web package to a remote IIS web server, or import the web package manually through IIS
Manager. This packaging process is explained in Building and Packaging Web Application Projects.

So how do you control what gets included in your web package? The project settings in Visual Studio,
through the underlying project file, provide sufficient control for a lot of scenarios. However, in some
cases you may want to tailor the contents of your web package to specific destination environments. For
example, you might want to include a folder for log files when you deploy your application to a test

236

http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd193283.aspx
http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/dd172135.aspx
http://msdn.microsoft.com/en-us/library/ms229862(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff361972(v=vs.100).aspx

environment but exclude the folder when you deploy the application to a staging or production
environment. This topic will show you how to do this.

What Gets Included by Default?

When you configure your web application project properties in Visual Studio, the Items to deploy list on
the Package/Publish Web page lets you specify what you want to include in your web deployment
package. By default, this is set to Only files needed to run this application.

Application

Configuration: IAch’ve (Release) j Platform: I.ﬁ.cﬁve (Any CPU) j
Build
e Package/Publish enables youto deploy your Web application to Web servers.
&
Learn more about Package/Publish Web
Package [Publish Web Items to deploy (appliesto all deployment methods)
Package Publish S0L IOnI\,r files needed to run this application j

Silverlight Applications

All files in this project folder
: ——

Build Events

When you choose Only files needed to run this application, the WPP will try to determine which files
should be added to the web package. This includes:

e All the build outputs for the project.

e Any files marked with a build action of Content.

Note: The logic that determines which files to include is contained in this file:

%PROGRAMEFILES%\MSBuild\Microsoft\VisualStudio\v10.0\Web\
Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets

Excluding Specific Files and Folders

In some cases, you'll want more fine-grained control over which files and folders are deployed. If you
know which files you want to exclude ahead of time, and the exclusion applies to all destination
environments, you can simply set the Build Action of each file to None.

To exclude specific files from deployment
1. Inthe Solution Explorer window, right-click the file, and then click Properties.

2. Inthe Properties window, in the Build Action row, select None.

However, this approach is not always convenient. For example, you may want to vary which files and
folders are included according to your destination environment, and from outside Visual Studio. For
example, in the Contact Manager sample solution, take a look at the contents of the
ContactManager.Mvc project:

237

Solution Explorer * A X

S aE Al e e
B A [T ——— B |

=d| Properties
gl References
g Service References
3 App_Data
E | Content
[themes
Jﬂ Custom.css
Jﬂ Site.css
E [Controllers
] AccountController.cs
] ContactsController.cs
] HomeController.cs
B = Internal
5] CreateDatabase.sql
5 DropDatabase.sql
5] InsertData.sql
= | Models
] AccountModels. cs
] AddContactPageModel.cs
E | Soipts
5] jquery-1.4.4-vsdoc.js
5| jguery-1.4.4.js
5] jquery-1.4.4.min.js
(5] jguery-ui.js)
%1 jguery-ui.min.js
(:‘3_1 Jjguery.unobirusive-ajax. js)
%1 jguery.unobtrusive-ajax.min.js
(53] jquery.validate—usdoc.js)
& jguery.validate.js
21 jguery.validate.min.js
(:‘3_1 jguery.validate.unobirusive. js)
5 | jquery. validate. unobtrusive.min.js
(] Microsoftajax.debug.js)
1 MicrosoftAjax.js
(2] MicrosoftMvcajax, debug.js)
% | MicrosoftMveAjax.js
(2] MicrosoftMyvcyalidation. debug.js)

5 | MicrosoftMvcyvalidation. js
1 Views
\#| ContactManager.Mvc.wpp. targets
#J Global .asax
2] parameters.xml
5 Web.config ;I

'—i] i sWl e Team Explorer E Server Explorer

e The Internal folder contains some SQL scripts that the developer uses to create, drop, and
populate local databases for development purposes. Nothing in this folder should be deployed
to a staging or production environment.

e The Scripts folder contains several JavaScript files. A lot of these files are included purely to
support debugging or provide IntelliSense in Visual Studio. Some of these files should not be
deployed to staging or production environments. However, you may want to deploy them to a
developer test environment to facilitate troubleshooting.

238

Although you could manipulate your project files to exclude specific files and folders, there is an easier
way. The WPP includes a mechanism to exclude files and folders by building item lists named
ExcludeFromPackageFolders and ExcludeFromPackageFiles. You can extend this mechanism by adding
your own items to these lists. To do this, you need to complete these high-level steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your
project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project
file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom
project files you use to control the build and deployment process.

2. Inthe .wpp.targets file, add an ItemGroup element.

3. Inthe ItemGroup element, add ExcludeFromPackageFolders and ExcludeFromPackageFiles
items to exclude specific files and folders as required.

This is the basic structure of this .wpp.targets file:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ExcludeFromPackageFolders Include="[semi-colon-separated folder List]">
<FromTarget>[arbitrary metadata value]l</FromTarget>
</ExcludeFromPackageFolders>
<ExcludeFromPackageFiles Include="[semi-colon-separated file Llist]">
<FromTarget>[arbitrary metadata value]</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>
</Project>

Note that each item includes an item metadata element named FromTarget. This is an optional value
that doesn't affect the build process; it simply serves to indicate why particular files or folders were
omitted if someone reviews the build logs.

Excluding Files and Folders from a Web Package

The next procedure shows you how to add a .wpp.targets file to a web application project and how to
use the file to exclude specific files and folders from the web package when you build your project.

To exclude files and folders from a web deployment package

1. Open your solution in Visual Studio 2010.

2. Inthe Solution Explorer window, right-click your web application project node (for example,
ContactManager.Mvc), point to Add, and then click New Item.

3. Inthe Add New Item dialog box, select the XML File template.

239

In the Name box, type [project name].wpp.targets (for example,
ContactManager.Mvc.wpp.targets), and then click Add.

Add New Item - ContactManager.Mvc B 21x|
Installed Templates s“wy,loefau-' ;] S sarch Instalied Templats yel
E VisuaCz
Type: Visual C=
Code 9= Dotabase Unit Test Visual C# e
e | A blank XML file

General
Wed

MVC 3
Windows Forms

@
;.,]_jy
:;p:ovnno _f) LINQ to SQL Classes Visual C#

A

J

T
g.‘

_S

ADOQ.NET Entity Data Model Visual C#

4 DataSet Vsual C2

Siveright
Workflow

SQL Server Compact 4.0 Local Da.. Visual C#

SQU Server Database Visual C#

XML File Viswal C2

XML Schema Vsual C2

XSLT Fle Visual C#

Name: | ContactManager Mvc. wpp. targets

Note: If you add a new item to the root node of a project, the file is created in the same folder
as the project file. You can verify this by opening the folder in Windows Explorer.

In the file, add a Project element and an ItemGroup element:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
</ItemGroup>
</Project>

If you want to exclude folders from the web package, add an ExcludeFromPackageFolders
element to the ItemGroup element:

a. Inthe Include attribute, provide a semicolon-separated list of the folders you want to
exclude.

b. Inthe FromTarget metadata element, provide a meaningful value to indicate why the
folders are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFolders Include="Internal">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFolders>

If you want to exclude files from the web package, add an ExcludeFromPackageFiles element to
the ItemGroup element:
240

a. Inthe Include attribute, provide a semicolon-separated list of the files you want to
exclude.

b. Inthe FromTarget metadata element, provide a meaningful value to indicate why the
files are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-
vsdoc.js;Scripts\jquery-1.4.4.7js;Scripts\jquery-
ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-
vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr
ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFiles>

The [project name].wpp.targets file should now resemble this:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ExcludeFromPackageFolders Include="Internal">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFolders>
<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-
vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-
ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-
vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr
ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>
</Project>

Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect
the .wpp.targets file. Any files and folders you specified will not be included in the web package.

Conclusion

This topic described how to exclude specific files and folders when you build a web package, by creating

a custom .wpp.targets file in the same folder as your web application project file.

Further Reading

For more information on using custom Microsoft Build Engine (MSBuild) project files to control the
deployment process, see Understanding the Project File and Understanding the Build Process. For more

241

information on the packaging and deployment process, see Building and Packaging Web Application

Projects, Configuring Parameters for Web Package Deployment, and Deploying Web Packages.

Excluding Files and Folders from Deployment

This topic describes how you can exclude files and folders from a web deployment package when you
build and package a web application project.

Overview

When you build a web application project in Visual Studio 2010, the Web Publishing Pipeline (WPP) lets
you extend this build process by packaging your compiled web application into a deployable web
package. You can then use the Internet Information Services (IIS) Web Deployment Tool (Web Deploy)
to deploy this web package to a remote IIS web server, or import the web package manually through IIS
Manager. This packaging process is explained in Building and Packaging Web Application Projects.

So how do you control what gets included in your web package? The project settings in Visual Studio,
through the underlying project file, provide sufficient control for a lot of scenarios. However, in some
cases you may want to tailor the contents of your web package to specific destination environments. For
example, you might want to include a folder for log files when you deploy your application to a test
environment but exclude the folder when you deploy the application to a staging or production
environment. This topic will show you how to do this.

What Gets Included by Default?

When you configure your web application project properties in Visual Studio, the Items to deploy list on
the Package/Publish Web page lets you specify what you want to include in your web deployment
package. By default, this is set to Only files needed to run this application.

Application
Configuration: IActive (Release) j Platform: I.E\ctive (Any CPU) ﬂ
Build
e Packaage/Publish enables youto deploy your Web application to Web servers.
2
Learn more about Package/Publish Web
PackagePublish Web Items to deploy (appliesto all deployment methods)

PackagePublish 5QL j

d to run this

Silverlight Applications &1l files in this project

All files in this project folder
4 —_—

Build Events

When you choose Only files needed to run this application, the WPP will try to determine which files
should be added to the web package. This includes:
e All the build outputs for the project.

e Any files marked with a build action of Content.

242

Note: The logic that determines which files to include is contained in this file:

%PROGRAMEFILES%\MSBuild\Microsoft\VisualStudio\v10.0\Web\
Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets

Excluding Specific Files and Folders

In some cases, you'll want more fine-grained control over which files and folders are deployed. If you
know which files you want to exclude ahead of time, and the exclusion applies to all destination
environments, you can simply set the Build Action of each file to None.

To exclude specific files from deployment

1. Inthe Solution Explorer window, right-click the file, and then click Properties.

2. Inthe Properties window, in the Build Action row, select None.

However, this approach is not always convenient. For example, you may want to vary which files and
folders are included according to your destination environment, and from outside Visual Studio. For
example, in the Contact Manager sample solution, take a look at the contents of the
ContactManager.Mvc project:

243

Solution Explorer * A X

S aE Al e e
B A [T ——— B |

=d| Properties
gl References
g Service References
3 App_Data
E | Content
[themes
Jﬂ Custom.css
Jﬂ Site.css
E [Controllers
] AccountController.cs
] ContactsController.cs
] HomeController.cs
B = Internal
5] CreateDatabase.sql
5 DropDatabase.sql
5] InsertData.sql
= | Models
] AccountModels. cs
] AddContactPageModel.cs
E | Soipts
5] jquery-1.4.4-vsdoc.js
5| jguery-1.4.4.js
5] jquery-1.4.4.min.js
(5] jguery-ui.js)
%1 jguery-ui.min.js
(:‘3_1 Jjguery.unobirusive-ajax. js)
%1 jguery.unobtrusive-ajax.min.js
(53] jquery.validate—usdoc.js)
& jguery.validate.js
21 jguery.validate.min.js
(:‘3_1 jguery.validate.unobirusive. js)
5 | jquery. validate. unobtrusive.min.js
(] Microsoftajax.debug.js)
1 MicrosoftAjax.js
(2] MicrosoftMvcajax, debug.js)
% | MicrosoftMveAjax.js
(2] MicrosoftMyvcyalidation. debug.js)

5 | MicrosoftMvcyvalidation. js
1 Views
\#| ContactManager.Mvc.wpp. targets
#J Global .asax
2] parameters.xml
5 Web.config ;I

'—i] i sWl e Team Explorer E Server Explorer

e The Internal folder contains some SQL scripts that the developer uses to create, drop, and
populate local databases for development purposes. Nothing in this folder should be deployed
to a staging or production environment.

e The Scripts folder contains several JavaScript files. A lot of these files are included purely to
support debugging or provide IntelliSense in Visual Studio. Some of these files should not be
deployed to staging or production environments. However, you may want to deploy them to a
developer test environment to facilitate troubleshooting.

244

Although you could manipulate your project files to exclude specific files and folders, there is an easier
way. The WPP includes a mechanism to exclude files and folders by building item lists named
ExcludeFromPackageFolders and ExcludeFromPackageFiles. You can extend this mechanism by adding
your own items to these lists. To do this, you need to complete these high-level steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your
project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project
file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom
project files you use to control the build and deployment process.

2. Inthe .wpp.targets file, add an ItemGroup element.

3. Inthe ItemGroup element, add ExcludeFromPackageFolders and ExcludeFromPackageFiles
items to exclude specific files and folders as required.

This is the basic structure of this .wpp.targets file:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ExcludeFromPackageFolders Include="[semi-colon-separated folder List]">
<FromTarget>[arbitrary metadata value]</FromTarget>
</ExcludeFromPackageFolders>
<ExcludeFromPackageFiles Include="[semi-colon-separated file Llist]">
<FromTarget>[arbitrary metadata value]</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>
</Project>

Note that each item includes an item metadata element named FromTarget. This is an optional value
that doesn't affect the build process; it simply serves to indicate why particular files or folders were
omitted if someone reviews the build logs.

Excluding Files and Folders from a Web Package

The next procedure shows you how to add a .wpp.targets file to a web application project and how to
use the file to exclude specific files and folders from the web package when you build your project.

To exclude files and folders from a web deployment package

1. Open your solution in Visual Studio 2010.

2. Inthe Solution Explorer window, right-click your web application project node (for example,
ContactManager.Mvc), point to Add, and then click New Item.

3. Inthe Add New Item dialog box, select the XML File template.

245

In the Name box, type [project name].wpp.targets (for example,
ContactManager.Mvc.wpp.targets), and then click Add.

Add New Item - ContactManager.Mvc B 21x|
Installed Templates s“wy,loefau-' ;] S sarch Instalied Templats yel
E VisuaCz
Type: Visual C=
Code 9= Dotabase Unit Test Visual C# e
e | A blank XML file

General
Wed

MVC 3
Windows Forms

@
;.,]_jy
:;p:ovnno _f) LINQ to SQL Classes Visual C#

A

J

T
g.‘

_S

ADOQ.NET Entity Data Model Visual C#

4 DataSet Vsual C2

Siveright
Workflow

SQL Server Compact 4.0 Local Da.. Visual C#

SQU Server Database Visual C#

XML File Viswal C2

XML Schema Vsual C2

XSLT Fle Visual C#

Name: | ContactManager Mvc. wpp. targets

Note: If you add a new item to the root node of a project, the file is created in the same folder
as the project file. You can verify this by opening the folder in Windows Explorer.

In the file, add a Project element and an ItemGroup element:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
</ItemGroup>
</Project>

If you want to exclude folders from the web package, add an ExcludeFromPackageFolders
element to the ItemGroup element:

a. Inthe Include attribute, provide a semicolon-separated list of the folders you want to
exclude.

b. Inthe FromTarget metadata element, provide a meaningful value to indicate why the
folders are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFolders Include="Internal">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFolders>

If you want to exclude files from the web package, add an ExcludeFromPackageFiles element to
the ItemGroup element:
246

a. Inthe Include attribute, provide a semicolon-separated list of the files you want to
exclude.

b. Inthe FromTarget metadata element, provide a meaningful value to indicate why the
files are being excluded, like the name of the .wpp.targets file.

XML

<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-
vsdoc.js;Scripts\jquery-1.4.4.7js;Scripts\jquery-
ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-
vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr
ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">

<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFiles>

The [project name].wpp.targets file should now resemble this:

XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ExcludeFromPackageFolders Include="Internal">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFolders>
<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.4-
vsdoc.js;Scripts\jquery-1.4.4.js;Scripts\jquery-
ui.js;Scripts\jquery.unobtrusive-ajax.js;Scripts\jquery.validate-
vsdoc.js;Scripts\jquery.validate.js;Scripts\jquery.validate.unobtrusive.js;Scr
ipts\MicrosoftAjax.debug.js;Scripts\MicrosoftMvcValidation.debug.js">
<FromTarget>ContactManager.Mvc.wpp.targets</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>
</Project>

Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect
the .wpp.targets file. Any files and folders you specified will not be included in the web package.

Conclusion

This topic described how to exclude specific files and folders when you build a web package, by creating

a custom .wpp.targets file in the same folder as your web application project file.

Further Reading

For more information on using custom Microsoft Build Engine (MSBuild) project files to control the
deployment process, see Understanding the Project File and Understanding the Build Process. For more

247

information on the packaging and deployment process, see Building and Packaging Web Application
Projects, Configuring Parameters for Web Package Deployment, and Deploying Web Packages.

Taking Web Applications Offline with Web Deploy

This topic describes how to take a web application offline for the duration of an automated deployment
using the Internet Information Services (11S) Web Deployment Tool (Web Deploy). Users who browse to
the web application are redirected to an App_offline.htm file until the deployment is complete.

Task Overview

In a lot of scenarios, you'll want to take a web application offline while you make changes to related
components, like databases or web services. Typically, in IS and ASP.NET, you accomplish this by placing
a file named App_offline.htm in the root folder of the IIS website or web application. The
App_offline.htm file is a standard HTML file and will usually contain a simple message advising the user
that the site is temporarily unavailable due to maintenance. While the App_offline.htm file exists in the
root folder of the website, 1IS will automatically redirect any requests to the file. When you've finished
making updates, you remove the App_offline.htm file and the website resumes serving requests as
usual.

When you use Web Deploy to perform automated or single-step deployments to a target environment,
you may want to incorporate adding and removing the App_offline.htm file into your deployment
process. To do this, you'll need to complete these high-level tasks:

e In the Microsoft Build Engine (MSBuild) project file that you use to control the deployment
process, create an MSBuild target that copies an App_offline.htm file to the destination server
before any deployment tasks begin.

e Add another MSBuild target that removes the App_offline.htm file from the destination server
when all deployment tasks are complete.

e Inthe web application project, create a .wpp.targets file that ensures that an App_offline.htm
file is added to the deployment package when Web Deploy is invoked.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic
assume that you've already created a solution that contains at least one web application project, and
that you use a custom project file to control the deployment process as described in Web Deployment in

the Enterprise. Alternatively, you can use the Contact Manager sample solution to follow the examples

in the topic.

Adding an App_Offline File to a Web Application Project

The first task you need to complete is to add an App_offline file to your web application project:

e To prevent the file from interfering with the development process (you don't want your
application to be permanently offline), you should call it something other than App_offline.htm.
For example, you could name the file App_offline-template.htm.

248

To prevent the file from being deployed as-is, you should set the build action to None.

To add an App_offline file to a web application project

1.
2.

Open your solution in Visual Studio 2010.

In the Solution Explorer window, right-click your web application project, point to Add, and
then click New Item.

In the Add New Item dialog box, select HTML Page.

In the Name box, type App_offline-template.htm, and then click Add.

Add New Item - ContactManager.Mvc

Installed Templates Sort by: I Defalt j cearch Ins
[l Visual C# . d Type: |
Code Mested Master Page Visual C#)
Data — An HTML
General “_= HTML Page Visual C#
= Web —
MVC 3 H Style Sheet Visual C#
Windows Forms -
WPE ISeript File Visual C#
Reporting
Silverlight g
terld CH, AJAX-enabled WCF Service Visual C#
Waorkflow —*.ﬁ;
Online Templates % ASP.MET Handler Visual C#
S| ase.NET Module Visual €2
,j""'r; ASP.MET Server Contral Visual C#
q
:\ﬁ Authentication Domain Service Visual C# ﬂ

Name: | App_offine-template. htm|

Add some simple HTML to inform users that the application is unavailable, and then save the
file. Do not include any server-side tags (for example, any tags that are prefixed with "asp:").

<html wmlns="http://www.w3.org/1999/xhtml" >
<head>
<titlexApplication Offline</titlex
</fhead:
<body>
<p>This web application is temporarily offline for maintenance.</p>
</body>
</htmlz

In the Solution Explorer window, right-click the new file, and then click Properties.

In the Properties window, in the Build Action row, select None.

249

Properties * X
App_offline-template.htm File Properties -
o=
=

Build Action Mone -
Copy to Qutput Directory Do not copy
Custom Tool
Custom Tool Namespace
=
File Mame App_offline-template. him
Build Action
How the file relates to the build and deployment processes,

Deploying and Deleting an App_Offline File

The next step is to modify your deployment logic to copy the file to the destination server at the start of
the deployment process and remove it at the end.

Note: The next procedure assumes that you're using a custom MSBuild project file to control your
deployment process, as described in Understanding the Project File. If you're deploying direct from
Visual Studio, you'll need to use a different approach. Sayed Ibrahim Hashimi describes one such
approach in How to Take Your Web App Offline During Publishing.

To deploy an App_offline file to a destination IIS website, you need to invoke MSDeploy.exe using the
Web Deploy contentPath provider. The contentPath provider supports both physical directory paths
and IIS website or application paths, which makes it the ideal choice for synchronizing a file between a
Visual Studio project folder and an IIS web application. To deploy the file, your MSDeploy command
should resemble this:

msdeploy.exe -verb:sync
-source:contentPath="[Project folder]\App_offline.template.htm"
-dest:contentPath="[IIS application path]/App_offline.htm",
computerName="[Destination web server]"

To remove the file from the destination site at the end of the deployment process, your MSDeploy

command should resemble this:

msdeploy.exe -verb:delete
-dest:contentPath="[IIS application path]/App_offline.htm",
computerName="[Destination web server]"

To automate these commands as part of a build and deployment process, you need to integrate them
into your custom MSBuild project file. The next procedure describes how to do this.

250

http://sedodream.com/2012/01/08/HowToTakeYourWebAppOfflineDuringPublishing.aspx
http://technet.microsoft.com/en-us/library/dd569034(WS.10).aspx

To deploy and delete an App_offline file

1.

2.

In Visual Studio 2010, open the MSBuild project file that controls your deployment process. In
the Contact Manager sample solution, this is the Publish.proj file.

In the root Project element, create a new PropertyGroup element to store variables for the
App_offline deployment:

XML
<PropertyGroup>
<AppOfflineTemplateFilename
Condition=" '$(AppOfflineTemplateFilename)'=="" ">

app_offline-template.htm
</AppOfflineTemplateFilename>
<AppOfflineSourcePath
Condition=" '$(AppOfflineSourcePath)'==""">
$(SourceRoot)ContactManager.Mvc\$(AppOfflineTemplateFilename)
</AppOfflineSourcePath>
</PropertyGroup>

The SourceRoot property is defined elsewhere in the Publish.proj file. It indicates the location of

the root folder for the source content relative to the current path—in other words, relative to
the location of the Publish.proj file.

The contentPath provider will not accept relative file paths, so you need to get an absolute path
to your source file before you can deploy it. You can use the ConvertToAbsolutePath task to do
this.

Add a new Target element named GetAppOfflineAbsolutePath. Within this target, use the
ConvertToAbsolutePath task to get an absolute path to the App_offline-template file in your
project folder.

XML

<Target Name="GetAppOfflineAbsolutePath" BeforeTargets="DeployAppOffline">
<ConvertToAbsolutePath Paths="$(AppOfflineSourcePath)">
<Output TaskParameter="AbsolutePaths"
PropertyName="AppOfflineAbsoluteSourcePath" />
</ConvertToAbsolutePath>
</Target>

This target takes the relative path to the App_offline-template file in your project folder and
saves it to a new property as an absolute file path. The BeforeTargets attribute specifies that
you want this target to execute before the DeployAppOffline target, which you'll create in the
next step.

Add a new target named DeployAppOffline. Within this target, invoke the MSDeploy.exe
command that deploys your App_offline file to the destination web server.

XML

251

http://msdn.microsoft.com/en-us/library/bb882668.aspx

<Target Name="DeployAppOffline"
Condition=" '$(EnableAppOffline'!="'false’
<PropertyGroup>
<_Cmd>"$(MSDeployPath)\msdeploy.exe" -verb:sync
-source:contentPath="$(AppOfflineAbsoluteSourcePath)"
-dest:contentPath="¢$(ContactManagerIisPath)/App_offline.htm",
computerName="$ (MSDeployComputerName)"

>

</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

In this example, the ContactManagerlisPath property is defined elsewhere in the project file.
This is simply an IIS application path, in the form [IIS Website Name]/[Application Name].
Including a condition in the target enables users to switch the App_offline deployment on or off
by changing a property value or providing a command-line parameter.

Add a new target named DeleteAppOffline. Within this target, invoke the MSDeploy.exe
command that removes your App_offline file from the destination web server.

XML

<Target Name="DeleteAppOffline"
Condition=" '$(EnableAppOffline'!="'false' ">
<PropertyGroup>
<_Cmd>"$(MSDeployPath)\msdeploy.exe" -verb:delete
-dest:contentPath="$(ContactManagerIisPath)/App_offline.htm",
computerName="$(MSDeployComputerName)"

</_Cmd>
</PropertyGroup>
<Exec Command="$(_Cmd)"/>
</Target>

The final task is to invoke these new targets at appropriate points during the execution of your
project file. You can do this in various ways. For example, in the Publish.proj file, the
FullPublishDependsOn property specifies a list of targets that must be executed in order when
the FullPublish default target is invoked.

Modify your MSBuild project file to invoke the DeployAppOffline and DeleteAppOffline targets
at appropriate points in the publishing process.

XML

<PropertyGroup>
<FullPublishDependsOn>

Clean;
BuildProjects;
DeployAppOffline;
GatherPackagesForPublishing;
PublishDbPackages;
DeployTestDBPermissions;

252

PublishWebPackages;
DeleteAppOffline;
</FullPublishDependsOn>
</PropertyGroup>
<Target Name="FullPublish" DependsOnTargets="$(FullPublishDependsOn)" />

When you run your custom MSBuild project file, the App_offline file will be deployed to the server
immediately after a successful build. It will then be deleted from the server once all the deployment
tasks are complete.

Adding an App_Offline File to Deployment Packages

Depending on how you configure your deployment, any existing content at the destination IS web
application—like the App_offline.htm file—may be deleted automatically when you deploy a web
package to the destination. To ensure that the App_offline.htm file remains in place for the duration of
the deployment, you need to include the file within the web deployment package itself in addition to
deploying the file directly at the start of the deployment process.

If you've followed the previous tasks in this topic, you'll have added the App_offline.htm file to your web
application project under a different filename (we used App_offline-template.htm) and you'll have set
the build action to None. These changes are necessary to prevent the file from interfering with
development and debugging. As a result, you need to customize the packaging process to ensure that
the App_offline.htm file is included in the web deployment package.

The Web Publishing Pipeline (WPP) uses an item list named FilesForPackagingFromProject to build a list
of files that should be included in the web deployment package. You can customize the contents of your
web packages by adding your own items to this list. To do this, you need to complete these high-level
steps:

1. Create a custom project file named [project name].wpp.targets in the same folder as your
project file.

Note: The .wpp.targets file needs to go in the same folder as your web application project
file—for example, ContactManager.Mvc.csproj—rather than in the same folder as any custom
project files you use to control the build and deployment process.

2. Inthe .wpp.targets file, create a new MSBuild target that executes before the
CopyAllFilesToSingleFolderForPackage target. This is the WPP target that builds a list of things
to include in the package.

3. Inthe new target, create an ItemGroup element.

4. Inthe ItemGroup element, add a FilesForPackagingFromProject item and specify the
App_offline.htm file.

The .wpp.targets file should resemble this:

253

XML

<Project ToolsVersion="4.0"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="AddAppOfflineToPackage"

BeforeTargets="CopyAllFilesToSingleFolderForPackage">
<ItemGroup>

<FilesForPackagingFromProject Include="App_offline-template.htm">
<DestinationRelativePath>App_offline.htm</DestinationRelativePath>
</FilesForPackagingFromProject>
</ItemGroup>
</Target>
</Project>

These are the key points of note in this example:

e The BeforeTargets attribute inserts this target into the WPP by specifying that it should be
executed immediately before the CopyAllFilesToSingleFolderForPackage target.

e The FilesForPackagingFromProject item uses the DestinationRelativePath metadata value to
rename the file from App_offline-template.htm to App_offline.htm as it's added to the list.

The next procedure shows you how to add this .wpp.targets file to a web application project.
To add a .wpp.targets file to a web deployment package

1. Open your solution in Visual Studio 2010.

2. In the Solution Explorer window, right-click your web application project node (for example,
ContactManager.Mvc), point to Add, and then click New Item.

3. Inthe Add New Item dialog box, select the XML File template.

4. Inthe Name box, type [project name].wpp.targets (for example,
ContactManager.Mvc.wpp.targets), and then click Add.

254

13
Installed Templates Sortby: [Defaut I | 5 earch Instalied Tempiate)
E VisuaC#

Type: Visual C=
Code [*] ;‘ Database Unit Test Visual C# Laraiih
Data =¥ A blank XML file
General g, ADOQ.NET Entity Data Model Visual C2
B web ~
MvC 3 E_Egﬂ DataSet visual C#
Windows Forms =
WeF » J?}, LINQ to SQL Classes Visual C#
Reporting
Stveright j SQL Server Compact 4.0 Local Da.. Visual C#
Workflow 5
T —
¥ Qj X Fle Viual C#
..:'13 XML Schema Veual C#
D xsiTrie Visual C#
Name: IConko:Wanaqer Mve.wpp. targets

Note: If you add a new item to the root node of a project, the file is created in the same folder
as the project file. You can verify this by opening the folder in Windows Explorer.

5. Inthe file, add the MSBuild markup described previously.
XML

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="AddAppOfflineToPackage"
BeforeTargets="CopyAllFilesToSingleFolderForPackage">
<ItemGroup>
<FilesForPackagingFromProject Include="App_offline-template.htm">
<DestinationRelativePath>App_offline.htm</DestinationRelativePath>
</FilesForPackagingFromProject>
</ItemGroup>
</Target>
</Project>

6. Save and close the [project name].wpp.targets file.

The next time you build and package your web application project, the WPP will automatically detect
the .wpp.targets file. The App_offline-template.htm file will be included in the resulting web deployment
package as App_offline.htm.

Note: If your deployment fails, the App_offline.htm file will remain in place and your application will
remain offline. This is typically the desired behavior. To bring your application back online, you can
delete the App_offline.htm file from your web server. Alternatively, if you correct any errors and run a
successful deployment, the App_offline.htm file will be removed.

255

Conclusion

This topic described how to take a web application offline for the duration of a deployment, by
publishing an App_offline.htm file to the destination server at the start of the deployment process and
removing it at the end. It also covered how to include an App_offline.htm file in a web deployment
package.

Further Reading

For more information on the packaging and deployment process, see Building and Packaging Web

Application Projects, Configuring Parameters for Web Package Deployment, and Deploying Web
Packages.

If you publish your web applications directly from Visual Studio, rather than using the custom MSBuild
project file approach described in these tutorials, you'll need to use a slightly different approach to take
your application offline during the publishing process. For more information, see How to take your web

app offline during publishing (blog post).

Running Windows PowerShell Scripts from MSBuild Project Files

This topic describes how to run a Windows PowerShell script as part of a build and deployment process.
You can run a script locally (in other words, on the build server) or remotely, like on a destination web
server or database server.

There are lots of reasons why you might want to run a post-deployment Windows PowerShell script. For
example, you might want to:

e Add a custom event source to the registry.

e Generate a file system directory for uploads.

e Clean up build directories.

e Write entries to a custom log file.

e Send emails inviting users to a newly provisioned web application.
e Create user accounts with the appropriate permissions.

e Configure replication between SQL Server instances.

This topic will show you how to run Windows PowerShell scripts both locally and remotely from a
custom target in a Microsoft Build Engine (MSBuild) project file.

Task Overview

To run a Windows PowerShell script as part of an automated or single-step deployment process, you'll
need to complete these high-level tasks:

e Add the Windows PowerShell script to your solution and to source control.

256

http://go.microsoft.com/?linkid=9805135
http://go.microsoft.com/?linkid=9805135

e Create a command that invokes your Windows PowerShell script.
e Escape any reserved XML characters in your command.

e Create a target in your custom MSBuild project file and use the Exec task to run your command.

This topic will show you how to perform these procedures. The tasks and walkthroughs in this topic
assume that you're already familiar with MSBuild targets and properties, and that you understand how
to use a custom MSBuild project file to drive a build and deployment process. For more information, see
Understanding the Project File and Understanding the Build Process.

Creating and Adding Windows PowerShell Scripts

The tasks in this topic use a sample Windows PowerShell script named LogDeploy.ps1 to illustrate how
to run scripts from MSBuild. The LogDeploy.ps1 script contains a simple function that writes a single-line
entry to a log file:

Windows PowerShell

function LogDeployment

{
param([string]$filepath, [string]$deployDestination)
$datetime = Get-Date
$filetext = "Deployed package to " + $deployDestination +
$filetext | Out-File -filepath $filepath -Append

}

on + $datetime

LogDeployment $args[0] $args[1]

The LogDeploy.ps1 script accepts two parameters. The first parameter represents the full path to the
log file to which you want to add an entry, and the second parameter represents the deployment
destination that you want to record in the log file. When you run the script, it adds a line to the log file in
this format:

Deployed package to TESTWEB1 on ©2/11/2012 ©9:28:18
To make the LogDeploy.ps1 script available to MSBuild, you need to:
e Add the script to source control.

e Add the script to your solution in Visual Studio 2010.

You don't need to deploy the script with your solution content, regardless of whether you plan to run
the script on the build server or on a remote computer. One option is to add the script to a solution
folder. In the Contact Manager example, because you want to use the Windows PowerShell script as
part of the deployment process, it makes sense to add the script to the Publish solution folder.

257

Solution Explorer * 0O X

I
» _j Solution 'ContactManaager' (4 projects)
=

2] LogDeploy.ps1
Publish-Dev,cmd
&= Publish.praj
3,@ ContactManager. Common
871 ContactManager.Database
&% ContactManager.Mvc
&% ContactManager.Service

'—'f? Solution Explo... li, Team Explarer E Server Explorer

The contents of solution folders are copied to build servers as source material. However, they form no
part of any project output.

Executing a Windows PowerShell Script on the Build Server

In some scenarios, you may want to run Windows PowerShell scripts on the computer that builds your
projects. For example, you might use a Windows PowerShell script to clean up build folders or write
entries to a custom log file.

In terms of syntax, running a Windows PowerShell script from an MSBuild project file is the same as
running a Windows PowerShell script from a regular command prompt. You need to invoke the
powershell.exe executable and use the —command switch to provide the commands you want Windows
PowerShell to run. (In Windows PowerShell v2, you can also use the —file switch). The command should
take this format:

powershell.exe -command "& { [Path to script] 'parameterl’ 'parameter2' ... }"

For example:

powershell.exe -command

"& { C:\LogDeploy.psl 'C:\DeployLogs\log.txt' 'TESTWEB1' }"
If the path to your script includes spaces, you need to enclose the file path in single quotes preceded by
an ampersand. You can't use double quotes, because you've already used them to enclose the
command:

powershell.exe -command
"& { &'C:\Path With Spaces\LogDeploy.psl'
"C:\Path With Spaces\log.txt'
'"TESTWEB1' }"

There are a few additional considerations when you invoke this command from MSBuild. First, you
should include the =NonlInteractive flag to ensure that the script executes quietly. Next, you should
include the —ExecutionPolicy flag with an appropriate argument value. This specifies the execution
policy that Windows PowerShell will apply to your script and allows you to override the default

258

execution policy, which may prevent execution of your script. You can choose from these argument
values:

e Avalue of Unrestricted will allow Windows PowerShell to execute your script, regardless of
whether the script is signed.

e Avalue of RemoteSigned will allow Windows PowerShell to execute unsigned scripts that were
created on the local machine. However, scripts that were created elsewhere must be signed. (In
practice, you're very unlikely to have created a Windows PowerShell script locally on a build
server).

e Avalue of AllSigned will allow Windows PowerShell to execute signed scripts only.

The default execution policy is Restricted, which prevents Windows PowerShell from running any script
files.

Finally, you need to escape any reserved XML characters that occur in your Windows PowerShell
command:

e Replace single quotes with '
e Replace double quotes with "

e Replace ampersands with &

When you make these changes, your command will resemble this:

powershell.exe -NonInteractive -ExecutionPolicy Unrestricted
—-command "& { &'[Path to script]'
'[parameterl]'
'[parameter2]' } "

Within your custom MSBuild project file, you can create a new target and use the Exec task to run this
command:

XML

<Target Name="WriteLogEntry" Condition=" '$(WriteLogEntry)'!="false' ">

<PropertyGroup>

<PowerShellExe Condition=" '$(PowerShellExe)'==""' ">
%WINDIR%\System32\WindowsPowerShell\vl.0\powershell.exe

</PowerShellExe>

<ScriptLocation Condition=" '$(ScriptLocation)'==""' ">
C:\Path With Spaces\LogDeploy.psl

</ScriptLocation>

<LogFilelLocation Condition=" '$(LogFilelLocation)'=="" ">
C:\Path With Spaces\ContactManagerDeploylLog.txt

</LogFilelLocation>

</PropertyGroup>

<Exec Command="$(PowerShellExe) -NonInteractive -executionpolicy Unrestricted

259

-command "& {
&'$(ScriptlLocation)'
'$(LogFilelLocation)'

' $(MSDeployComputerName)'} "" />
</Target>

In this example, note that:

e Any variables, like parameter values and the location of the Windows PowerShell executable,
are declared as MSBuild properties.

e Conditions are included to enable users to override these values from the command line.

e The MSDeployComputerName property is declared elsewhere in the project file.

When you execute this target as part of your build process, Windows PowerShell will run your command
and write a log entry to the file you specified.

Executing a Windows PowerShell Script on a Remote Computer

Windows PowerShell is capable of running scripts on remote computers through Windows Remote

Management (WinRM). To do this, you need to use the Invoke-Command cmdlet. This lets you execute

your script against one or more remote computers without copying the script to the remote computers.
Any results are returned to the local computer from which you ran the script.

Note: Before you use the Invoke-Command cmdlet to execute Windows PowerShell scripts on a
remote computer, you need to configure a WinRM listener to accept remote messages. You can do
this by running the command winrm quickconfig on the remote computer. For more information, see
Installation and Configuration for Windows Remote Management.

From a Windows PowerShell window, you'd use this syntax to run the LogDeploy.ps1 script on a remote
computer:

Windows PowerShell

Invoke-Command -ComputerName ‘'REMOTESERVER1'
-ScriptBlock { &"C:\Path With Spaces\LogDeploy.psl"
'C:\Path With Spaces\Log.txt'
"TESTWEB1' }

Note: There are various other ways of using Invoke-Command to run a script file, but this approach is
the most straightforward when you need to provide parameter values and manage paths with spaces.

When you run this from a command prompt, you need to invoke the Windows PowerShell executable
and use the —command parameter to provide your instructions:

powershell.exe -command
"& {Invoke-Command -ComputerName 'REMOTESERVER1'
-ScriptBlock { &'C:\Path With Spaces\LogDeploy.psl'
'C:\Path With Spaces\Log.txt'

260

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384426.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384426.aspx
http://technet.microsoft.com/en-us/library/dd347578.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384372(v=vs.85).aspx

'TESTWEB1" } "

As before, you need to provide some additional switches and escape any reserved XML characters when
you run the command from MSBuild:

powershell.exe -NonInteractive -executionpolicy Unrestricted
-command "& Invoke-Command
-ComputerName 'REMOTESERVER1'
-ScriptBlock { &'C:\Path With Spaces\LogDeploy.psl'
' C:\Path With Spaces\Log.txt '
' TESTWEB1' } "

Finally, as before, you can use the Exec task within a custom MSBuild target to execute your command:

XML
<Target Name="WriteLogEntry" Condition=" '$(WriteLogEntry)'!="'false' ">
<PropertyGroup>
<PowerShellExe Condition=" '$(PowerShellExe)'=="" ">
%WINDIR%\System32\WindowsPowerShell\v1l.@\powershell.exe
</PowerShellExe>
<ScriptLocation Condition=" '$(ScriptLocation)'=="" ">
C:\Path With Spaces\LogDeploy.psl
</ScriptLocation>
<LogFilelLocation Condition=" '$(LogFileLocation)'==""' ">
C:\Path With Spaces\ContactManagerDeploylLog.txt
</LogFilelLocation>
</PropertyGroup>

<Exec Command="$(PowerShellExe) -NonInteractive -executionpolicy Unrestricted
-command "& invoke-command -scriptblock {
& '$(ScriptLocation)'
'$(LogFileLocation)'
&apos ; $ (MSDeployComputerName)' }
""/>
</Target>
When you execute this target as part of your build process, Windows PowerShell will run your script on
the computer you specified in the —computername argument.

Conclusion

This topic described how to run a Windows PowerShell script from an MSBuild project file. You can use
this approach to run a Windows PowerShell script, either locally or on a remote computer, as part of an
automated or single-step build and deployment process.

Further Reading

For guidance on signing Windows PowerShell scripts and managing execution policies, see Running
Windows PowerShell Scripts. For guidance on running Windows PowerShell commands from a remote

computer, see Running Remote Commands.

261

http://technet.microsoft.com/en-us/library/ee176949.aspx
http://technet.microsoft.com/en-us/library/ee176949.aspx
http://technet.microsoft.com/en-us/library/dd819505.aspx

For more information on using custom MSBuild project files to control the deployment process, see
Understanding the Project File and Understanding the Build Process.

Troubleshooting the Packaging Process

This topic describes how you can collect detailed information about the packaging process by using the
EnablePackageProcessLoggingAndAssert property in the Microsoft Build Engine (MSBuild).

When you set the EnablePackageProcessLoggingAndAssert property to true, MSBuild will:
e Add additional information about the packaging process to the build logs.

e Logerrors under certain conditions, for example, if duplicate files are found in the packaging
list.

e Create a Log directory in the ProjectName_Package folder and use it to record information
about the files you're packaging.

If the packaging process is failing, or your web deployment packages don't contain the files that you
expect, you can use this information to troubleshoot the process and pinpoint where things are going
wrong.

Note: The EnablePackageProcessLoggingAndAssert property only works if you build your project using
the Debug configuration. The property is ignored in other configurations.

Understanding the EnablePackageProcessLoggingAndAssert Property

Building and Packaging Web Application Projects described how the Web Publishing Pipeline (WPP)
provides a set of MSBuild targets that extend the functionality of MSBuild and enable it to integrate with
the Internet Information Services (11S) Web Deployment Tool (Web Deploy). When you package a web

application project, you're invoking WPP targets.

Lots of these WPP targets include conditional logic that logs additional information when the
EnablePackageProcessLoggingAndAssert property is set to true. For example, if you review the Package
target, you can see that it creates an additional log directory and writes a list of files to a text file if
EnablePackageProcessLoggingAndAssert is equal to true.

XML

<Target Name="Package"
Condition="$(_CreatePackage)"
DependsOnTargets="$(PackageDependsOn)">

<!--Log the information Set $(EnablePackageProcesslLoggingAndAssert) to True
if you want to see this information-->
<MakeDir Condition="¢(EnablePackageProcesslLoggingAndAssert) And
lExists('$(PackageLogDir)"')"
Directories="$(PackagelLogDir)" />
<WritelLinesToFile Condition="$(EnablePackageProcessLoggingAndAssert)"

262

Encoding="utf-8"
File="$(PackageLogDir)\Prepackage.txt"
Lines="@(FilesForPackagingFromProject->"
From:%(Identity)
DestinationRelativePath:%(DestinationRelativePath)
Exclude:%(Exclude)
FromTarget:%(FromTarget)
Category:%(Category)
ProjectFileType:%(ProjectFileType)')"
Overwrite="True" />

Note: The WPP targets are defined in the Microsoft. Web.Publishing.targets file in the
%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder. You can open this file and
review the targets in Visual Studio 2010 or any XML editor. Take care not to modify the contents of the
file.

Enabling the Additional Logging

You can supply a value for the EnablePackageProcessLoggingAndAssert property in various ways,
depending on how you build your project.

If you build your project from the command line, you can supply a value for the
EnablePackageProcessLoggingAndAssert property as a command-line argument:

MSBuild.exe /t:Build
/p:Configuration=DEBUG
/p:DeployOnBuild=true
/p:DeployTarget=Package
/p:EnablePackageProcessLoggingAndAssert=true
[Your project].csproj

If you're using a custom project file to build your projects, you can include the
EnablePackageProcessLoggingAndAssert value in the Properties attribute of the MSBuild task:

XML

<Target Name="BuildProjects" Condition=" '$(BuildingInTeamBuild)'!="true'
<MSBuild Projects="@(ProjectsToBuild)"
Properties="0utDir=$(OutputRoot);
Configuration=$(Configuration);
DeployOnBuild=true;
DeployTarget=Package;
EnablePackageProcessLoggingAndAssert=true’
Targets="Build" />
</Target>

>

263

If you're using a Team Foundation Server (TFS) build definition to build your projects, you can supply a
value for the EnablePackageProcessLoggingAndAssert property in the MSBuild Arguments row:

Team Foundation Build uses a build process template defined by a Windows Workflow (XaML) file. The be

G |
Enera customized by setting the build process parameters provided by the selected template.
Trigger
Workspace —Build process template:
Build Defaults DefaultTemplatexaml

Retention Policy Build process parameters:

E 1. Required
Items to Build Build 2 project(s) for 1 platform(s) and configuration(s
E 2. Basic
Automated Tests Run tests in assemblies matching ***test™.dll
Build Mumber Format §(BuildDefiniionMame)_s{Date:yyyyMMdd)S(Rev:.r)
Clean Workspace All
Logaing Verbosity Marmal
Perform Code Analysis AsConfigured
Source And Symbol Server Settings Index Sources
E 3. Advanced
Agent Settings Use agent where Name=> and Tags is empty; Max Wait Time: 0
Analyze Test Impact True
Associate Changesets and Work Tten True
Copy Outputs to Drop Folder True
Create Work Item on Failure True
Disable Tests False
Get Version
Label Sources True

MSBuild Arguments /p:EnablePackageProcessLoggingAndAssert=true;Dep
MSBuild Platform Auto
Private Drop Location

MSBuild Arguments
Specify any additional command line arguments to pass to M3Build.exe.

Note: For more information on creating and configuring build definitions, see Creating a Build
Definition That Supports Deployment.

Alternatively, if you want to include the package in every build, you can modify the project file for your
web application project to set the EnablePackageProcessLoggingAndAssert property to true. You
should add the property to the first PropertyGroup element within your .csproj or .vbproj file.

XML
<Project ToolsVersion="4.0" DefaultTargets="Build" xmlns="...">
<PropertyGroup>
<EnablePackageProcessLoggingAndAssert
Condition=" '$(EnablePackageProcessLoggingAndAssert)' == "' ">
true

</EnablePackageProcessLoggingAndAssert>

<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>

<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>

264

Reviewing the Log Files

When you build and package a web application project with EnablePackageProcessLoggingAndAssert

set to true, MSBuild creates an additional folder named Log in the ProjectName_Package folder. The Log

folder contains various files:

|| AfterExdudeFilesFilesList. txt 17/02/2012 16:24 Text Document 19 KB
|| AfterTransformWebConfig. tet 17/02/2012 16:24 Text Document 19 KB
|| PackageUsingManifest.parameters. xml 17/02/2012 16:24 XML Document 2KB
|| PostAutoParameterizationWebConfigConnectionStrings. txt - 17/02/2012 16:24 Text Document 19 KB
|| PreAutoParameterizationWebConfigConnectionStrings.Log 17/02/2012 16:24 Text Document 1KB
|| PreExdudePipelineCollectFilesPhaseFileList. et 17/02/2012 16:24 Text Document 19 KB
|| Prepackage. txt 17/02/2012 16:24 Text Document 21KB
|| PreTransformWebConfig.Log 17/02/2012 16:24 Text Document 1KB

The list of files that you see will vary according to the things in your project and your build process.

However, these files are typically used to record the list of files that the WPP is collecting for packaging,

at various stages of the process:

The PreExcludePipelineCollectFilesPhaseFileList.txt file lists the files that MSBuild collects for
packaging before any files that are specified for exclusion are removed.

The AfterExcludeFilesFilesList.txt file contains the modified file list after any files that are
specified for exclusion are removed.

Note: For more information on excluding files and folders from the packaging process, see
Excluding Files and Folders from Deployment.

The AfterTransformWebConfig.txt file lists the files collected for packaging after any Web.config
transforms have been performed. In this list, any configuration-specific Web.config transform
files, like Web.Debug.config and Web.Release.config, are excluded from the list of files for
packaging. A single transformed Web.config is included in their place.

The PostAutoParameterizationWebConfigConnectionStrings.txt file contains the list of files after
the connection strings in the Web.config file have been parameterized. This is the process that
lets you replace your connection strings with the right settings for your target environment
when you deploy the package.

The Prepackage.txt file contains the finalized pre-build list of files to be included in the package.

Note: The names of the additional log files typically correspond to WPP targets. You can review these

targets by examining the Microsoft.Web.Publishing.targets file in the
%PROGRAMFILES(x86)%\MSBuild\Microsoft\VisualStudio\v10.0\Web folder.

265

If the contents of your web package aren't what you expected, reviewing these files can be a useful way
to identify at what point in the process things went wrong.

Conclusion

This topic described how you can use the EnablePackageProcessLoggingAndAssert property in MSBuild
to troubleshoot the packaging process. It explained the different ways in which you can supply the
property value to the build process, and it described the additional information that is recorded when
you set the property to true.

Further Reading

For more information on using custom MSBuild project files to control the deployment process, see
Understanding the Project File and Understanding the Build Process. For more information on the WPP
and how it manages the packaging process, see Building and Packaging Web Application Projects. For
guidance on how to exclude specific files and folders from web deployment packages, see Excluding
Files and Folders from Deployment.

266

