Initial Draft Report

CUMULATIVE IMPACT ASSESSMENT OF MUGHALSARAI-LUDHIANA SECTION ON EASTERN DEDICATED FREIGHT CORRIDOR

SUBMITTED TO: DEDICATED FREIGHT CORRIDOR CORPORATION LTD. (DFCCIL) JUNE, 2015

Prepared by: IRG SYSTEMS SOUTH ASIA PVT. LTD. in association with ABNAKI INFRASTRUCTURE APPLICATIONS & INTEGRATED DEVELOPMENT PRIVATE LIMITED

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	4
CHAP	TER 1: INTRODUCTION & BACKGROUND	6
1.0	Introduction	6
1.1	Objectives	6
1.2	Study Area	7
1.3	Approach & Methodology	9
1.4	Format of the Report	.11
CHAP	TER 2: DESCRIPTION OF THE PROJECT	.12
2.0	Introduction	.12
2.1	Project Description	.12
2.1.1	EDFC-1: (Bhaupur-Khurja Section of EDFC)	.14
2.1.2	EDFC-2 (Kanpur- Mughal Sarai section of EDFC)	.16
2.1.3	EDFC-3 (Ludhiana- Khurja-Dadri Section of EDFC)	.16
2.2	Components of the Project	.18
2.3	Applicable Legislation and World Bank Operational Policies	.23
2.4	Conclusion	.26
СНАР	TER 3: CUMULATIVE BASELINE STUDY	.27
3.0	Introduction	.27
3.1	Site Descriptions and Its Environs	.27
3.2	Baseline Data	.28
3.2.1	Meteorology	.28
3.2.2	Ambient Air Quality	.30
3.3.3	Ambient Noise Level & Vibration	. 31
3.3.4	Ground Water Scenario & Quality	.33
3.3.5	Surface Water Status & Quality	. 34
3.3.6	Soil Quality	. 35
3.3.7	Ecology	.36
3.3.8	Socio-Economic	.37
3.4	Conclusion	.41
СНАР	TER 4: IMPACT ASSESSMENT AS PER EDFC 1,2,3 EIAs	.42
4.0	Introduction	.42
4.1	Analysis of Environmental Attributes as per Baseline Scenario and Identification of	of
	Focus Impact Assessment of VECs Areas	.42
4.2	Impact Assessment Methodology	.43
4.3	Conclusion	. 56
CHAP	TER 5: DELINEATION OF CIA BOUNDARY AND VECs	.57
5.0	Introduction	. 57
5.1	Delineation of the CIA Boundary	.57
5.2	Valuable Environmental and Social Components	. 58
5.2.1	Identification of VECs & Hotspots	. 58
5.3	Case Study	.63
5.4	Conclusion	.66
СНАР	TER 6: OTHER DEVELOPMENT PROPOSALS AND STAKEHOLDERS	.67
6.0	Introduction	.67
6.1	Railways - DFCCIL & Feeder Route Development	. 69
6.2	National Waterways Development (IWD)	. 69
6.3	Road Development	.69

6.4	Industrial Development	71
6.5	Urbanization	.71
6.6	Major Stakeholders	.71
6.7	Conclusions	71
CHAP	TER 7: STAKEHOLDERS CONSULTATIONS	72
7.0	Introduction	72
7.1	Consultation with National Highway Authority of India (NHAI)	72
7.2	Consultation with UP State PWD Department	72
7.3	Consultation with Inland Waterways Authority of India (IWAI)	73
7.4	Conclusions	73
CHAP	TER 8: CIA IMPACT ASSESSMENT & MITIGATION MEASURES	74
8.0	Introduction	74
8.1	Impacts due to Railways - DFCCIL & Feeder Route Development	76
8.2	Impacts due to development of National Waterways Development (NW1)	79
8.3	Road Development	82
8.4	Industrial Area Development	85
8.5	Urbanization	. 88
8.6	Mitigation Measures	.91
8.7	Major Stakeholders for implementation of Mitigation Measures	.96
8.8	Conclusions and Next Steps	.96

List of Tables

Table 1: Details of EDFC project Alignment	7
Table 2.1: Salient Features of EDFC Project	19
Table 2.2: Salient World Bank Safeguard Policies	23
Table 2.3: Summary of Clearances & NOCs	23
Table 3.1: Meteorology Data from Nearest IMD stations for Project Area Passing Throu	ugh
State of Uttar Pradesh	
Table 3.2: Meteorology Data from Nearest IMD stations for Project Area Passing Through	ugh
State of Haryana	29
Table 3.3: Meteorology Data from Nearest IMD stations for Project Area Passing Throu	ugh
State of Punjab	
Table 3.4: Ambient Air Quality Data Along the Project Alignment	30
Table 3.5: Ambient Noise Levels along the Project Alignment	31
Table 3.6: Vibration Levels along the Existing IR Track Along the Project Corridor	32
Table 3.7: Ground Water Data on Depth and Level	33
Table 3.8: Surface Water Data on Depth and Level	35
Table 3.9: Soil Quality Data	36
Table 3.10: Detail of Tree Cutting	
Table 3.11: Socio-Economic and Physical Features of Project Area.	38
Table 3.12: Land to be acquired For Various Sub-Sections/Sections	40
Table 3.13: Nos. of PAFs/PAPs	40
Table 4.1: Parameter and Scale of Impact Matrix	44
Table 4.2 Impact Assessment-Construction Phase	45
Table 4.3 Impact Assessment-Operation Phase	46
Table 4.4 Anticipated Impacts during Construction and Operation Phase	48
Table 5.1: Details of VECs and their Status within the CIA boundary	64
Table 6.1: Identification and Classification of Stakeholders	71

Table 8.1: Cumulative Impact Matrix due to Railways - Station & Feeder Route	
Development	5
Table 8.2: Cumulative Impact Matrix due to National Waterways Development (NW1)79)
Table 8.3: Cumulative Impact Matrix due to Road Development82	2
Table 8.4: Cumulative Impact Matrix due to Industrial Area Development	5
Table 8.5: Cumulative Impact Matrix due to Urbanization	3
Table 8.6: Identification, Classification and responsibilities of Stakeholders for	
Implementation of mitigation and monitoring measures90	5

List of Figures

Figure 1.1: Location and Alignment of the Project	8
Figure 1.2: Schematic Representation of Proposed Approach & Methodology (A&M)	9
Figure 2.1: EDFC Project Map	13
Figure 2.2 (a): Alignment of Bhaupur-Khurja Section of EDFC 1	14
Figure 2.2 (b): Alignment of Kaurara to Chamrola Sub-Section	15
Figure 2.2 (c): Alignment of Khurja to Dadri Sub-Section	15
Figure 2.3: Alignment of Kanpur- Mughal Sarai section of EDFC 2	16
Figure 2.4 (a): Alignment of Sanehwal (Ludhiana) -Pilkhani Corridor of EDFC 3	17
Figure 2.4 (b): Alignment of Khurja-Pilkhani Corridor of EDFC 3	18
Figure 5.1: VECS and Hotspots in EDFC 1	60
Figure 5.2: VECS and Hotspots in EDFC 2	61
Figure 5.3: VECS and Hotspots in EDFC 3	62
Figure 6.1: Development Proposals and VECs in the Study Area	68
Figure 6.2: Development Proposals and Road Network in the Study Area	70
Figure 8.1: Cumulative Impact on Identified VECs	75

EXECUTIVE SUMMARY

DFCCIL under the World Bank financing is proposing to develop Dedicated Freight Corridors (DFC) along Eastern Dedicated Freight Corridor (EDFC) starting from Sahnewal (Ludhiyana) to Mugalsarai. This section is further divided into three phases namely EDFC-1 (393.85 kilometer from Bhaupur (Kanpur) to Khurja to Dadri), EDFC-2 (448.51 kilometer from Bhaupur to Mughalsarai) and EDFC-3(395.1 from Sahnewal (Ludhiana) to Khurja). In this context, DFCCIL intends to carry out Cumulative Impact Assessment (CIA) of Eastern Dedicated Freight Corridor (EDFC) from Mugal Sarai to Sahnewal (Ludhiyana) for: (a) analyzing the potential impacts and risks of proposed developments in the context of the potential effects of other human activities and natural environmental and social external drivers on the chosen Valued Environmental and Social Components (VECs) over time, and (b) proposing concrete measures to avoid, reduce, or mitigate such cumulative impacts and risk to the extent possible. DFCCIL has awarded M/s IRGSSA & M/s Abnaki Infrastructure Applications & Integrated Development Private Limited the task of carrying out Cumulative Impact Assessment (CIA) study. Consultants are submitting the Initial Draft Report since the startup of this assignment from 13th May 2015. Project Inception Report &work plan was submitted to DFCCIL on 20th May 2015. As a next step, consultants were informed to submit Initial Draft Report . This report aims to describe the application of approach & methodology in one of the stretch so that it can demonstrate the achievement of objective described above as well as to identify the need for midway corrective action if required.

The main objectives of this study include: assessment of the potential impacts and risks of a proposed andother developments over time on a chosen VEC; verification of the proposed development's cumulative social and environmental impacts and risks will not exceed a threshold that could compromise the sustainability or viability of selected VECs; Confirm that the proposed development's value and feasibility are not limited by cumulative social and environmental effects; Support the development of governance structures for making decisions and managing cumulative impacts at the appropriate geographic scale (e.g., airshed, river catchment, town, regional landscape); Ensure that the concerns of affected communities about the cumulative impacts of a proposed development are identified, documented, and addressed; and Manage potential reputation risks. Stepwise approach & methodology (A&M) include: Step 1: Identify VECs, and determine spatial and temporal Boundaries for CIA; Step 2: Identify other activities and developments affecting VECs; Step 3: Establish information on baseline status of VECs; Step 4: Assess cumulative impacts on VECs; Step 5: Assess significance of predicted cumulative impacts; Step 6: Management of cumulative impacts – design and implementation.

The proposed EDFC alignment from Sahnewal to Mughalsarai passes through Punjab, Haryana and Uttar Pradesh provinces. It runs all along the existing Indian Railway Track with certain detours. The entire stretches passes through plain terrain. The eastern corridor encompasses a double line electrified traction corridor from Sone Nagar on the East Central Railway to Khurja on the North Central Railway, Khurja to Dadri on NCR double line electrified corridor and single electrified line from Khurja to Ludhiana on Northern Railway. The project components include route (parallel & detour), gradient, standard of construction, formation, curves, track centres, bridges, road crossings, stations and additional land requirements. Baseline data has been collected from the EIA study reports of the various sections and sub-sections of the EDFC carried out in different time & seasons. Baseline compilation indicates the current status of VECs within the project study area, considered during EIA & SA of individual phase. These VECs have been identified as critical in some stretches. The inventory of these VECs partly provides basis for identifying VECs at cumulative assessment stage as well as for delineation of boundary for cumulative impact assessment (CIA).

Based on the baseline environmental status described in earlier section and the proposed project activities, potential impacts have been assessed and predicted. The impacts due to the development of the Eastern Dedicated Freight Corridor (EDFC 1, EDFC 2 & EDFC 3) have been assessed for the planning phase, construction phase and implementation phase. Impact analysis based on EIA& SA studies indicate that VECs impacted during construction and operation stage include air, water (surface & ground), soil, land, ecology & socioeconomics consisting of loss of land and community resources. All the above mentioned impacted VECs need to be assessed considering the other direct, indirect and induced activities and their zone of influence in the context of proposed development. Cumulative Impact Assessment (CIA) requires fixation of spatial and temporal boundaries in order to assess the impacts of direct, indirect and induced activities due to proposed project. In this study all the natural as well as manmade features have been taken into account and plotted spatially to delineate the boundary of the CIA. Therefore, buffer boundaries have been considered; i.e. 100 mtrs, 300 mtrs and 10 kms. The basis for delineating these three buffer boundaries are based on the EIA reports of EDFC (EDFC -1, EDFC -2 and EDFC -3), IFC codes and the expert's consultation/ judgment.

Under the delineated boundaries, overlay mapping and GIS have been used for identifying the spatial distribution of VECs and hotspots. Based on the mapping method and as per IFC guidelines for Cumulative Impact Assessment and Management, **VECs have been classified** under: Physical features (Urban Agglomerations; Urban centers; Land Uses; Geology); Ecology (Wildlife Sanctuaries/ National Parks / Tiger Reserves / Bird Areas / Wetlands); Ecosystem services; Critically Polluted (air, water, soil & ground water quality); GHG emissions; Natural processes (e.g., water and nutrient cycles, microclimate); Social conditions (e.g., health, economics), or Water Bodies (Pools, wells, nalas, canals), Hospitals, Educational Institutes, Demography (R&R), Transport System; Cultural aspects; Religious / Archaeological sites. Using these sensitive receptors, the maps have been prepared for the entire stretch in strips of 50 to 75 kms for all the three parts i.e. EDFC 1, EDFC 2 & EDFC 3. Each stretch has been studied in strips to identify the **VECs and hotspots** have been identified and shown in **Figure 6.1, Figure 6.2 and Figure 6.3**.

In order to demonstrate the cumulative impacts of the EDFC alignment on the nearby areas and the existing VECs within the 10 kms boundary, a hotspot in a stretch of the EDFC has been taken as a case study for Initial Draft Report. The stretch identified for the case study is from Mirzapur to Mughal Sarai consisting of a major hotspot near Mughalsarai. This stretch is also important due to common interface of DFCCIL with NW1 and national highways and state highways. Based on the identification of the VECs, stakeholder's consultation is being carried out to confirm them as well as understand the planned overlapping interfaces. Further, the assessment of developmental works due to proposed project as well as other developmental works within the CIA boundary like railways & feeder route development, waterways, road/ highway networks, industrial area development and urbanization has been carried out. This will give insight into type and extent of impacts. An effort has been made to assess cumulative impacts on identified VECs against each identified development in the case study area. Impact assessment has been done partly on quantitative as well as qualitative basis. The emerging scenario indicates that at a cumulative level, majority VECs are getting impacted due to indirect development like road and associated infrastructure development and induced development like urbanization. Currently, indicative mitigation measures have been recommended in the vicinity of the project area. A list of major stakeholders at national and state level has been prepared who will be implementing mitigation measures. Further, monitoring agencies have also been identified. Efforts are going on for strengthening the impact matrix using a combination of different interactive techniques, which will be described in draft final report. Further, all the five impact matrix tables (Table 8.1 to 8.6) will be combined to arrive at a holistic & cumulative view of the planned development at DFR stage.

CHAPTER 1: INTRODUCTION & BACKGROUND

1.0 Introduction

The railway network connecting the four metros of Delhi, Mumbai, Kolkata and Chennai carries more than 55% of the freight and passenger traffic of Indian Railways (IR) and is known as 'Golden Quadrilateral' of IR. To cater the growing traffic needs of this corridor and ensure efficient transportation of freight, DFCCIL is proposing to develop Dedicated Freight Corridors (DFC) along this network. Dedicated Freight Corridor Corporation of India Ltd. (DFCCIL) has sought World Bank Loan assistance for Implementation of part of Eastern Dedicated Freight Corridor (EDFC) starting from Sahnewal (Ludhiyana) to Mugalsarai. This section is further divided into three phases namely EDFC-1 (393.85 kilometer from Bhaupur (Kanpur) to Khurja to Dadri), EDFC-2 (448.51 kilometer from Bhaupur to Mugalsarai) and EDFC-3(395.1 from Sahnewal (Ludhiana) to Khurja).

In this context, DFCCIL intends to carry out Cumulative Impact Assessment (CIA) of Eastern Dedicated Freight Corridor (EDFC) from Mugal Sarai to Sahnewal (Ludhiyana) for: (a) analyzing the potential impacts and risks of proposed developments in the context of the potential effects of other human activities and natural environmental and social external drivers on the chosen Valued Environmental and Social Components (VECs) over time, and (b) proposing concrete measures to avoid, reduce, or mitigate such cumulative impacts and risk to the extent possible. DFCCIL has awarded M/s IRGSSA & M/s Abnaki Infrastructure Applications & Integrated Development Private Limited the task of carrying out Cumulative Impact Assessment (CIA) study. Consultants are submitting the Initial Draft Report since the startup of this assignment from 13th May 2015.

1.1 **Objectives**

The main objectives of this study are as follows:

- Assess the potential impacts and risks of a proposed andother developments over timeon a chosen VEC;
- Verify that the proposed development's cumulative social and environmental impacts and risks will not exceed a threshold that could compromise the sustainability or viability of selected VECs;
- Confirm that the proposed development's value and feasibility are not limited by cumulative social and environmental effects;
- Support the development of governance structures for making decisions and managing cumulative impacts at the appropriate geographic scale (e.g., airshed, river catchment, town, regional landscape);
- Ensure that the concerns of affected communities about the cumulative impacts of a proposed development are identified, documented, and addressed; and
- Manage potential reputation risks

1.2 Study Area

The EDFC alignment from Sahnewal to Mughalsarai passes through Punjab, Haryana and Uttar Pradesh provinces. It runs all along the existing Indian Railway Track with certain dentures. The entire stretches passes through plain terrain. The location map of the EDFC project corridor and details overview of alignment is given in **Figure 1.1 and Table 1**.

Projects	Section	Length (km)	Number of Tracks	Approx. Cost (US\$ m)
EDFC1	Bhaupur (Kanpur)- Khurja-Dadri	39385	Double	1,453
EDFC2	Bhaupur (Kanpur)- Mughal Sarai	448.51	Double	1,670
EDFC3	Sahnewal (Ludhiana)- Khurja	395.1	Single	1,583
Program		1237.46		4,696

Table 1: Details of EDFC project Alignment

Source: RFP/ sub project ELAs

Figure 1.1: Location and Alignment of the Project

Source: IRGSSA

1.3 Approach & Methodology

Stepwise approach & methodology (A&M) is given below.

- Step 1: Identify VECs, and determine spatial and temporal Boundaries for CIA
- Step 2: Identify Other activities and developments affecting VECs
- Step 3: Establish information on baseline status of VECs
- Step 4: Assess cumulative impacts on VECs
- Step 5: Assess significance of predicted cumulative impacts
- Step 6: Management of cumulative impacts design and implementation

The above step wise approach has been converted into activities and tasks as mentioned below & schematically shown in **Figure 1.2**.

Figure 1.2: Schematic Representation of Proposed Approach & Methodology (A&M)

Activity 1: Scoping Phase I – VECs, Spatial and Temporal Boundaries

- 1. Identify the VECs to include in the CIA.
- 2. Identify the spatial boundaries of the CIA.
- 3. Identify the temporal extent of the CIA.

A&M: (1) Determine spatial and temporal boundaries (Identification of Zone of Influence of EDFC 1 / EDFC 2 / EDFC 3 and Preparation of Base Map) Identify VECs in consultation with affected communities and stakeholders (2) Inventorization of VECs their zonation & sample consultations for verification.

Activity 2: Other Activities and Environmental Drivers

- 1. Identify other existing and reasonably predictable projects and human activities that do/would affect the VECs to be included in the CIA;
- 2. Identify natural environmental drivers that also impact the condition of VECs identified in Step 1.

A&M: Identify all developments and external natural and social stressors affecting the VECs Identification of direct, indirect & induced activities both natural & developmental & possible stresses.

Activity 3: Establish Information on Baseline Status of VECs

- 1. Collect available information on the impacts of the other activities and natural drivers on the condition of the VEC;
- 2. Collect available information on VEC trends;
- 3. Collect any available information on regional thresholds for VECs (e.g. air pollution).

A&M: (1) Identify all developments and external natural and social stressors affecting the VECs Identification of direct, indirect & induced activities both natural & developmental & possible stresses (2) Development Matrix of VECs Vs Activities.

Activity 4: Assess Cumulative Impact on VECs

- 1. Establish indicators for expression of VEC condition. This may already be reflected in the information collected on VEC baseline status (in Step 3 above). If not, then indicators may need to be established that can be estimated from the baseline information;
- 2. Estimate the "future baseline" for condition of the VECs—i.e., the condition of VECs as affected by the other projects, human activities, and natural drivers; and Estimate the project impact on VEC condition. This estimation is done with the effects of planned project mitigation included; and
- 3. Estimate the cumulative impact on VECs—the total impact on the VECs when the impacts of the development are combined with the future baseline.

A&M: Baseline data evaluation of EDFC 1 / EDFC 2 / EDFC 3 & Identification of critical elements of VECs, their prioritization & development of indicators.

Activity 5: Assess Significance of Anticipated Cumulative Impacts

1. Assess the significance of the foreseen cumulative impacts on the VECs;

Activity 6: Management of Cumulative Impacts: Design and Implementation

- 1. Identify, when necessary, additional project mitigation (beyond that identified in the project ESIA) to reduce an estimated unacceptable cumulative impact on a VEC to an acceptable level. This should represent effective application of the mitigation hierarchy in environmental and social management of the specific project contributions to the expected cumulative impacts;
- 2. If necessary, identify the potential, or need for, additional mitigation of other

existing or reasonably predictable future projects;

- 3. Identify the potential for other regional strategies that could maintain VECs at acceptable conditions; and
- 4. Undertake best efforts to engage, enhance, and contribute to a multistakeholder collaborative approach for the implementation of management actions that are beyond the capacity of the project proponent.

A&M: (1) Assess cumulative impacts and evaluate their significance over VECs predicted future conditions (Predicted Scenarios Vs Impacts based on Pressure, State & Response PSR method). Design and implement: (a) adequate strategies, plans, and procedures to manage cumulative impacts, (b) appropriate monitoring indicators, and (c) effective supervision mechanism (2) Development of mitigation, activities, plans, guidelines, practices & procedures, monitoring indicators & institutional mechanism)

Activity 7: Stakeholder Engagement

1.4 Format of the Report

Project Inception Report & work plan was submitted to DFCCIL on 20th May 2015. As a next step, consultants were informed to submit Initial Draft Report. This report aims to describe the application of approach & methodology in one of the stretch so that it can demonstrate the achievement of objective described above as well as to identify the need for midway corrective action if required.

The Cumulative Impact Assessment (Initial Draft) report has been compiled in eight chapters. The table of contents of each chapter is given below.

Chapter 1 Introduction and Background: This chapter describes Introduction; Objective of the Study as per ToR; Study Area; Approach and Methodology.

Chapter 2 Project Description: This chapter describes components of EDFC 1, EDFC 2 & EDFC 3 in an integrated manner.

Chapter 3 Baseline: This chapter describes project baseline from EIA's of EDFC 1, EDFC 2 & EDFC 3 in an integrated manner.

Chapter 4 Environmental Impact Assessment: This chapter describes summary of EIA's of EDFC 1, EDFC 2 & EDFC 3 in an integrated manner.

Chapter 5 Delineation of CIA Boundary and VEC: This chapter describes fixation of CIA boundary & VECs. This chapter also describes example of a stretch analyzed for CIA, VEC impacts, management & mitigation measures.

Chapter 6 Other Development Proposals and Stakeholders: This chapter describes development proposals and stakeholders.

Chapter 7 Stakeholders Consultations: This chapter describes stakeholder consultation carried out so far.

Chapter 8 CIA Impact Assessment Mitigations Measures: This chapter describes impact matrix consisting of direct, indirect & induced impacts and mitigation measures.

CHAPTER 2: DESCRIPTION OF THE PROJECT

2.0 Introduction

This chapter presents the details of three phases, their project components and salient features, based on the detailed project report prepared by DFCCIL. At first, project description has been summarized. This is followed by summary of project components of sub projects i.e. EDFC 1, EDFC 2, EDFC 3.

2.1 **Project Description**

The Eastern Dedicated Freight Corridor (EDFC) is divided into three sub projects namly. EDFC-1 of 393.85 kilometer length from Bhaupur-Khurja-Dadri section, EDFC-2 of 448.51 kilometer length from Bhaupur to Mughalsarai section and EDFC-3 of 395.1 kilometer length from Sahnewal (Ludhiana) to Khurja Section.

The eastern corridor encompasses a double line electrified traction corridor from Sone Nagar on the East Central Railway to Khurja on the North Central Railway, Khurja to Dadri on NCR double line electrified corridor and single electrified line from Khurja to Ludhiana on Northern Railway. For CIA study, section of EDFC from Mugalsarai to Khurja, Khurja to Dadri and Khurja to Ludhiyana have been considered. The total length of EDFC from Mugalsarai to Khurja, Khurja to Dadri and Khurja to Dadri and Khurja to Ludhiyana works out to 1237.46 Kms. The project map of Eastern Dedicated Freight Corridor (EDFC) is shown in Figure 2.1 and alignment map of EDFC is shown in Figure 1.2. The Salient features of each corridor are described in the following section.

DEDICATED FREIGHT CORRIDOR (EASTERN)

Figure 2.1: EDFC Project Map

"Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

2.1.1 EDFC-1: (Bhaupur-Khurja Section of EDFC)

EDFC-1 section, i.e. Bhaupur (Kanpur) to Khurja-Dadri is divided into three sub-sections, i.e. Khurja to Bhaupur, Kaurara to Chamrola and Khurja to Dadri for study purpose. Stretch from Bhaupur to Khurja (272 km) passes through eight districts of Uttar Pradesh i.e. Kanpur dehat, Auraiya, Etawah, Ferozabad, Hathras (Mahamaya Nagar), Agra, Aligarh and Bulandsehar. The project stretch from Kaurara to Chamraula (72.16 km) passes through two districts of Uttar Pradesh i.e. Agra and Ferozabad. The project stretch from Khurja to Dadari (49.69 km) passes through two districts of Uttar Pradesh i.e. Bullandshahar and Gautam Budh Nagar

Total length of the EDFC-1 Corridor is 393.85 Kms (Double line); out of which 120.83 Kms are in detour section & balance 273.02 Kms are in parallel to the existing North Central IR track. There are 6 junction stations and 5 crossing stations in this section. ROW width is considered majorly around 40 m in the parallel section and 60 m in detour. The alignment of Bhaupur-Khurja corridor of EDFC (EDFC-1) is shown in Figure 2.2 a, b & c.

Figure 2.2 (a): Alignment of Bhaupur-Khurja Section of EDFC 1

Figure 2.2 (b): Alignment of Kaurara to Chamrola Sub-Section

Figure 2.2 (c): Alignment of Khurja to Dadri Sub-Section

2.1.2 EDFC-2 (Kanpur- Mughal Sarai section of EDFC)

The entire stretch from Bhaupur to Mugalsarai passes through nine districts of Uttar Pradesh i.e. Kanpur Dehat, Kanpur Sadar, Fathepur, Kaushambi , Allahabad, Mirzapur and Chanduli. Total length of the Mughalsarai-Bhaupur Corridor is 448.51 Kms (Double line); out of which 191.41 Kms are in detour section & balance 257.1 Kms are in parallel to the existing North Central Railway track. ROW width is around 20-40 m in the parallel section and 40-60 m in detour. The alignment of Kanpur-Mughal Sarai corridor of EDFC is shown in Figure 2.3.

Figure 2.3: Alignment of Kanpur- Mughal Sarai section of EDFC 2

2.1.3 EDFC-3 (Ludhiana- Khurja-Dadri Section of EDFC)

EDFC-3 corridor, i.e. from Khurja to Sahnewal (395.1 km) is divided into two sub-sections, i.e. Khurja to Pilkhani (220.710 km) and Pilkhani to Sahnewal (175.0 km) for study purpose. The stretch from Khurja to Pilkhani passes through six districts of Uttar Pradesh i.e. Bulandshahr, Ghaziabad, Hapur, Meerut, Muzaffarnagar and Saharanpur. The entire stretch from Pilkhani (Uttar Pradesh) to Sahnewal (Ludhiana) passes through six districts namely Saharanpur (Uttar Pradesh), Yamunanagar, Ambala (Haryana), Fatehgarh Sahib, Patiala and Ludhiana (Punjab).

Out of total length of 395.1 kms, 123.305 kms is under detour and remaining 271.795 kms is parallel to existing IR track. The alignment of Ludhiana- Khurja corridor of EDFC is shown in Figure 2.4 a&b.

Figure 2.4 (a): Alignment of Sanehwal (Ludhiana) -Pilkhani Corridor of EDFC 3

Figure 2.4 (b): Alignment of Khurja-Pilkhani Corridor of EDFC 3

2.2 Components of the Project

Salient features of the project (EDFC 1, EDFC 2 & EDFC 3) describing project components have been summarized in Table 2.1. These project components include route (parallel & detour), gradient, standard of construction, formation, curves, track centres, bridges, road crossings, stations and additional land requirements.

S1.	Description	Details							
No.		E	EDFC-2		EDFC-1		EDFC-3		
		Mugalsa	rai to Bhaupur	(Bhaupur to Khu	rja)	(Khurja	to Sahnewal)	
		Bhaupur- Prempur	Premur-Karchana- Mugalsarai	Bhaupur to Khurja	Detour Kaurara to Chamrola	Khurja to Dadri	Khurja to Pilkhani	Pilkhani to Sahnewal	
1	Route	56.51	392	272	72.16 ¹	49.69 km, say 50	220.710	175	
	Length (km)					km			
2	Parallel (km)	8.50	249	194	42.6	36.42 km	110.195	162.21	
3	Detour (km)	48.41	143	78	29.56	13.27 km	110.515 (+0.2) Excludes Khurja Flyover	12.79	
4	No. of Detour	1	7	5	3	1	2	3	
5	Gradient								
а	Ruling	1 in 200	1 in 200	1 in 200	1 in 200	1 in 200	1 in 200	1 in 200	
	Gradient	(Compensated)	(Compensated)	(compensated)	(Compensated)	(Compensated)	(Compensated)	(Compensated)	
b	Steepest	1 in 1200, 1 in	1 in 1200, 1 in 400 in	Normally 1 in	1 in 1200, 1 in	1 in 1200, 1 in	1 in 1200 (1 in	1 in 1200 (1 in 400 in	
	Gradient in	400 in	exceptional cases	1200, 1 in 400	400 in	400 in	400 in	Exceptional Cases)	
	yards	exceptional		in exceptional	exceptional	exceptional cases	Exceptional cases		
		cases		cases	cases)		
6	Standard of Co	nstruction	ſ			r	T	Γ	
а	Gauge	1676 mm	1676 mm	1676 mm	1676 mm	1676 mm	1676 mm	1676 mm	
b	Rails	60 Kg 90 UTS	60 Kg 90 UTS rails	60 Kg 90 UTS	60 Kg 90 UTS	60 Kg 90 UTS	60 Kg 90 UTS	60 Kg 90 UTS rails	
		rails		rails	rails	rails	rails		
с	Sleeper	PSC, 1660	PSC, 1660 Nos./km	PSC, 1660	PSC, 1660	PSC, 1660	PSC, 1660	PSC, 1660 Nos./km for	
		Nos./km for	for main line & 1540	No./km for	Nos./km for	Nos./km for	Nos./km for	main line & 1540	
		main line &	Nos./km for loop	main line &	main line &	main line & 1540	main line & 1540	Nos./km for loop line &	

Table 2.1: Salient Features of EDFC Project

¹ 55 kms stretch out of 72.6v Km falls under Taz Trapezium Zone (TTZ). TTZ is defined for the protection of TAZ protected monument. There are restriction for certain emissions in this zone.

Sl.	Description	Details						
No.	_	E	EDFC-2		EDFC-1		E	EDFC-3
		Mugalsa	rai to Bhaupur		Bhaupur to Khu	rja)	(Khurja	to Sahnewal)
		Bhaupur-	Premur-Karchana-	Bhaupur to	Detour	Khurja to Dadri	Khurja to	Pilkhani to Sahnewal
		Prempur	Mugalsarai	Khurja	Kaurara to		Pilkhani	
		1540 Nos /km	line & sidings	1540	Chamrola	Nos /km for	Nos /les for loop	aidinaa
		for loop line &	line & sidnigs	Nos /km for	for	loop line &	line & sidings	sidnigs
		sidings		loop line &	loop line &	sidings	line & skilligs	
		sichings		sidings	sidings	sicilitzs		
d	Points &	60 kg rail, 1 in	60 kg rail, 1 in 12	60 kg rail, 1 in	60 kg rail, 1 in	60 kg rail, 1 in 12	60 kg rail, 1 in 12	60 kg rail, 1 in 12 curved
	Crossings	12 curved	curved switches with	12 with CMS	12 curved	curved switches	curved switches	switches with CMS
		switches with	CMS crossings on	crossing on	switches with	with CMS	with CMS	crossings on Fan shaped
		CMS crossings	Fan shaped PSC	PSC Sleepers	CMS crossings	crossings on Fan	crossings on Fan	PSC sleepers layouts.
		on Ean shanad	sleepers layouts.	Layouts.	on Fan shaped	shaped PSC	shaped PSC	
		PSC sleepers			PSC sleepers	sleepers layouts	steepers tayouts.	
		lavouts.			layouts			
е	Ballast	300 mm	300 mm cushion	300 mm	300 mm	300 mm cushion	350 machine	300 mm Machine
		cushion		cushion	cushion		crushed	crushed
f	Design Speeds	100 kmph	100 kmph	100 kmph	100 kmph	100 kmph	100 kmph	100 kmph
g	Design Axle	Freight Traffic	Freight Traffic with	Freight Traffic	Freight Traffic	Freight Traffic	Freight Traffic	Freight Traffic with 25
0	load	with 32.5	32.5 tone axle load	with 32.5 tone	with 32.5 tone	with 32.5 tone	with 32.5 tone	tonnes axle load on
		tonne axle load		axle load	axle load	axle load	axle load	formation of 32.5
								tonnes
7	Formation	1	1	ſ	ſ	1	r	1
а	Bank width	13.5m.	13.5 m.	13.5 m	13.5 m	13.5 m	7.6m.	8.10 m.
Ь	Slop op	211.117	2U.1V	211.117	211.11	211.117	211.117	211.117
U	Embankment	211.1 V	211.1 V	211.1 V	211.1 V	211.1 V	211.1 V	211.1 V
с	Cutting width	19.25 m	19.25 m	19.25 m	19.25 m	19.25 m	7.5 m	7.5 m (Excluding side
	for Single line							drains)
d	Earthwork	C.B.R. > 5	C.B.R.>5	C.B.R.>5	C.B.R.>5	C.B.R.>5	C.B.R. > 5	C.B.R. > 5
e	Earthwork for	C.B.R. > 8	C.B.R.>8	C.B.R.>8	C.B.R.>8	C.B.R.>8	C.B.R. > 8	C.B.R. > 8

Sl.	Description	Details						
No.		E	EDFC-2		EDFC-1		EDFC-3	
		Mugalsa	arai to Bhaupur	(Bhaupur to Khu	rja)	(Khurja	to Sahnewal)
		Bhaupur-	Premur-Karchana-	Bhaupur to	Detour	Khurja to Dadri	Khurja to	Pilkhani to Sahnewal
		Prempur	Mugalsarai	Khurja	Kaurara to Chamrola		Pilkhani	
	Top 1m.							
f	Slope of	1:1	1:1	1:1	1:1	1:1	1:1	1:1
	cutting							
	(ordinary Soil)							
g	Blanketing	0.60 m	0.60 m	0.60 m	0.60 m	0.60 m	60 cm	60 cm
	thickness							
8	Curves			1				
а	Maximum	2.5 degree	2.5 degree	2.5 degree	2.5 degree	2.0 dregree	2.5 degree	2.5 degree
	degree of							
h	Crada	at the rate of	at the rate of $0.04.9$	at the rate of	at the rate of	at the rate of	at the rate of 0.04	at the rate of 0.04 % per
b	Grade	at the fate of 0.04 % por	at the rate of 0.04 76	at the fate of	at the fate of 0.04 % per	at the fate of	at the rate of 0.04	degree of currenture
	on curves	degree of	curvature	degree of	degree of	degree of	70 per degree of	degree of curvature
	on curves	curvature	curvature	curvature	curvature	curvature	curvature	
9	Track Centres	(Minimum)						
Α	Between Two	6 m	6 m	6 m	6 m	6 m	6 m	6 m & 6.25 m
	Tracks of							
	DFC							
b	Between	15.0 m	13-15.0 m (Minimum	13 to 15 m	13 to 15 m	13-15 m	12-33 m	6.0 m minimum and
	Existing track		7 m at thickly	normally 13-				7.925 m recommended
	and DFC		populated locations	15m but				and in general.
			to avoid displacement	places				
			of inhabitants)	including yard				
				it is less than				
				om due to				
				space				
10	Bridges			constraints				
10	Standard of	325 tone avia	32.5 tone ayle load	32.5 toppes	32.5 tonne avla	32.5 tonne avle	32.5 toppe avle	25 tonnes avle load on
a	Loading	load 15	52.5 tone axie ioau	axle load 15	load 15	load 15	load 15	formation of 32.5
	Loading	10.000, 10	L	unic 10au,15	10.00, 15	10400, 15	1540, 15	1011111111011 01 52.5

S1.	Description	Details							
No.		H Mugalsa	EDFC-2 arai to Bhaupur	EDFC-1 (Bhaupur to Khurja)			EDFC-3 (Khurja to Sahnewal)		
		Bhaupur- Prempur	Premur-Karchana- Mugalsarai	Bhaupur to Khurja	Detour Kaurara to Chamrola	Khurja to Dadri	Khurja to Pilkhani	Pilkhani to Sahnewal	
		tone/m trailing load (DFC Loading)		tonnes/m trailing load(DFC loading)	tonnes/m trailing load (DFC Loading)	tonnes/m trailing load (DFC Loading)	tonnes/m trailing load (DFC Loading)	tonnes, 15 tonnes/m trailing load (DFC Loading)	
b	Number of Important Bridges	Nil	2	Nil	Nil	Nil	Nil	4	
с	Number of Major Bridges	4	53	5	5	4	42	44	
d	Number of RUBs	2- major 40-minor	89	4- major 82-minor	1- major 35-minor	15	407	27	
f	Number of Minor Bridges	50	321	197	32	49	295	133	
g	Number of Rail Flyovers	1	3	6	1	Nil	4	4	
h	No. of ROBs	Nil	2	Nil	Nil	Nil	Nil	50	
11	Road Crossing	ſS				·	·		
a	Number of level crossings	2	72	74	19	18	58	77	
12	Stations								
а	Junction Stations	3	4	3	2	1	0	5	
b	Crossing Stations	-	8	4	1	0	21	14	
13	Additional Land required	249 hectares	1151 ha (includes 0.998 Ha. forest land)	1182 ha	258.87 ha.	211.67 ha	829.08 ha.	355.34 ha.	

The construction material (ballast) is sourced from licensed quarries in the nearby region and earth for formation is sourced from local areas following predefined borrow earth management plan and with due permission from regulatory authorities concerned.

2.3 Applicable Legislation and World Bank Operational Policies

There are four World Bank operational policies applicable to EDFC Ludhiana to Mugalsarai corridor. These are listed at Table 2.2 Required mitigation measures have been incorporated in project design/Environmental management plans.

Sl. No.	Safeguard Policy	Subject Category	Triggered	Triggered By	Mitigation Measures
1.	OP 4.01	Environment Assessment	Yes	Sensitive areas and impacts on environmental and social components	Mitigation measures incorporated
2.	OP 4.04	Natural Habitats	Yes	Protected forests issues	Incorporated
3.	OP 4.11	Physical Cultural Resources	Yes	Risk to cultural properties	Adequate mitigation measures if affected
4.	OP 4.36	Forestry	Yes	Diversion of protected forest land	To be carried out as per Forest (conservation) Act, 1980

 Table 2.2: Salient World Bank Safeguard Policies

India has well defined environmental and social legislation framework. Applicability of these regulations depends on nature of project and activities. The summary of various Laws and Regulation applicable to EDFC project is summarized at Table 2.3.

S1.	Act/Rules and Type of	Purpose and	Applicability	Project stage
No	clearance	Type of		
		clearance		
1	Environment Protection Act-1986	To protect and	applicable	Pre construction
		improve overall		
		environment,		
		Prior		
		Environmental		
		Clearance,		
		Environment		
		Clearance for		
		opening new		

Table 2.3: Summary of Clearances & NOCs

Sl. No	Act/Rules and Type of clearance	Purpose and Type of clearance	Applicability	Project stage
		quarries and borrow areas, NOC for water extraction for construction and allied works		
2	Ancient Monuments and Archaeological Sites and Remains(Amendment & Validation Act , 2010	Conservation of cultural and historical remains found in India , Permission for Activities near archaeological protected area	Not applicable	Pre construction
3	Wild Life Protection Act under	Protection of Wild Life Clearance for working / diversion of sanctuary land	Not applicable	Pre construction
4	The Forest (Conservation) Act 1927 The Forest (Conservation) Act. 1980 The Forest (conversion) Rules 1981	To check deforestation by restricting conversion of forested areas into non- forested areas Forest Clearance	Diversion of Protected Forest land	Pre construction
5	MoEFCC circular (1998) on linear Plantation on roadside, canals and railway lines modifying the applicability of provisions of forest (Conversation) Act, to linear Plantation	Protection / planting roadside strip as avenue/strip plantations as these are declared protected forest areas. Tree felling permission	Applicable for Felling of trees	Pre construction

Sl.	Act/Rules and Type of	Purpose and	Applicability	Project stage
No	clearance	clearance		
6	Air (Prevention and Control of Pollution) Act, 1981 and Noise Pollution (Regulation and Control Act), 2000 Under Air ,	To control air pollution by specifying the emission standards NOC And Consents for setting up air polluting plants Control of Ambient noise levels through adherence of prescribed day and night standards	Applicable , For operating Hot mix plants, Crushers and batching plants Provision of acoustics enclosures. For DG sets and other noise sources	Construction (Prior to work initiation)
7	Water Prevention and Control of Pollution) Act, 1974	To control water pollution by controlling discharge of pollutants as per the prescribed standards	Applicable For discharge of effluents from construction sites and workshop	Construction (Prior to work initiation)
8	Hazardous waste (Management, Handling & Transboundry) Rules, 2008	Management and storage of hazardous waste. Permission to store Hazardous Materials	Applicable For storage and Transportation Of Hazardous Materials (Like waste oils) and Explosives	Construction (Prior to work initiation)
9	Explosive Act 1984 & the Explosives Rules, 2008	Safe transportation, storage and use of explosive material Explosive license	Applicable Storage of explosive materials(Diesel Fuel)	Construction (Prior to work initiation)

Sl. No	Act/Rules and Type of clearance	Purpose and Type of clearance	Applicability	Project stage
10	Central Motor Vehicle Act 1988 and Central Motor Vehicle Rules1989 & Amendment Rules, 1999	To check vehicular air and noise pollution PUC certificate for use of vehicles for construction	Applicable For all construction vehicles	Construction (Prior to work initiation)
11	Minor Mineral and concession Rules	For opening new quarry or borrow areas Permission for opening new Quarry lease deeds and license	Applicable for Quarrying and borrowing operations	Construction (Prior to work initiation)

2.4 Conclusion

Project component details summarized above give information about basic design & engineering features which have been envisaged for three phases (EDFC 1, EDFC 2 & EDFC 3). These details further provide rationale for baseline description and environmental & social impact assessment carried out earlier at project level and summarized in Chapter 3 & Chapter 4.

CHAPTER 3: CUMULATIVE BASELINE STUDY

3.0 Introduction

The environmental status around the proposed project site is described for valued environmental resources/components (VECs) viz., air, water, land, noise, soil, and ecology and socio-economic along the proposed alignment within study area of 5 Km and core area of 100 meters either side of the corridor. This information has been compiled and integrated based on the EIA reports of EDFC 1, EDFC 2 and EDFC 3. The baseline provides the basis for integrated assessment of impact (likely changes in the baseline conditions) due to the proposed interventions.

3.1 Site Descriptions and Its Environs

Eastern dedicated freight corridor starts from Sanhewal (Ludhiyana) and ends at Dankuni. The current project includes the EDFC section from Sanehwal to Mugalsarai only. Total length of the corridor from Sanehwal to Mugalsarai is 1237.46 kms. Out of the 1237.46 kms, 802.705 kms is parallel to existing IR track and 434.755 kms is detour. Detours are planned to minimize disturbance due to project in busy towns and cities. Map showing the EDFC alignment is given below in **Figure 1.2**. EDFC section from Sanehwal to Mugalsarai is divided into three major sections, i.e. EDFC-3 (from Sanehwal to Khurja), EDFC-1 (khurja to Bhaupur) and EDFC-2 Bhaupur to Mugalsarai. These sections are further sub-divided into sub-sections further for study purpose.

EDFC-1 section (Bhaupur to Khurja): It is subdivided into Khurja to Bhaupur, Karora to Chamrola and Khurja to Dadri. Khurja to Dadri is connecting link between western and eastern dedicated freight corridor

- Sub-section Bhaupur to Khurja passes through eight districts of Uttar Pradesh i.e. Kanpur dehat, Auraiya, Etawah, Ferozabad, Hathras (Mahamaya Nagar), Agra, Aligarh and Bulandsehar
- The project stretch from Kaurara to Chamraula passes through two districts of Uttar Pradesh i.e. Agra and Ferozabad
- The project stretch from Khurja to Dadari passess through two districts of Uttar Pradesh i.e. Bullandshahar and Gautam Budh Nagar

EDFC-2 section (Bhaupur to Mugalsarai): The entire stretch from Bhaupur to Mugalsarai passes through nine districts of Uttar Pradesh i.e. Kanpur Dehat, Kanpur Sadar, Fathepur, Kaushambi , Allahabad, Mirzapur and Chanduli.

EDFC-3 section (Sanehwal to Khurja): It is sub-divided into Sanehwal to Pilkhani and Pilkhani to Khurja for study purpose

- The stretch from Khurja To Pilkhani passes through six districts of Uttar Pradesh i.e. Bulandshahr, Ghaziabad, Hapur, Meerut, Muzaffarnagar and Saharanpur.
- The entire stretch from Pilkhani (Uttar Pradesh) to Sahnewal (Ludhiana) passes through six districts namely Saharanpur (Uttar Pradesh), Yamunanagar, Ambala (Haryana), Fatehgarh Sahib, Patiala and Ludhiana (Punjab)

3.2 Baseline Data

Baseline data has been collected for the present report from the EIA study reports of the various sections and sub-sections of the EDFC carried out in different time & seasons. Data on environmental and social attributes is given in sections below.

3.2.1 Meteorology

EDFC corridor from Sanhewal to Mugalsarai extends upto approximately 1238 kms. Corridors pass majorly through state of Uttar Pradesh, 2 districts of Haryana and 3 districts of Punjab. Entire corridor presents sub-tropical climatic characteristics; however, variations exist due to the difference in altitudes between various locations.

The climate of Uttar Pradesh (U.P.) is primarily defined as humid subtropical with dry winter (cwa) type with parts of Eastern U.P. as semi-arid (BS) type. Alternatively, some authors refer to it as tropical monsoon. Variations do exist in different parts of the large state, however the uniformity of the vast Indo-Gangetic Plain forming bulk of the state gives a predominantly single climatic pattern to the state with minor regional variations. U.P. has a climate of extremes. With temperatures fluctuating anywhere from 0 °C to 50 °C in several parts of the state and cyclical droughts and floods due to unpredictable rains, the summers are extremely hot, winters cold and rainy season can be either very wet or very dry. Meteorology of the area passing through the state of Uttar Pradesh is taken from IMD and is given below in **Table 3.1**.

Table 3.1: Meteorology Data from Nearest IMD stations for Project Area Passing ThroughState of Uttar Pradesh2

Stations/Climatic	Allahabad	Kanpur	Agra	Aligarh	Delhi	Meerut	Roorkee	
factors								
Mean Daily Max	32.6	32.1	32.6	31.4	31.3	31.4	30.4	
Temp (⁰ C)								
Mean Highest	45.9	42.6	46.4	44.2	43.8	44.0	43.9	
Temp (^⁰ C)								
Hottest Month	May	May &	June	June	June	May &	May &	
		June				June	June	
Mean Daily Min	19.6	19.0	19.2	18.2	18.8	17.3	16.3	
Temp (⁰ C)								
Mean Lowest	3.9	3.2	3.5	3.8	4.0	3.1	2.1	
Temp (⁰ C)								
Coldest Month	January	January	January	January	January	January	January	
Annual Rainfall	976.1	802.1	731.5	762.6	799.5	893.0	996.4	
(mm)								
Month for	July	August	August	August	August	August	August	
maximum rainfall		_	_	_	_	_	-	

 $^{^2}$ These data are taken from IMD and not from existing EIA reports as data presented in EIA reports pertains to different seasons.

[&]quot;Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

Stations/Climatic	Allahabad	Kanpur	Agra	Aligarh	Delhi	Meerut	Roorkee
factors		_		_			
(mm)							
Relative Humidity	19-84%	26-86%	42-81%	25-79%	22-75%	43-84%	27-85%
(%)							
Atmospheric	984.3-	990.2 -	977.2-	974.7-	971.6-	974.3-	966.0-
pressure (hPa)	1006.6	1003.2	997.9	996.3	992.8	992.2	986.1
Wind speed	2.5-8.5	4.7-20.7	2.1-4.8	4.8-8.2	7.4-10.8	5.0-8.0	4.1-22.4
(km/hr)							
Wind direction	West	West	NW	West	West	West	NW
			followed				followed
			by SW				by SE

Source: Climatologically Normal 1961-1990, IMD

The climate of Haryana is similar to other states of India lying in the northern plains. It is extremely hot in summer, around 45 °C (113 °F) and mild in winters. The hottest months are May and June and the coldest being December and January. Rainfall is varied, with the Shivalik region being the wettest and the Aravali Hills region being the driest. About 80% of the rainfall occurs in the monsoon season (July–September) and sometimes causes local flooding. Meteorology of the area passing through the state of Haryana is given in **Table 3.2**.

Table 3.2: Meteorology Data from Nearest IMD stations for Project Area Passing	Through
State of Harvana	

Stations/Climatic factors	Yamunanagar	Ambala
Mean Daily Max Temp (⁰ C)	31.4	30.5
Mean Highest Temp ([°] C)	48.8	43.8
Hottest Month	May & June	June
Mean Daily Min Temp (⁰ C)	19.2	17.4
Mean Lowest Temp (⁰ C)	6.8	2.8
Coldest Month	January	January
Annual Rainfall (mm)	1107	955.5
Month for maximum rainfall (mm)	July	July
Relative Humidity (%)	23-79%	27-83%
Atmospheric pressure (hPa)	968.2-991.2	965.1-985.4
Wind speed (km/hr)	4.4-7.6	5.0-8.0
Wind direction	SE followed by NW	SE followed by NW

Source: Climatologically Normal 1961-1990, IMD

Climate of Punjab is tropical, semi arid, hot and subtropical monsoon type with cold winter and hot summer. State experience four seasons Cold Season from November to March, hot season from April to June, Monsoon season from last week of June to the first week of September and post monsoon or transition season from Sept till beginning of November. Hot season i.e April to June weather is relatively dry and uncomfortable. June is the hottest month with mean maximum temperature of 41 °C. January is the coldest month with mean minimum temperature of 5.5 °C. The relative humidity is generally high through the year except during months of April to June. Meteorology of the area passing through the state of Punjab is given at **Table 3.3**.

Stations/Climatic factors	Ludhiana	Patiala
Mean Daily Max Temp (⁰ C)	29.8	30.3
Mean Highest Temp ([°] C)	44.6	44.2
Hottest Month	June	June
Mean Daily Min Temp (⁰ C)	16.2	17.3
Mean Lowest Temp (⁰ C)	1.2	2.1
Coldest Month	January	January
Annual Rainfall (mm)	775.2	819.1
Month for maximum rainfall (mm)	July	July
Relative Humidity (%)	26-91%	28-85
Atmospheric pressure (hPa)	966.0-992.1	967.2-988.0
Wind speed (km/hr)	2-5	2.5-7.6
Wind direction	SE followed by NW	NW

Table 3.3: Meteorology Data from Nearest IMD stations for Project Area Passing Through State of Punjab

Source: Climatologically Normal 1961-1990, IMD

3.2.2 Ambient Air Quality

Ambient air quality monitoring has been carried out along each section/sub-section during environment impact assessment study. Study has been carried out in different season for different sections/sub-section. Cumulative data on ambient air quality for each section of respective study period is given in **Table 3.4** below.

Parameters/Project	EDFC-2	EDFC-1 (Bhaupur to 2	Khurja)	EDFC-3 (Sanhewal		NAAQS,
Sections	(Bhaupur				to Khurja)		2009
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara	Khurja	Khurja	Pilkhani	
	to Mugal	to	to	to	to	to	
	Sarai)	Khurja)	Chamrola	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,	May,	May, 2011	Jan,	Feb-	Dec-Feb,	
	2011	2009		2012	Mar,	2010	
					2015		
Max. PM ₁₀	108	83	78	81	140	162	100
Min. PM ₁₀	51	56	65	44	84	118	
Max. PM _{2.5}	55		23	28	56	45	60
Min. PM _{2.5}	23		18	19	33	18	
Max. SO_2	22	14	19.2	16.1	14.5	23	80
Min. SO ₂	12	8	16.2	11.5	7.1	10	
Max. NO _x	31	25	22.5	23.4	26.6	18	80
Min. NO _x	10	14	19.3	17.6	13.0	8	
Max. CO		529					2000
Min. CO		98					

Table 3.4: Ambient Air Quality Data Along the Project Alignment

Source: EIA reports of EDFC1,2,3

⁽All Units are µg/cum)

As per the ambient air quality data given in table above, it is found that all the parameters along the project alignment are within the permissible limits of NAAQS, 2009, CPCB except PM_{10}/RPM value. Levels are found higher along Bhaupur to Mugalsarai and Pilkhani to Sanhewal section.

3.3.3 Ambient Noise Level & Vibration

Ambient air quality w.r.t noise level was monitored along each section/sub-section during environment impact assessment study. Study has been carried out in different season for different sections/sub-section. Noise levels for each section/sub-section of respective study period is given in **Table 3.5**.

Parameters/Project	EDFC-2	EDFC-1	(Bhaupur to I	EDFC-3 (Sanhewal		
Sections	(Bhaupur		. –	to Kl	nurja)	
	to Mugal					
	Sarai)					
	(Bhaupur	(Bhaupur	Kaurara to	Khurja	Khurja	Pilkhani
	to Mugal	to Khurja)	Chamrola	to	to	to
	Sarai)	May, 2009	May, 2011	Dadri	Pilkhani	Sanhewal
	Mar-Apr,			Jan,	Feb-	Dec-Feb,
	2011			2012	Mar,	2010
					2015	
Leq Day time	47.6-69.1	50.6-72.7	62.6-76.8	62.6-	48.5-56.6	47.3-78.0
				66.2		
Leq Night Time	36.5-64.8	37.8-65.2	49.6-56.8	47.8-	40.1-47.5	32.7-60.7
				55.1		
Leq Max	54.7 -91.8	70.7-92.9	89.2-110.2	89.2-		65.0-82.0
				109.8		
While One Train	84.0-87.9	85.1-89.0	86.2-102.4	87.6-	78.2-82.5	
Passing				100.4		
While Two Train	88.3-91.8	91.4-93.0	94.0-98.2	95.2-		
Passing				97.0		
Leq-While Train	72.1-76.0	73.8-75.9	89.1-104.1	92.1-		
passing at Distance				102.1		
of 12.5 m						
Lmax-While Train	90.7-94.0	90.6-94.3	92.7-109.8	93.7-		
passing at Distance				107.8		
of 12.5 m						
Leq-While Train	66.1 -70.1	66.3-70.1	78.2-90.2	79.2-		
passing at Distance				88.2		
of 25 m						
Lmax-While Train	86.4 -90.0	86.3-90.3	87.6-95.8	89.6-		
passing at Distance				93.8		
of 25 m						
Leq-While Train	60.3 -62.1	59.8-62.1	70.2-83.2	71.2-		

Table 3.5: Ambient Noise Levels along the Project Alignment

Parameters/Project Sections	EDFC-2 (Bhaupur to Mugal Sarai)	EDFC-1	(Bhaupur to I	EDFC-3 (Sanhewal to Khurja)		
	(Bhaupur	(Bhaupur	Kaurara to	Khurja	Khurja	Pilkhani
	to Mugal	to Khurja)	Chamrola	to Dealai	t0 D:11 1 :	to
	Saraı) Mar-Apr, 2011	May, 2009	May, 2011	Jan, 2012	Feb- Mar, 2015	Dec-Feb, 2010
passing at Distance of 50 m				81.2		
Lmax-While Train passing at Distance of 50 m	71.9 -78.2	71.1-78.6	78.4-87.0	79.4- 85.0		
AmbientnoiseLevelsstandards(dB(A)(Residen	tial Area	Commercial		Industrial	
Day time	5	5	65		75	
Night Time	4	5	55		7	0

Source: EIA reports of EDFC1,2,3 (All Units are in dB(A))

The stretches passes through residential and commercial areas primarily. The ambient noise levels are mostly found within the permissible ambient Noise levels at most of the places. However these levels exceed the level temporarily when train passes through such areas.

VIBRATIONS

Vibration level was monitored along the existing track in each parallel section/sub-section during environment impact assessment study. Study has been carried out in different season for different sections/sub-section. Cumulative data on vibration levels for each section/subsection of respective study period is given in **Table 3.6** below.

Parameters/Project	EDFC-2	EDFC-1 (Bhaupur to l	Khurja)	EDFC-3	EDFC-3 (Sanhewal	
Sections	(Bhaupur				to K	to Khurja)	
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara to	Khurja	Khurja	Pilkhani	
	to Mugal	to Chamrola to		to	to		
	Sarai)	Khurja)	May, 2011	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,	May, 2009		Jan,	Feb-	Dec-Feb,	
	2011			2012	Mar,	2010	
					2015		
Passenger Train-	63.7-80.1	63.7-79.8	54.6-76.5	63.2-	75.9-79.1	52.0-68.8	
12.5 m from track				71.3			
Passenger Train-25	51.2-66.7	51.0-65.5	46.2-68.1	56.3-	60.5-62.1	51.3-62.9	

Table 3.6: Vibration Levels along the Existing IR Track Along the Project Corridor

Parameters/Project	EDFC-2	EDFC-1 (Bhaupur to Khurja)			EDFC-3 (Sanhewal	
Sections	to Mugal					nurja)
	Sarai)		_			
	(Bhaupur	(Bhaupur	Kaurara to	Khurja	Khurja	Pilkhani
	to Mugal	to	Chamrola	to	to	to
	Sarai)	Khurja)	May, 2011	Dadri	Pilkhani	Sanhewal
	Mar-Apr,	May, 2009		Jan,	Feb-	Dec-Feb,
	2011			2012	Mar,	2010
					2015	
m from track				61.2		
Passenger Train-50	36.2-61.3	40.3-59.6	38.5-56.8	47.1-		
m from track				51.3		
Open Wagon-12.5	65.2-77.2	64.9-78.5	62.3-75.3	58.1-		54.8-74.7
m from track				70.0		
Open Wagon-25 m	47.1-65.3	47.3-65.6	55.3-66.8	49.6-		46.7-66.6
from track				58.6		
Open Wagon-50 m	41.2-63.2	41.2-62.4	47.8-58.4	41.2-		
from track				52.0		

Source: EIA reports of EDFC1,2,3

3.3.4 Ground Water Scenario & Quality

Ground water aquifers data on depth and quality for each section/sub-section is given below in Table 3.7.

Table 3.7: Ground Water Data on Depth and Level

Parameters/Projec	EDFC-2	EDFC-1 (Bhaupur to Khurja)			EDFC-3 (Sanhewal to	
t Sections	(Bhaupur				Khurja)	
	to Mugal					
	Sarai)					
	(Bhaupur	(Bhaupur	Kaurara	Khurja to	Khurja to	Pilkhani
	to Mugal	to	to	Dadri	Pilkhani	to
	Sarai)	Khurja)	Chamrola	Jan, 2012	Feb-Mar,	Sanhewal
	Mar-Apr,	May, 2009	May, 2011		2015	Dec-Feb,
	2011		-			2010
Depth of water	2.57 -	2.57 -	5-50	5-50	10-30	10-30
level-Pre monsoon	21.00	21.00				
(mbgl)						
Depth of water	2.13 -	2.13 -	3-20	3-20	13-40	13-40
level-Post	16.73	16.73				
monsoon (mbgl)						
Yield capacity	Good-	Good-	Good-	Good-	Good-	Good-
	moderate	moderate	moderate	moderate	moderate	moderate
Yield shallow	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000
tubewell (lpm)						
Yield depth	2000-3000	2000-3000	2000-3000	2000-3000	2000-3000	2000-3000

Parameters/Projec	EDFC-2	EDFC-1 (Bhaupur to Khurja)			EDFC-3 (Sanhewal to	
t Sections	(Bhaupur	· · · · · ·			Khurja)	
	to Mugal					
	Sarai)					
	(Bhaupur	(Bhaupur	Kaurara	Khurja to	Khurja to	Pilkhani
	to Mugal	to	to	Dadri	Pilkhani	to
	Sarai)	Khurja)	Chamrola	Jan, 2012	Feb-Mar,	Sanhewal
	Mar-Apr,	May, 2009	May, 2011		2015	Dec-Feb,
	2011					2010
tubewell (lpm)						
Use	Domestic	Domestic	Domestic	Domestic	Domestic	Domestic
	&	&	&	&	&	&
	Agricultur	Agricultur	Agricultur	Agricultur	Agricultur	Agricultur
	e	e	e	e	e	e
pH	6.8-7.9	6.8-8.1	7.62-8.16	8.1-8.3	7.25-7.89	7.4-8.3
BOD (mg/l)	<2	0	0	0	0	0
Chloride (mg/l)	6-64	28.06-	22.63-	35.63-	8-96	7.1-120
		547.21	56.57	46.17		
Fluoride (mg/l)	0.6-1.6	0.2-0.6	< 0.2	< 0.2	0.48-0.94	0.2-0.6
Sulphate (mg/l)	21.0-69.04	74.51-	19.36-	45.36-	7-116	14-78
		614.72	533.12	98.22		
Iron (mg/l)	0.09-0.42	0.02-0.42	< 0.2	< 0.2	0.02-0.36	0.08-0.67
Total Hardness	84-346	184.06-	100-356	140-190	140-490	231-278
(mg/l)		454.27				

Source: EIA reports of EDFC1,2,3

3.3.5 Surface Water Status & Quality

The project alignment is a part of the Ganges basin, which contains the largest river system on the subcontinent comprising the Rivers of Ganga, Yamuna and number of other rivers. The proposed alignment of EDFC from Bhaupur to Mugalsarai cross perennial rivers of Yamuna and Tonse part of Ganga Basin . Important rivers and streams in the project area are part of Yamuna drainage basin and comprises of River Tonse, Arind and its tributaries.

The proposed alignment of EDFC from Kaurara to Chamrola does not cross any of the perennial rivers of Ganga Basin or any other river systems. Important rivers and streams in the project area are part of Yamuna drainage basin and comprises of River Kuwari, Sengar and its tributary Sirsa, Arind and its tributaries Ahenya, Puraha and Pandu. These rivers seasonal in nature and does not serve any irrigation or drinking water requirements of the reason.

The alignment of EDFC from Khurja to Dadari crosses Seasonal River – Karon at km 1375.39 of Ganga Basin. This is tributary to Yamuna River. The proposed alignment of EDFC from Khurja to Pilkhani cross river Hindon and Kali which are tributary to River Yamuna

The proposed alignment of EDFC from Pilkhani to Sahnewal crosses many surface water bodies of the Ganga-Yamuna basin. Some of the important rivers and canals crossing the alignment are: Yamuna (at Kalahari in Yamunanagar), Tangri (Dukheri), Markanda (at Ambala), Chaudah Dhara

and Ghaghhar. However, except Yamuna all other rivers are found to be non-perennial. Surface water quality data for each section/sub-section is given in **Table 3.8**.

Parameters/Project	EDFC-2	EDFC-1 (Bhaupur to Khurja)			EDFC-3 (Sanhewal		
Sections	(Bhaupur	to			to K	Khurja)	
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara to	Khurja	Khurja	Pilkhani	
	to Mugal	to Khurja)	Chamrola	to	to	to	
	Sarai)	May, 2009	May, 2011	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,			Jan,	Feb-	Dec-Feb,	
	2011			2012	Mar,	2010	
					2015		
pH	7.1-7.5	7.3-7.5	8.26	8.5	7.04-8.59	7.4-8.2	
BOD (mg/l)	10-42	16.84-	Not	11.9	2.2-14.8	0-18	
		32.67	monitored-				
			water				
			polluted				
Chloride (mg/l)	12-31	29.42-	160.30	164.70	6-112	10-12	
		43.08					
Fluoride (mg/l)	0.11-0.32	0.1-0.6	<0.2	< 0.2	0.46-0.96	0-0.5	
Sulphate (mg/l)	12.31-	47.82-	670.32	534.32	18-24	8-14	
	41.12	74.80					
Total Hardness	61-181	145.02-	260	270	50-340	128-260	
(mg/l)		190.0					

Table	3.8:	Surface	Water	Data of	n Denth	and Level
I abic	5.0.	ourrace	matci	Data Of	n Depm	and Level

Source: EIA reports of EDFC1,2,3

3.3.6 Soil Quality

Since the project is situated in the younger alluvium of Ganga Basin, the soil is prone to erosion. The entire alluvial plain along the alignment can be divided into three sub-regions. These include, the eastern tract know as scarcity areas with highest population density and lower per capita land, the central tract and western tract comprising well developed irrigation system. However, being alluvial the land is very fertile and cultivation of rice, wheat, millets, gram, barley and sugar cane, etc are the chief crops of the region.

Soil quality data for each section/sub-section has been carried out during EIA study of each section/sub-section and is given at Table 3.9.
Parameters/Project	EDFC-2	EDFC-1	(Bhaupur to	Khurja)	EDFC-3 (Sanhewal		
Sections	(Bhaupur				to Khurja)		
	to Mugal						
	Sarai)		-				
	(Bhaupur	(Bhaupur	Kaurara	Khurja	Khurja	Pilkhani	
	to Mugal	to	to	to Dadri	to	to	
	Sarai)	Khurja)	Chamrola	Jan,	Pilkhani	Sanhewal	
	Mar-Apr,	May,	May, 2011	2012	Feb-	Dec-Feb,	
	2011	2009			Mar,	2010	
					2015	.	
рН	6.8-7.9	6.1-8.1	/.44-/.8	/.36-/.44	7.12-9.97	5.1-8.2	
Nitrogen	0.12-0.98	0.108-	0.02-0.06	0.02-0.06	138-206	0.42-0.71	
	mg/kg	0.726	mg/kg	mg/kg	kg/ha		
		mg/kg					
Phosphate/Phosphorus	0.09-0.36	0.001-	12.8-	11.6-	40.4-44.6	0.28-0.45	
	mg/kg	0.119	16.8%	15.8%	kg/ha	mg/kg	
		mg/kg					
Potassium	15.1-91.0	12.02-	0.511-	0.48-0.62	164-194	14-56	
	kg/ha	89.53	0.792	meq/100	kg/ha	kg/ha	
		kg/ha	meq/100				
Sodium	42.78-	36.9-				13-150.1	
	150.22	160.52				kg/ha	
	kg/ha	kg/ha					
Texture	Silty clay	Silty clay	Silty sand	Silty	Clay	Clay loam	
				sand	loam		

Table 3.9: Soil Quality Data

Source: EIA reports of EDFC1,2,3

3.3.7 Ecology

No ecological sensitive area is found along the project alignment and the study area. The vegetation in the study area is deciduous in nature. Mainly three type of forests were found in the study area, i.e. tropical moist deciduous forest, tropical dry deciduous forest and tropical thorny forest. Tree species found in area are Jangali tulsi, Apmarg, Neem, Kikar, Babul, Siras, Khair, Bel, Palash, Kachnar, Amaltas, Gulmohar, Shisham, Safeda, Poplar, Karanj, Philkhan, Shahtoot, Aam, Dhak, Jamun, Datura etc. Shrubs such as Kuri, Gandela, Ber, Makoi, Binda, Timur, Bansa etc. are found along the project alignment.

Details of nos. of tree to be fell in each section/sub-section is given in **Table 3.10** below. Trees to be cut are majorly Babool, Neem, Khajoor, Shisham, Mango, Jamun, pakar, Lakar, Pipal, Labhera, Kanji, Beri, Papri, Gular, Bakain, Safeda, Chilbil, Lasohar, Bamboo, Mlo Shri, Mahua, Chameli, Lemon, Ashok, Bel, Guawa, Wakayan, *Eucalyptus*, Bakayan & Siras.

Macrphytes like *Eichhornia, hydrilla, Typha angustata* etcs are found in the rivers of study area. Fish species like catla *catla, Labeo rohito, Cirrihinus sp., Clarius batrachus, wallago attu, Hira ilisha* etc. are found in the rivers of the study area.

Some of the fish species found in the rivers of the area are: Catla catla, Labeo sp., Cirribinus sp., Clarius batrachus, Wallago attu, Hilra ilisha etc..

Mammals identified in the area are cow, buffalo, horse, Indian fox, ass, camel, monkey, pig, sheep, goat, dog, Nilgai, Buffalo, cat, hares etc. Birds found in the area are kingfisher, peafowl, cuckoo, pigeon, crow, koel, crane, spotted dove, baya weaver, red whiskered bulbul etc. White rumped vulture found in the Pilkhani to Sanhewal area and it is schedule 1 species and sarus crane is vulnerable species in the area. Reptiles found in the area are garden lizard, monitor lizard and karait.

Nos. of trees to	EDFC-2	EDFC-1	(Bhaupur to	Khurja)	EDFC-3 (Sanhewal		
fell/Project Sections	(Bhaupur				to Khurja)		
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara	Khurja	Khurja	Pilkhani	
	to Mugal	to	to	to	to	to	
	Sarai)	Khurja)	Chamrola	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,	May,	May, 2011	Jan,	Feb-	Dec-Feb,	
	2011	2009		2012	Mar,	2010	
					2015		
Nos. of Trees to fell	17,000	1966	4352	2193	27556	28617	
Eco-Sensitive Area	No	No	No	No	No	No	
Any other sensitive			49 km of				
zone			total falls				
			in TTZ				
			Area &				
			one				
			ASI site-				
			Budhiya ka				
			Taal				

3.3.8 Socio-Economic

The project area passes through the flat terrain and fertile land area. Brief summary of socio-economic and physical aspects of project area is summarized in Table 3.22 below.

Parameters/Proje	EDFC-2 (Bhaupur	EDFC-1 (B	EDFC-3 (Sanhewal to			
ct Sections	to Mugal Sarai)	·	- ,		K	hurja)
	(Bhaupur to	(Bhaupur to Khurja)	Kaurara to	Khurja to	Khurja to	Pilkhani to
	Mugal Sarai)	May, 2009	Chamrola	Dadri	Pilkhani	Sanhewal
	Mar-Apr, 2011		May, 2011	Jan, 2012	Feb-Mar,	Dec-Feb,
					2015	2010
Land Use	Majorly agriculture	Majorly agriculture	Majorly	Agriculture	Agricultur	Agriculture
	followed by built-up	followed by built-up	agriculture		е	
Nos. of Districts	7 districts & 372	8 districts & 229 villages	2 districts & 73	2 districts &	6 Districts	6 Districts &
& Villages	villages	Districts: Kanpur dehat,	villages	32 villages	& 156	114 villages
Through which	Districts: Chandauli,	Auraiya, Etawah,	Districts: Agra	Districts:	villages	Districts:
alignment Passes	Mirzapur,	Ferozabad, Hathras	and Ferozabad	Bulandshahr	Districts:	Saharanpur
	Allahabad,	(Mahamaya Nagar),		& Gautamn	Bulandsha	(Uttar
	Kaushambi,	Agra, Aligarh and		Budh Nagar	hr,	Pradesh),
	Fatehpur,	Bulandsehar			Ghaziabad	Yamunanagar,
	Kanpur (Nagar) and				, Hapur,	Ambala
	Ramabainagar				Meerut,	(Haryana),
					Muzaffarn	Fatehgarh
					agar and	Sahib, Patiala
					Saharanpu	and Ludhiana
					r	(Punjab)
Topography &	Flat terrain, younger	Flat terrain, younger	Flat terrain,	Flat terrain,	Flat	Flat terrain,
geology	alluvium of Ganga	alluvium of Ganga Basin	younger	younger	terrain,	younger
	Basin		alluvium of	alluvium of	younger	alluvium of
			Ganga Basin	Ganga Basin	alluvium	Ganga Basin
					of Ganga	
					Basin	
Archaeology	None within 300 m	None within 300 m	Yes, Budhiya	None within	None	None within
	from project	from project alignment	ka Taal	300 m from	within 300	300 m from
	alignment	Salempurhafi-old		project	m from	project
		structure but not		alignment	project	alignment

Table 3.11: Socio-Economic and Phys	sical Features of Project Area.
-------------------------------------	---------------------------------

Parameters/Proje	EDFC-2 (Bhaupur	EDFC-1 (B	EDFC-1 (Bhaupur to Khurja)						
ct Sections	to Mugal Sarai)			1	K	hurja)			
	(Bhaupur to	(Bhaupur to Khurja)	Kaurara to	Khurja to	Khurja to	Pilkhani to			
	Mugal Sarai)	May, 2009	Chamrola	Dadri	Pilkhani	Sanhewal			
	Mar-Apr, 2011		May, 2011	Jan, 2012	Feb-Mar,	Dec-Feb,			
					2015	2010			
		archaeological structure			alignment				
Other Sensitivity	None	None	49 km of the	None	None	None			
			alignment						
			falling within						
			ΤTΖ						
Seismology as per	III & IV	III & IV	IV	IV	III & IV	IV			
BIS classification									
Occupation	Agriculture	Agriculture	Agriculture	Agriculture	Agricultur	Agriculture			
					e				
Transport	Well connected with	Well connected with	Well connected	Well	Well	Well			
Infrastructure	roads, 72 level	roads, 74 level crossings.	with roads, 19	connected	connected	connected			
	crossings.	Various SH & NH	level crossings.	with roads,	with roads,	with roads, 77			
	Various SH & NH	parallel and crosses the	NH & SH	18 level	61 level	level			
	parallel and crosses	alignment like NH-91 A,	running	crossings.	crossings.	crossings.			
	the alignment like	2, 93 SH-21, 40, 83, 62	parallel/crossin	NH & SH	NH & SH	NH & SH			
	NH-96, 27, 330A,	etc.	g the alignment	running	running	running			
	24 B, 29 SH-94, 7		are NH-2, AH-	parallel/cross	parallel/cr	parallel/crossi			
	etc		1, SH-81, 31 &	ing the	ossing the	ng the			
			39	alignment are	alignment	alignment are			
				Surajpur	are NH-	NH-1, 95, 64,			
				Kasana road,	91, 58,	65, 22, 73 A,			
				NH-91 etc.	119, SH-	SH-8, 31 etc.			
					63, 18 etc.				
Medical Facility	Well developed at	Well developed at	Well developed	Well	Well	Well			
	district level	district level	at district level	developed at	developed	developed at			
				district level	at district	district level			
					level				

The project involves acquisition of both private and public land for laying DFCCIL tracks and constructing related infrastructure. Same is going to have huge social impact. The area to be acquired may be agriculture field, household, play ground, community land, community well, playground, religious structure, trees, educational institute etc. Society is dependent on all of these resources which will be partially or fully impacted due to project. Details of the land acquisition, PAFs & PAPs is given in **Table 3.12 & Table 3.13** below.

Nos. of trees to	EDFC-2	EDFC-1	(Bhaupur to	EDFC-3 (Sanhewal			
fell/Project Sections	(Bhaupur				to Khurja)		
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara	Khurja	Khurja	Pilkhani	
	to Mugal	to	to	to	to	to	
	Sarai)	Khurja)	Chamrola	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,	May,	May, 2011	Jan,	Feb-	Dec-Feb,	
	2011	2009		2012	Mar,	2010	
					2015		
Total Land (ha)	1400	1182	258.87	211.67	829.08	355.34	
Private land (ha)	1250.9	999	224.03	145.59	678.18	330.91	
Public Land (ha)	149.1	183	34.84	66.08	150.9	24.43	
Protected/Reserve	0.998	7.36	4.1920	3.9	Unknown	175	
Forest Land							
acquisition							

Table 3.12: Land to be acquired For Various Sub-Sections/Sections

Table 3.13: Nos. of PAFs/PAPs

Nos. of trees to	EDFC-2	EDFC-1	(Bhaupur to	Khurja)	EDFC-3 (Sanhewal		
fell/Project Sections	(Bhaupur				to Khurja)		
	to Mugal						
	Sarai)						
	(Bhaupur	(Bhaupur	Kaurara	Khurja	Khurja	Pilkhani	
	to Mugal	to	to	to	to	to	
	Sarai)	Khurja)	Chamrola	Dadri	Pilkhani	Sanhewal	
	Mar-Apr,	May,	May, 2011	Jan,	Feb-	Dec-Feb,	
	2011	2009		2012	Mar,	2010	
					2015		
PAFs	13034	8601	1842	1974	5926	324	
Agriculture PAFs	95.64%	96.54%	94.73%	50.0%	79.86%	77%	
Residential PAFs	4.36%	3.46%	5.27%	50.0%	20.14%	23%	
PAPs	63968	46646	10005	5841	31526	3051	
Total Structures	623	697	205	121	241	324	
including CPRs							
CPRs Structures	55	485	108	11	110	8	
		identified					
		Reduced					
		to 22					

3.4 Conclusion

The baseline compilation indicates the current status of VECs within the project study area, considered during EIA & SA of individual phase. These VECs have been identified as critical in some stretches. The Air Quality, Forester (reserved forests, Tree cutting) and Socio-Economic aspects considered important compared to other VECs considered current levels vs likely impact from project activities. The inventory of these VECs partly provides basis for identifying VECs at cumulative assessment stage as well as for delineation of boundary for cumulative impact assessment (CIA).

CHAPTER 4: IMPACT ASSESSMENT AS PER EDFC 1,2,3 EIAs

4.0 Introduction

Environmental impact assessment involves prediction of potential impacts by the development of the project on the surrounding area. Based on the baseline environmental status described in earlier section and the proposed project activities, potential impacts have been assessed and predicted. The impacts due to the development of the Eastern Dedicated Freight Corridor (EDFC 1, EDFC 2 &EDFC 3) have been assessed for the planning phase, construction phase and implementation phase.

4.1 Analysis of Environmental Attributes as per Baseline Scenario and Identification of Focus Impact Assessment of VECs Areas

Baseline study for each section and sub-section has been carried out during environment impact assessment study to collect the information of environmental conditions in pre-project development stage and presented in chapter 3. It is found that ambient air quality is within the permissible limit as per the prescribed CPCB standards except levels of RPM. Level of RPM exceeds the prescribed limit of 100 μ g/cum. Thus it is required to maintain RPM levels at site especially during construction phase. Ambient air quality is thus a valued environmental component specially from incremental impact from particulate matter prospective.

Noise levels have been studied along the entire alignment. Noise levels have been compared with noise standards for industrial zone as per Ambient Air Quality Standards w.r.t noise, 2000. It is found that noise levels are high during day time but within the limits during night time. Noise levels are further high when trains are passing through the tracks. Noise level varies with speed and type of train. Nature of high level noise is though intermittent but significant. Also noise will further increase during construction phase due to construction activities and operation phase due to increased movement of trains. **Thus noise is another valued environment component** on which impacts are to be studied in detail. Vibrations are recorded along the proposed segments parallel to IR track. Vibrations results during passage of the trains due to contact between train wheel and track. Nature of vibration is again intermittent like noise but significant.

Ground water quality in the area has been studied and is found to be good and potable as per IS:10500, except fluoride concentration in Mugalsarai to Bhaupur section. Care is required to be taken that contamination of ground water should not occur either during construction and operation phase as the inhabitant of villages are highly dependent on ground water for domestic and agricultural use.

Project area is a part of Ganga basin, which is largest river system on subcontinent. Proposed alignment crosses several perennial and seasonal water bodies. Water quality of these water bodies

has been assessed and compared with surface water body classification criteria of CPCB. All the water bodies are falling under category D & E^3 as the BOD levels are high.

Soil samples along the project alignment have either been taken from agricultural fields or orchard. It is found that soil are fertile and fit for agriculture. Thus the impact on soil quality will affect the soil productivity, agricultural yield, income of the farmer, production potential of the area etc. Borrow earth is proposed to be sourced from nearby agriculture fields. This will therefore be a important VECs to be studied.

A significant nos. of trees will be fell down along the entire stretch. Though compensatory tree plantation is planned, however with other developments this environmental resource can be largely impacted and requires to be studied in detail as part of CIA. Thus this component is also a valued component.

Quality of life of the people will undoubtedly be impacted due to the project as the project development involves acquisition of large area of land. Land to be acquired is of agricultural, residential and commercial use. Many of the people are losing their entire land and will become landless. Many of them are completely dependent on agriculture only and are practicing agriculture since generation. These people will lose their livelihood and become unemployed. Socio-economic aspects thus be another VECs to be assessed in detail from cumulative impact prospective.

CPRs like wells, tube wells, handpumps, temple, mosque etc are required to be relocated. These Quality of life, income of the family, employment and displacement of families are identified valued social components that are to be studied in detail so as adequate mitigation measures to be taken to reduce the negative impact and enhancement plan can be prepared for bringing improvement. Impacts on these identified valued environment & social components are assessed for each of the activity to be undertaken during construction and operation phase and due to other developments in the area. Impact identified due to EDFC project in the EIAs and level of impacts on these VECs are given in matrix form in following section.

4.2 Impact Assessment Methodology

Various direct and indirect impacts on VECs are identified in three EIA reports due to the project activities. Qualitative and quantitative methods are used for impacts assessment in all the three reports. The identified impacts significance is assessed following five scale criteria as presented in Table 4.1.

³CPCB has classified rivers on water quality basis and suitability of use as per classification. D category is considered fit for propagation of wild life, fisheries, irrigation, industrial cooling and controlled waste disposal. Whereas Category E is suitable for irrigation, industrial cooling and controlled waste disposal.

[&]quot;Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

Parameter		Scale		Remarks		
Significance	No impact		Е			
	Negligible impac	t	D	Positive:+	Negative:-	
	Insignificant imp	act	С	Positive:+	Negative:-	
	Relatively signific	cant impact	В	Positive:+	Negative:-	
	Significant impac	t	А	Positive:+	Negative:-	
	Significance Scale Scale A: If natural reserve, p Scale B: If natural environm Scale C: If Scale D: If Scale E: N	e Criteria E National Parks, protected species E large areas of f ent for tourism a E impacts are insig E impacts are neg lo impacts or not	Wildlife of any ki forest, gr are indire gnificant ligible t applical	e Sanctuaries or a ind are directly af assland, cultivab actly affected.	any designated fected. le land or any tt	

Table 4.1: Parameter and Scale of Impact Matrix

Following the above scale and impacts identified under EDFC 1,2,3 EIAs, impact significance matrix is compiled for construction and operation phase. Same are presented in table 4.2 and 4.3 respectively.

		ect	Pre- construction				Construction Stage										
No.	Items	Overall Evaluation on the Proje	Surveying of Planned Areas and Sites	selection of the Project Location and Sites	Land Acquisition and Resettlement	Extraction of Building Materials (stones, aggregates, sand, soil, etc.) at Quarries and Borrow Areas	Earth Moving: Cutting and Filling of the Construction Works	Preparation of Construction Plants, and Warehouses, Work Camps, etc.	Machines and Vehicles for Construction Works	Railway Lines and Installation of Related Facilities (signals, II of	(D) Construction Works for a fat ICDs and Freight Logistic print Double	(C) Construction Works for all under the stations (Terminal, Junction and Crossing)	(D) Construction Works for 14 synthesis and RUBs and RUBs	(E) Construction Works for an in Bridges	(F) Construction Works for R	Localized Employment Opportunities of the Construction Works	Localized Business Opportunities Related to the Construction Works
1	Topography and Geology	C/D	D	D	D	С	С	С	С	С	С	D	D	С	Е	Е	С
2	Soil	C/D /E	D	D	Е	В	В	С	С	С	С	В	D	D	Е	Е	Е
3	Groundwater	D/E	D	D	С	D	D	D	D	D	D	D	D	D	Е	Е	Е
4	Hydrological Condition	D/E	Е	Е	Е	D	Е	D	D	D	D	D	D	С	Е	С	С
5	Fauna, Flora and Biodiversity	D	D	С	С	С	С	D	С	С	D	D	D	D	Е	D	D
6	Protected Areas / sanctuaries	D	D	D	D	D	D	D	D	D	D	D	D	D	Е	D	D
7	Landscape	D	D	D	D	D	D	D	D	D	D	D	D	D	Е	D	D
8	Local Meteorological Conditions	D	D	D	D	D	D	D	D	D	D	D	D	D	Е	D	D
9	Global Warming	D	D	D	D	D	D	D	D	D	D	D	D	D	Е	D	D

Table 4.2 Impact Assessment-Construction Phase

No.	Project Activities / Items of the Environment Subject to Positive / Negative Changes	Logistic conditions of goods, raw materials, agro & industrial products	Traffic condition of roads	Operation & maintenance of railway lines & related structures	Employment opportunities (whole country / local level)	Freight oriented business opportunities	Passenger oriented business opportunities	Promoting development of surrounding areas	Increase in settlers & vision to the project area
1	Topography and Geology	D	D	D	С	С	С	С	С
2	Soil	D	D	Е	Е	Е	С	С	С
3	Groundwater	D	D	С	D	D	D	D	D
4	Hydrological Condition	С	С	С	D	С	D	D	С
5	Coastal and Marine Environment	Е	Е	Е	Е	Е	Е	Е	Е
6	Fauna, Flora and Biodiversity	D	С	С	С	С	D	С	С
7	Protected Areas / sanctuaries	D	D	D	D	D	D	D	D
8	Landscape	D	D	D	D	D	D	D	D
9	Local Meteorological Conditions	D	D	D	D	D	D	D	D
10	Global Warming	D	D	D	D	D	D	D	D

Table 4.3 Impact Assessment-Operation Phase

As per the impact matrix for construction phase it is analyzed that the topography, soil, ground water, hydrology and ecology will be impacted due to project development during construction phase. Relatively significant impact is anticipated on the soil quality of the area during construction phase as soil will be excavated for construction purpose and top soil layer will be disturbed. Topography and ecology of the area will also be impacted due to construction of the raised embankment but the impact assessed is insignificant.

As per the impact matrix for operation phase it is analyzed that no significant impact on environment is anticipated during operation phase. Noise and vibration will be the most impacting resultant of the project. Project will ultimately result in reduction of emission of GHGs from the vehicles plying on the road for transportation of material due to shortage of the freight transportation facility. Impacts due to the project on each of environment and social attribute is summarized in the **Table 4.4** below.

S. No.	Impacted Parameter	Impact During Pre- Construction & Construction Phase	Type of Impact	Impact During Operation Phase	Type of Impact
1.	Topography & Geology	 Change in topography due to construction of embankment and cutting & filling operations for construction of ROB/RUB, construction of stations and other related facilities 	Permanent & negative	Insignificant	
2.	Soil	 Increase in soil erosion due to tree felling and vegetation removal Loss of fertile agricultural soil Loss of soil (from borrow areas) for construction of embankment Soil erosion from borrow area due to air and water movement Soil pollution due to disposal of construction waste, dismantling of 	Permanent & negative Permanent & negative Permanent & negative Short term, localized and negative	Insignificant	

Table 4.4 Anticipated Impacts during Construction and Operation Phase

S. No.	Impacted Parameter	Impact During Pre- Construction & Construction Phase	Type of Impact	Impact During Operation Phase	Type of Impact
		structures, spillage of oil, hazardous waste like used/spent oil and waste from construction labour camps	Short term, localized and negative		
3.	Air Quality	 Generation of dust due to construction, dismantling, loading/unloading of material, transportation of material Emissions due to plying of vehicles, running DG sets and construction machinery Dust generation from raw material and debris storage area Excavation of soil from borrow areas Emission from batching plant and pugmill (WMM plants) Silica dust generation from laying of ballast 	Short term, localized and negative Short term, localized and negative	 Emissions from material like coal if transported in open wagons Emissions from diesel based trains Reduction in emissions due to transportation of material by road Reduction in emissions from diesel engines as track is electrified 	Long term, negative & moderate Long term, negative & moderate Long Term, Positive and Significant Long Term, Positive and Significant

S. No.	Impacted Parameter	Impact During Pre-	Type of Impact	Impact During Operation Phase	Type of Impact
		Construction Phase		I Hube	
4.	Noise & Vibrations	 Generation of noise & vibrations due to construction, dismantling and demolition of structures, movement of vehicles, running machinery and DG sets Generation of noise & 	Short term, localized and negative	 Noise & vibrations generation due to movement of trains on trains and whistling of trains Noise generation while loading & unloading of materials 	Intermittent, Moderate
		 vibrations due to excavation for under bridges & earth from borrow area Noise generation while laying ballast on tracks Generation of noise from batching plant 	Short term, localized and negative Short term, localized Short term, localized and negative		Intermittent, insignificant
5.	Water Resources	 Contamination of water quality from run-off from construction site- spillage of oil/fuel, debris, bitumen etc. Contamination of water quality from material and waste storage yards Contamination of water quality from labour camps Loss of ponds Increase in run-off due to 	Short term & negative Short term & negative Short term & negative	 Washing of the cars/wagons Washing of station area and tracks Disposal of sewage generated at freight stations 	Long term and insignificant Long term and insignificant Long term and insignificant

S. No.	Impacted Parameter	mpacted Parameter Impact During Pre-		Impact During Operation	Type of Impact
		Construction &		Phase	
		Construction Phase			
		loss of agriculture land and			
		forest land	Permanent &		
		• Water to be taken from	negative		
		ground & surface water	Permanent &		
		sources for construction	negative		
		purpose may divert the			
		water source of the	Permanent & negative		
		inhabiting population			
		• Discharge of water from			
		batching plant and pugmills			
		and other construction			
		activities	Dormonont &		
		• Discharge of curing run-off	r ennanent &		
		from the concrete structures	negative		
		like culver, bridges etc.			
			Permanent &		
			negative		
			0		
6.	Drainage & Hydrology	• Alteration in drainage	Permanent &	Insignificant	
		pattern due to construction	negative		
		of embankment			
		• Alteration in drainage due	H		
		to construction of	Temporary &		

S. No.	Impacted Parameter	Impact During Pre-	Type of Impact	Impact During Operation	Type of Impact
		Construction &		Phase	
		Construction Phase			
		temporary structures like storage yards and stock piling of materialsConstruction of bridges on the water body thus change in flow	negative Permanent & negative		
7.	Ecology	 Loss of protected and reserved forest land Felling of trees Loss of habitat of birds, insects, butterflies, reptiles and other animals living in the impacted forest area and trees Accidents of animals 	Permanent & negative Permanent & negative Permanent & negative	Compensatory Plantation	Permanent &positive
			Permanent & negative		
8.	Socio-economy & Aesthetics	 Loss of livelihood of people due to loss of agriculture land Displacement of family Loss & relocation of common property resources like religious structure 	Permanent & negative Permanent & negative Permanent &	• Enhancing the CPRs like strengthening the embankment of nearby pond, plantation near schools, development of bathing ghats nearby ponds etc as par of CSR	Permanent & positive

S. No.	Impacted Parameter	Impact During Pre-	Type of Impact	Impact During Operation	Type of Impact
		Construction &		Phase	
		Construction Phase			
		 Construction & Construction & Construction Phase wells, tube wells, hand pumps, kabristan, play grounds etc. Acquisition of the private and government land, i.e. schools, kabristan, play grounds, college etc. Disturbance to aesthetics value and scenic beauty due to set up of construction camps, labour camps, batching plants, storage yards etc. Impact on archeological structure (BudiyakaTaal) Excavation of soil from agriculture fields Establishment of plant site, 	negative Permanent & negative Permanent & negative	 activity Increase in freight movement & thus revenue generation Development of DFC which will reduce the burden from IR track and thus no. of passenger trains will increase significantly and thus improved connectivity Reduction in traffic congestion as the material can be more quickly and efficiently will be transported through DFC Reduction in air pollution Generation of direct & 	Permanent & positive Permanent & positive
		• Establishment of plant site, labour camps, batching plant, pugmilletc may impact the life of people if set up in close vicinity to residential areas, schools, colleges, community place	Permanent & negative Temporary ad negative Temporary ad negative	 Generation of direct & indirect employment Development of industries like TPP, warehouses, logistics etc. near to the DFC Enhanced connect with Inland Waterways Assistance in adopting alternate livelihood 	Permanent & positive

S. No.	Impacted Parameter	Impact During Pre- Construction & Construction Phase	Type of Impact	Impact During Operation Phase	Type of Impact
					Permanent & positive Permanent & positive
					Permanent & positive
					Permanent & positive
					Positive

S. No.	Impacted Parameter	Impact During Pre- Construction & Construction Phase	Type of Impact	Impact During Operation Phase	Type of Impact
9.	Energy Conservation	 Usage of low energy intensive construction material like fly ash mixed cement & bricks Re-usage of construction debris Preventing idling of vehicles No wastage of water and electricity at site Obtaining temporary power connections during construction and running DG sets only during power failure Usage of CFL/LED for lightning 	Positive Positive Positive Positive Positive	 Provision of solar lightning in station area in ratio of 1:3 Installation of solar panels on roof-top area of station building to harness solar energy 	Positive Positive
			Positive		

4.3 Conclusion

Impact analysis based on EIA& SA studies indicate that VECs impacted during construction and operation stage include air, water (surface & ground), soil, land, ecology & socioeconomics consisting of loss of land and community resources. Loss of land and community resources requires relocation, rehabilitation and resettlement. All the above mentioned impacted VECs need to be assessed considering the other direct, indirect and induced activities and their zone of influence in the context of proposed development.

CHAPTER 5: DELINEATION OF CIA BOUNDARY AND VECs

5.0 Introduction

Cumulative Impact Assessment (CIA) requires fixation of spatial and temporal boundaries in order to assess the impacts of direct, indirect and induced activities due to proposed project. The following sections describes the CIA boundary, the basis of its delineation, VECs within the delineated boundaries, tentative hotspots and case study.

5.1 Delineation of the CIA Boundary

Important factors which need to be considered when delineating the proposed assessment of indirect and cumulative impacts and impact interactions is the setting of the geographical or 'spatial' boundary and the temporal or 'time frame' boundary. Indirect and cumulative impacts as well as impact interactions may well extend beyond the geographical site boundaries of the project. Consideration should also be given to historical or potential future impacts. Mapping the geographical and time boundaries can be a useful tool to show areas of potential overlap and therefore where indirect and cumulative impacts as well as impact interactions may occur.

The boundary delineation exercise identifies the potential impacts considered to be significant and which require further assessment. In this study all the natural as well as manmade features have been taken into account and plotted spatially to delineate the boundary of the CIA. The natural and manmade features mapped are as follows:

- ➤ Forests;
- National parks;
- Wild Life Sanctuaries;
- Tiger Reserves;
- Birds Areas;
- Archaeological sites;
- Water bodies;
- ➢ Wetlands;
- Roads;
- Railways;
- Urban Agglomerations;
- Industrial Areas;
- Critically Polluted Areas;

To conduct the detailed study of the project, three buffer boundaries have been considered; i.e. 100 mtrs, 300 mtrs and 10 kms. The basis for delineating these three buffer boundaries are based on the EIA reports of EDFC (EDFC – 1, EDFC – 2 and EDFC – 3), IFC codes and the expert's consultation/ judgment.

- 100 mtrs buffer This boundary has been taken according to the EIA study conducted for the entire stretch of EDFC. Under this buffer, strip maps have been provided which shows roads, nalas / ponds, trees, wells / tube wells / hand pumps, temples / schools / hospitals / structures, high tension lines, stations / chainage and forests if any.
- **300 mtrs buffer** According to IFC codes and applicable Indian regulations, for archeological and cultural sites a maximum distance of 300 mtrs is considered to study the impact of any upcoming developmental project. Therefore using this boundary all the cultural and archaeological sites have been located to study the influenced locations on the site.
- 10 kms buffer It is being considered that the extent of area of influence of the project may not go beyond 10 kms as per the expert's consultations. Therefore the farthest distance covered in the CIA boundary is 10 kms.

Hence the boundary has been demarcated considering all the above given features and buffer areas within the range of 10 kms.

5.2 Valuable Environmental and Social Components

As per literature review, VECs are environmental and social attributes that are considered to be important in assessing risks. While VECs may be directly or indirectly affected by a specific development, they often are also affected by the cumulative effects of several developments. VECs are the ultimate recipient of impacts because they tend to be at the ends of ecological pathways. VECs in general refers to sensitive or valued receptors of impact whose desired future condition determines the assessment end points to be used in the CIA process.

5.2.1 Identification of VECs & Hotspots

Overlay mapping and GIS have been used for identifying the spatial distribution of VECs and hotspots. Based on the above mapping method and as per IFC guidelines for Cumulative Impact Assessment and Management, **VECs have been classified** under:

• Physical features,

- ➢ Urban Agglomerations;
- Urban centers
- ➤ Land Uses
- ➤ Geology
- Ecology (Wildlife Sanctuaries/ National Parks / Tiger Reserves / Bird Areas / Wetlands)

• Ecosystem services,

- Critically Polluted (air, water, soil & ground water quality)
- ➢ GHG emissions
- Natural processes (e.g., water and nutrient cycles, microclimate),
 - ➢ Water Nutrient Cycles
 - ➢ Micro Climate
- Social conditions (e.g., health, economics), or
 - ➢ Water Bodies (Pools, wells, nalas, canals)
 - > Hospitals
 - Educational Institutes
 - ► Demography (R&R)
 - Transport System
- Cultural aspects
 - Religious / Archaeological sites

Using these sensitive receptors, the maps have been prepared for the entire stretch in strips of 50 to 75 kms for all the three parts i.e. EDFC 1, EDFC 2 & EDFC 3. Each stretch has been studied in strips to identify the **VECs and hotspots** as shown in **Figure 5.1, Figure 5.2 and Figure 5.3**.

Figure 5.1: VECS and Hotspots in EDFC 1

Figure 5.2: VECS and Hotspots in EDFC 2

Figure 5.3: VECS and Hotspots in EDFC 3

[&]quot;Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

5.3 Case Study

In order to demonstrate the cumulative impacts of the EDFC alignment on the nearby areas and the existing VECs within the 10 kms boundary, a stretch of the EDFC has been taken as a case study for Initial Draft Report . The stretch identified for the case study is from Mirzapur to Mughal Sarai consisting of a major hotspot near Mughalsarai. This stretch is also important due to common interface of DFCCIL with NW1 and national highways and state highways. This stretch contains various sensitive receptors including VECs as shown in **Figure 6.2**. Based on the EIA of EDFC-2 and the GIS maps various VECs and sensitive receptors along the stretch have been enlisted in **Table 5.1**. Below given map of the stretch shows all the important VECs spatially under the buffer of 100 mtrs, 300 mtrs and 10 kms. Stakeholder's consultation is also in progress. VECs status may modify based on the input from stakeholders consultation which will be presented in the final CIA report.

S. No.	VECs			0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Remarks
1		Urban A	gglomerations			Varanasi	
2	-	Urban C	enters	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	
3		Land Us	e	Agriculture / Residential / Forests	Agriculture / Residential / Forests	Agriculture / Residential / Forests/ Industrial Areas	
4	Physical Features	Physiog r Geology	aphy/	Plain Flat area with gentle slope in East and South East	Plain Flat area with gentle slope in East and South East	Plain Flat area with gentle slope in East and South East	
5		Ecology Sanctuar Parks / T / Bird A Wetlands	(Wildlife ies/ National Figer Reserves reas /	None	None	Kachhua Sanctuary	
6	Ecosystem Services	Critically water, so water qui CPCB's	Polluted (air, il & ground ality) based on CEPI Index	Varanasi - Mirzapur	Varanasi - Mirzapur	Varanasi - Mirzapur	Varanasi - Mirzapur identified as Critically Polluted area
7		GHG Emissions					
8	Natural Processes	Water / Nutrient Cycle	Soil Quality Ground Water Quality	Good Good to moderate	Good Good to moderate	Good Good to moderate	Good top soil. However, critically polluted stretches at Ganga are visible and documented

Table 5.1: Details of VECs and their Status within the CIA boundary

S. No.	. VECs			0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Remarks
			Surface Water Quality	Good	Good to moderate	Critically Polluted Stretches of Ganga	
		-	Air Quality	Good to moderate	Critical	Critical	
		Mi cr o Climate	Noise Pollution	Critical (except detours)	Critical	Critical	Varanasi - Mirzapur identified as Critically Polluted area
	Social Conditions	Commu nity Resourc es	Water Bodies (Pools / wells / nalas / canals)	50 in number (EIA Reports)	Nalas/ Canal network	Ganga River and Nalas/ canal network	
			Hospitals	5	Exist in rural and urban areas	Exist in rural and urban areas	
2			Educational	7	Exist in rural and urban areas	Exist in rural and urban areas	
			Demography (R&R)	507 Families Displaced	Densely Populated Area		Population pressure expected to increase due to Land acquisition and
			Transport System	Local roads and rail network	Local roads and rail network	Densely Populated Area Well-developed rail and road network	Urbanization
8	Cultural Aspects	Religious Archaeol (Temples	s / ogical Sites s, Mosques)	15		Exist	Area important due to religious/ archaeological perspective

5.4 Conclusion

Delineation of CIA boundaries has been carried out along with identification of VECs, their current status and hotspots in the EDFC study area. These VECs are the ultimate recipient of impacts because they tend to be at the ends of ecological pathways. Therefore, these VECs may be directly or indirectly affected by a specific development or by the cumulative effects of several developments. Therefore, it is essential to carry out the assessment of developmental works due to proposed project as well as other developmental works within the CIA boundary. This will give insight into type and extent of impacts.

CHAPTER 6: OTHER DEVELOPMENT PROPOSALS AND STAKEHOLDERS

6.0 Introduction

Development proposals and stakeholders have been described in the context of case study given in Chapter 5. Since the case study area falls near Mughal Sarai in Chanduali district on the stretch of EDFC 2, major developmental proposals have been identified and described as direct interventions consisting of station and associated infrastructure development under EDFC and other railways network, National Waterways 1; indirect and induced activities consisting of road and industrial area development and urbanization. Further, relevant stakeholders have also been identified and described below considering the development proposals. **Figure 6.1** shows the development proposals and VECs in the study area.

Figure 6.1: Development Proposals and VECs in the Study Area

[&]quot;Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

6.1 Railways - DFCCIL & Feeder Route Development

Figure 6.1 indicates that there are three EDFC stations coming within the zone of influence, which are located at New Ahraura Road, New Mughalsarai and New Ganjkhwaja. Further, three broad gauge major railway lines passes through Mughalsarai, which are (1) Mughalsarai to Patna, which also branches out to Gaya, (2) Mughalsarai to Chunar and (3) Varanasi to Mughalsarai. As per, business plan prepared by DFCCIL, Indian Railways (IR) will upgrade its own feeder routes connecting to DFCCIL. Therefore, three routes may be upgraded in future depending on the traffic and the business model.

6.2 National Waterways Development (IWD)

Figure 6.1 also indicates proximity of the DFCCIL corridor with NW 1 within 10 kilometers. This indicates that there is a possibility of modal shift of the freight from NW1 to Eastern DFCCIL catering to the areas served by it. If this happens there has to be a transit point for shifting the freight. This has been confirmed by Inland Waterways Authority of India (IWAI).

6.3 Road Development

Case study area is served by National Highway, State Highway and other roads as shown in Figure 6.2. This road infrastructure may be upgraded to cater to freight movement in future.

Figure 6.2: Development Proposals and Road Network in the Study Area

[&]quot;Cumulative Impact Assessment of Mughalsarai-Ludhiana Section of Eastern Dedicated Freight Corridor"

6.4 Industrial Development

Ram Nagar is the major industrial area, which is falling in the case study area.

6.5 Urbanization

In addition to the new stations along the DFCCIL, the area along the national and state highways in the study area will induce urbanization leading to pressure on account of population and associated infrastructure development and pollution potential.

6.6 Major Stakeholders

A list of major stakeholders at national and state level has been prepared considering the above mentioned development proposals as given in **Table 6.1**.

S. No.	Development Proposals	Stakeholders			
		National	State		
1	Railways	DFCCIL & Indian	State Pollution Control		
		Railways	Boards, Forest Department		
2	National Waterways	Inland Waterways	State Pollution Control		
	Development	Authority of India	Boards, Forest Department		
3	Road Development	National Highways	State Public Works		
		Authority of India /	Department, Department of		
		Central Public Works	Environment, State Pollution		
		Department / MoEF	Control Boards, Forest		
			Department		
4	Industrial Area	Ministry of Commerce &	State Industrial Development		
	Development	Industry	Corporation/ State Pollution		
			Control Boards, Forest		
			Department		
5	Urbanization	Ministry of Urban	Municipal Corporations /		
		Developments / Indian	Municipality / State Urban		
		Railways / DFCCIL	Development Authorities /		
			State Pollution Control		
			Boards, Forest Department		

Table 6.1: Identification and Classification of Stakeholders

6.7 Conclusions

The assessment of development proposals not only indicate the **incremental pressures** on the existing VECs but also assist in assessing **their extent and intensity with respect to planned EDFC development**. Further, the identification of stakeholders informs about the **control** (Direct & Indirect) over planned developmental activities. These stakeholders are being/ will be consulted to understand about the proposed development.
CHAPTER 7: STAKEHOLDERS CONSULTATIONS

7.0 Introduction

An effort has been made to consult the identified stakeholders especially in the context of the case study area in order to assess the major VECs and possible impacts from their perspective. These stakeholders included National Highway Authority of India (NHAI), Uttar Pradesh PWD Department, Inland Waterways Authority (IWAI). Summary of the consultations is described below.

7.1 Consultation with National Highway Authority of India (NHAI)

The consultant's team visited NHAI on 2nd June 2015 and met with General Manager Environment to discuss about the DFCCIL project, its integration with national highways and environmental and social issues related to linear projects. Summary of major discussion points is give below.

- Major issues related to linear projects include surface run off, barrier to movement of man and animal, ecology consisting of forests, wildlife sanctuaries, wetlands, borrow areas, and land use issues especially land procurement, R& R and archaeological sites. Examples for addressing such issues particularly borrow areas and aquatic ecology can be taken from the EIA/EMP of Allahabad Bypass project especially from the component of bridge over Ganga river.
- Pollution related issues are restricted to construction period from NHAI's perspective because they don't have control over traffic movement, which is a state's subject.
- DFCCIL may reduce traffic load on National Highways especially for a short distance since tonnage by road transport is small in comparison to railway transport. This will also have positive impact not only from resource consumption perspective (fuel savings) but also GHG emissions.

DFCCIL project will also lead to upgradation of NH and other feeder roads and may induce urbanization and related development at common nodes.

7.2 Consultation with UP State PWD Department

The interaction input with Project Director, UP State PWD, World Bank Project about the DFCCIL project, its integration with state highways and environmental and social issues related to linear projects. Summary of major discussion points is give below.

State PWD always integrates planning perspective of projects like DFCCIL with the state highway planning. Therefore, planning, design and up gradation of state highways and other such projects under their control will be implemented to cater to traffic movement as and when the need arises. > Borrow area sourcing and management will be major issue related to such development.

7.3 Consultation with Inland Waterways Authority of India (IWAI)

Consultant's team being also part of CIA of NW 1 has been consulting with IWAI off and on related issues similar to DFCCIL as well its interface with it near Mughalsarai. Summary of major discussion points is give below.

- Major issues related to linear projects include ecology consisting of forests, wildlife sanctuaries (Kachua & Dolphin), wetlands, and land use issues especially type of land, land procurement, R& R, religious and archaeological sites.
- Connectivity issues like Jetty/ Terminal locations and their proximity with DFCCIL corridor/ station and the connecting road.

Synergistic combination of DFCCIL and NW 1 project leading to reduced GHG emissions vis a vis road transportation and overall environmental sustainability of the two projects.

7.4 Conclusions

Stakeholders' consultations indicate the confirmation of the type of VEC identified in Chapter 5. These consultations also give insight into the impacts, mitigation; management and monitoring at project level considering implementation of best practices. This consultative exercise is both ongoing and iterative in nature and will continue for the entire stretch of EDFC 1, EDFC 2 and EDFC 3.

CHAPTER 8: CIA IMPACT ASSESSMENT & MITIGATION MEASURES

8.0 Introduction

Literature review indicates that cumulative impacts are those that result from the successive, incremental, and/or combined effects of an action, project, or activity (collectively referred to in this document as "developments") when added to other existing, planned, and/or reasonably anticipated future ones. For practical reasons, the identification and management of cumulative impacts are limited to those effects generally recognized as important on the basis of scientific concerns and/or concerns of affected communities. Multiple and successive environmental and social impacts from existing developments, combined with the potential incremental impacts resulting from proposed and/or anticipated future developments, may result in significant cumulative impacts that would not be expected in the case of a stand-alone development. Therefore, an effort has been made to assess cumulative impacts on identified VECs against each identified development in the case study area shown in Figure 8.1 in the following sections. The development is happening all along. Effect of past development has already been captured in the baseline condition assessment while assessing the impacts due to DFCCIL presented under Chapter 4. Hence focus has been given under CIA for the current and proposed /anticipated developments activities. Since this report is at initial level, more credible information shall be available for the developments once primary data collection is completed and stakeholder consultation is completed.

Figure 8.1: Cumulative Impact on Identified VECs

8.1 Impacts due to Railways – DFCCIL & Feeder Route Development

Cumulative Impacts due to development of three EDFC stations which are located at New Ahraura Road, New Mughalsarai and New Ganjkhwaja and three broad gauge major railway lines which are (1) Mughalsarai to Patna, which also branches out to Gaya, (2) Mughalsarai to Chunar and (3) Varanasi to Mughalsarai and which may be upgraded in future depending on the traffic and the business plan are given below in Table 8.1.

		0 - 100	100 200	200 mtm	Im DFCC	pacts du L Devel	e to opment	Imp Railwa Fee De	oacts du tys – St eder Ro velopm	ue to ation & oute nent	
	VECs	mtrs / ROW	mtrs	10 kms	0 - 100 mtrs / RO W	100 - 300 mtrs	300 mtrs - 10 kms	0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Remarks
Physical Features	Urban Agglomerations			Varanasi	М-	М-	M-	M-	M-	M-	Urban agglomerations will come up near stations
	Urban Centers	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	М-	М-	M-	M-	M-	M-	Increase in pressure on existing urban centres
	Land Use	Agriculture / Residential / Forests	Agriculture / Residential / Forests	Agricultur e / Residential / Forests/ Industrial Areas	M-	I	I	I	I	I	Restricted to DFCCIL corridor
	Physiography/	Plain Flat	Plain Flat	Plain Flat	1	1	1	1	1	1	

Table 8.1: Cumulative Impact Matrix due to Railways - Station & Feeder Route Development

	Geology		area with	area with	area with							
	0001085		gentle	gentle slope	gentle							
			slope in	in East and	slope in							
			East and	South East	East and							
			South East	boutin East	South East							
	Ecology	Wildlife			Kachhua	I	I	I	I	I	Ι	
	Sanctuar				Sanctuary				_		_	
	National	Darks /			Sanctuary							
	Tiger Re	raiks /										
	Bird Area	$\frac{1}{100}$										
	Wetlands	as / 3)	None	None								
Ecosystem	Critically	Polluted			Varanasi -	Ι	I	Ι	Ι	Ι	Ι	
Services	(air, wate	er, soil &			Mirzapur							
	ground w	vater			1							
	quality) b	based on										
	CPCB's	CEPI	Varanasi -	Varanasi -								
	Index		Mirzapur	Mirzapur								
	GHG Er	nissions	1	· · ·		M+	M+	M+	M+	M+	M+	Due to overall
												reduction of
	NW o						-					vehicular traffic
Natural Processos	Water &	Soil	Good	Good	Good	M-	1	1	1	1	1	Restricted during
FIOCESSES	Cycle	Quality										phase
	3,000	Ground	Good to	Good to	Good to	M-	Ι	Ι	Ι	Ι	Ι	Restricted during
		Water	moderate	moderate	moderate							construction
		Ouality										phase
			Good		Critically	M-	I	Ι	Ι	Ι	Ι	Restricted during
		Surface			Polluted							construction
		Water		Good to	Stretches							phase
		Ouality		moderate	of Ganga							
	Microcli	Air	Good to		Critical	M-	I	Ι	M+	M+	M+	Due to reduction
	mate	Quality	moderate	Critical								of vehicular traffic
		Noise	Critical		Critical	M-	M-	Ι	М-	M-	Ι	Due to railway
		Pollution	(except									traffic
			detours)	Critical								

Social	Comm	Water		Nalas/		S	Ι	Ι	S	Ι	Ι	Resttricted to
Condition	unity	Bodies	50 in	Canal	Ganga							corridor
s	Resour	(Pools /	number	network	River and							
	ces	wells /	(EIA		Nalas/							
		nalas /	Reports)		canal							
		canals)	1 /		network							
		,	5	Exist in	Exist in	S	Ι	Ι	S	Ι	Ι	Resttricted to
		Hospital		rural and	rural and							corridor
		S		urban areas	urban							
					areas							
			7	Exist in	Exist in	S	Ι	Ι	S	Ι	Ι	Resttricted to
		Educatio		rural and	rural and							corridor
		nal		urban areas	urban							
					areas							
		Demogr	507	Densely	Densely	S	Ι	Ι	S	Ι	Ι	Resttricted to
		aphy	Families	Populated	Populated							corridor
		(R&R)	Displaced	Area	Area							
Cultural	Religious	s /	15		Exist	S	I	Ι	S	Ι	Ι	Resttricted to
Aspects	Archaeol	logical										corridor
	Sites (Ter	mples,										
	Mosques)										

Legends:

S: Significant Impact M: Medium Significance I: Insignificant

8.2 Impacts due to development of National Waterways Development (NW1)

DFCCIL corridor with NW 1 is located within 10 kilometers distance of each other. Therefore, cumulative impacts due to modal shift of the freight from NW1 to Eastern DFCCIL catering to the areas served by it are given below in Table 8.2.

		0 - 100			Impact DFCCI	s due L Devele	e to opment	Impac Nation Develo	ts du al Wa opment	terways (NW1)	Remarks
	VECs	mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	0 - 100 mtrs / RO W	100 - 300 mtrs	300 mtrs - 10 kms	0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	
Physical Features	Urban Agglomerations			Varanasi	S-	S-	S-	S-	S -	S -	New urban agglomeratio ns may come up in the zone of influence
	Urban Centers	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	S-	S-	S-	S-	S-	S-	Expansion of already existing urban areas
	Land Use	Agriculture / Residential / Forests	Agricult ure / Residenti al / Forests	Agricultur e / Residential / Forests/ Industrial Areas	S-	S-	S-	S-	S-	S-	Land use change due to urbanization
	Physiography/ Geology	Plain Flat area with gentle	Plain Flat area with	Plain Flat area with gentle	I	Ι	Ι	I	I	Ι	

Table 8.2: Cumulative Impact Matrix due to National Waterways Development (NW1)

			done in	contlo	dona in							
			East and	slope in	East and							
			South East	East and	South East							
				South								
				East								
	Ecology (Wile	dlife			Kachhua	Ι	Ι	Ι	Ι	Ι	S-	
	Sanctuaries/	National			Sanctuary							
	Parks / Tiger	Reserves /										
	Bird Areas /	Wetlands)	None	None								
Ecosystem	Critically Poll	uted (air.			Varanasi -	M-	Ι	Ι	Ι	Ι	Ι	Restricted to
Services	water, soil &	ground		Varanasi	Mirzapur							corridor
	water quality)	based on	Varanasi -	_	P							
	CPCB's CEP	I Index	Mirzapur	Mirzanur								
	CHC Emissi		Milzapui	mizapui		Т	Т	Т	I	T	T	
Natural	Water &	0115 Soll	Cood	Cool	Cood	- М_	T	T	T	T	T	Restricted to
Processes	Nutrient Cycle	Oralita	Good	Good	Good	141-	1	1	1	1		corridor
		Quanty	0 1	0 1	0.1	.			T		T	
		Ground	Good to	Good to	Good to	1	1	1	1	1	1	
		Water	moderate	moderat	moderate							
		Quality		e								
			Good			Ι	Ι	Ι	Ι	Ι	М-	Restricted to
												only
		Surface		Good to								discharge into
		Water		moderat	Good to							surface water
		Quality		е	moderate							body
	Microclimate	Air Quality	Good to			M-	Ι	Ι	Ι	Ι	I	Restricted to
			moderate									corridor due
												to
		N.T. 1		Critical					-	-	-	construction
		Noise	Critical			М-	1	1	S-	1	1	Restricted to
		Pollution	(except									to traffic
			detours)	Critical								movement
Social	Community	Water	50 in	Nalas/		S-	I	I	I	I	I	Restricted to
Condition	Resources	Bodies	number	Canal								corridor
e	100001000	(Pools /	/FIA	network								
0		1 0013 /		IICLWOIK			1					

		wells / nalas / canals)	Reports)									
		Hospitals	5	Exist in rural and urban areas		S-	I	I	I	I	I	Restricted to corridor
		Education al	7	Exist in rural and urban areas		S-	I	I	I	I	Ι	Restricted to corridor
		Demograp hy (R&R)	507 Families Displaced	Densely Populate d Area		S-	Ι	Ι	Ι	Ι	Ι	Restricted to corridor
Cultural Aspects	Religious / Archaeologica (Temples, Mo	al Sites osques)	15		Exist	S-	Ι	Ι	Ι	Ι	Ι	Restricted to corridor

Legends:

S: Significant Impact M: Medium Significance

I: Insignificant

8.3 Road Development

Road development will direct linkage to DFCCIL activities. It will have positive and negative impacts both. Positive impacts are related to shift of bulk traffic from roads to DFCC. Whereas road close to fright station may increase the traffic load though in localized area. Cumulative Impacts due to development and up gradation of road infrastructure to cater to freight movement in future are given below in Table 8.3.

		0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Impact DFCCI 0 - 100 mtrs / RO	IL Develo	e to opment 300 mtrs - 10 kms	Impacts Develo 0 - 100 mtrs /	due to prment 100 - 300 mtrs	300 300 mtrs - 10 kms	Remarks
	VECs				W			ROW			
Physical Features	Urban Agglomerations			Varanasi	S-	S-	S-	S-	S-	S-	New urban agglomerati ons may come up in the zone of influence
	Urban Centers	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	S-	S-	S-	S-	S-	S-	Expansion of already existing urban areas
	Land Use	Agriculture / Residential / Forests	Agricult ure / Residenti al / Forests	Agricultur e / Residential / Forests/ Industrial Areas	S-	S-	S-	S-	S-	S-	Land use change due to urbanizatio n
	Physiography/	Plain Flat	Plain	Plain Flat	Ι	Ι	Ι	Ι	Ι	Ι	

 Table 8.3: Cumulative Impact Matrix due to Road Development

Initial Draft Report

	Geology Ecology (Will	llife	area with gentle slope in East and South East	Flat area with gentle slope in East and South East	area with gentle slope in East and South East	I	I	I	I	I	I	No go areas
	Sanctuaries/ I Parks / Tiger / Bird Areas Wetlands)	National Reserves	None	None	Sanctuary							
Ecosystem Services	Critically Poll water, soil & water quality) CPCB's CEP	uted (air, ground based on I Index	Varanasi - Mirzapur	Varanasi - Mirzapur	Varanasi - Mirzapur	M-	I	I	M-	I	I	Restricted to corridor
	GHG Emissi	ons				М-	I	Ι	М-	Ι	I	Restricted to corridor
Natural Processes	Water & Nutrient Cycle	Soil Quality	Good	Good	Good	М-	Ι	Ι	M-	Ι	Ι	Restricted to corridor
		Ground Water Quality	Good to moderate	Good to moderat e	Good to moderate	I	Ι	I	I	I	I	
		Surface Water Quality	Good	Good to moderat e	Critically Polluted Stretches of Ganga	I	I	I	I	I	M-	Restricted to only accidental discharge into surface water body
	Microclimate	Air Quality	Good to moderate	Critical	Critical	М-	Ι	Ι	М-	Ι	Ι	Resttricted to corridor
		Noise Pollution	Critical (except detours)	Critical	Critical	M-	I	I	M-	I	I	Resttricted to corridor
Social	Community	Water	50 in	Nalas/	Ganga	S-	Ι	Ι	S-	Ι	I	Resttricted

Condition	Resources	Bodies	number	Canal	River and							to corridor
S		(Pools /	(EIA	network	Nalas/							
		wells /	Reports)		canal							
		nalas /	1 /		network							
		canals)										
			5	Exist in	Exist in	S-	Ι	Ι	S-	Ι	Ι	Resttricted
		Hospital		rural and	rural and							to corridor
		S		urban	urban							
				areas	areas							
			7	Exist in	Exist in	S-	Ι	Ι	S-	Ι	Ι	Resttricted
		Educati		rural and	rural and							to corridor
		onal		urban	urban							
				areas	areas							
		Demogr	507	Densely	Densely	S-	I	Ι	S-	Ι	Ι	Resttricted
		aphy	Families	Populate	Populated							to corridor
		(R&R)	Displaced	d Area	Area							
Cultural	Religious /		15		Exist	S-	Ι	I	S-	I	I	Resttricted
Aspects	Archaeologic	al Sites										to corridor
	(Temples, Mo	osques)										

Legends:

S: Significant Impact M: Medium Significance I: Insignificant

8.4 Industrial Area Development

Industrial area causes the impact primarily related to discharge of waste (liquid, solid, hazardous) to environment. It additionally increase load n transportation system. Ram Nagar is the major industrial area, which is falling in the case study area. Cumulative Impacts due to this development are given below in Table 8.4.

	VECs	0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Impac DFCC Develo 0 - 100 mtrs / RO W	ets du CIL opment 100 - 300 mtrs	300 mtrs - 10 kms	Impact Industr develop 0 - 100 mtrs / ROW	s du ial oment 100 - 300 mtrs	area 300 mtrs - 10 kms	Remarks
Physical Features	Urban Agglomerations			Varanasi	I	I	I	I	I	M-	Urban agglomeration due to Planned Industrial development may occur at the periphery
	Urban Centers	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	M-	M-	M-	S-	S-	M-	New industrial centres may come up which may increase the incremental pressure on already growing urban centres
	Land Use	Agriculture / Residential	Agriculture / Residential	Agriculture / Residential	M-	M-	M-	M-	M-	М-	Loss Of land if new industrial areas come up

Table 8.4: Cumulative Impact Matrix due to Industrial Area Development

	1		1					-		-	-	
			/ Forests	/ Forests	/ Forests/							
					Industrial							
					Areas							
			Plain Flat	Plain Flat	Plain Flat	Ι	Ι	Ι	Ι	Ι	Ι	
			area with	area with	area with							
	Physiography/	Geology	gentle slope	gentle slope	gentle slope							
	i iiysiograpiiy/	Geology	in East and	in East and	in East and							
			III East and South East	South East	III East and South East							
	E 1 (W/1)	1:6-	South East	South East	South East	т	т	T	т	T	T	No en Areas
	Ecology (wild				Kachnua	1	1	1	1	1	1	No go Areas
	Sanctuaries/ N	National			Sanctuary							
	Parks / Tiger	Reserves /										
	Bird Areas / V	Vetlands)	None	None								
Ecosystem	Critically Pollu	ited (air,			Varanasi -	M-	M-	М-	S-	S-	S-	Due to DFFCIL
Services	water, soil & g	round			Mirzapur							project it may be
	water quality)	based on										tempoary and
	CPCB's CEPI	Index										restrcited to
												construction phase.
												Significant if
												DFCCIL corridor
			Varanasi -	Varanasi -								catalyses Industrial
			Mirzapur	Mirzapur								development
	GHG Emissic	ne	minzapui	minzapai		M+	M+	M+	M+	M+	M+	Overall GHG
	OTIC Linissic	115				111	141 1	141 1	141 1	141 1	141	emissions may
												eninssions may
	W// . O	0.1	0 1	0 1	0 1	T		T	14	14	10	reduce
Natural	Water &	Soil	Good	Good	Good	1	I	1	M-	M-	M -	Insignificant
Processes	Nutrient	Quality										considering due to
	Cycle	Ground	Good to	Good to	Good to	Ι	Ι	I	M-	M-	M-	impacts during
		Water	moderate	moderate	moderate							construction phase.
		Quality										Moderately –
			Good		Critically	Ι	Ι	Ι	M-	М-	М-	considering
					Polluted							incremental
		Surface			Stretches							pressure due to
		Water		Good to	of Ganga							industrial area
		Quality		moderate	J. Canga			1				development
	Microclimate	Air	Good to	moderate	Critical	T	T	T	М-	M-	M-	Insignificant
	meroennate	Quality	moderate		Gilicai	1	1		141-	141-		considering due to
		Quanty	moderate	Critical								impacta during
				Critical								impacts during

Initial Draft Report

		Noise Pollution	Critical (except detours)	Critical	Critical	S-	S-	M-	S-	S-	M-	construction phase. Moderately – considering incremental pressure due to industrial area development Incremental noise pollution
Social Conditions	Community Resources	Water Bodies (Pools / wells / nalas / canals)	50 in number (EIA Reports)	Nalas/ Canal network	Ganga River and Nalas/ canal network	S-	I	I	S-	I	I	Restricted to corridor
		Hospitals	5	Exist in rural and urban areas	Exist in rural and urban areas	S-	I	I	S-	I	Ι	Restricted to corridor
		Educatio nal	7	Exist in rural and urban areas	Exist in rural and urban areas	S-	Ι	Ι	Ι	Ι	Ι	Restricted to corridor
		Demogra phy (R&R)	507 Families Displaced	Densely Populated Area	Densely Populated Area	S-	I	I	M-	M-	M-	Loss of land due to corridor superimposed by Loss of land due to new industrial area development
Cultural Aspects	Religious / Archaeologica (Temples, Mos	l Sites sques)	15	·	Exist	S-	Ι	Ι	Ι	Ι	Ι	Restricted to corridor

Legends:

S: Significant Impact M: Medium Significance I: Insignificant

8.5 Urbanization

With the development, and population growth, urbanization is increasing. DFCC and its fright station will also induce such development. Cumulative Impacts due to urbanization are given below in Table 8.5.

VECs		0 - 100 mtrs / ROW	100 - 300 mtrs	300 mtrs - 10 kms	Impact DFCCI 0 - 100 mtrs / RO W	100 - 300 mtrs	e to opment 300 mtrs - 10 kms	Impacts Urbaniz 0 - 100 mtrs / ROW	ation 100 - 300 mtrs	e to 300 mtrs - 10 kms	Remarks
Physical Features	Urban Agglomerations			Varanasi	8-	M+	M+	8-	M+	M+	Due to population growth and growth of service sector new urban agglomerations would come up
	Urban Centers	Chunar	Mughal Sarai	Mirzapur, Bharwari, Sirathu	S	М	М	s	М	M	Due to population growth and growth of service sector municipal boundaries would expand
	Land Use	Agriculture / Residential / Forests	Agricult ure / Residenti al / Forests	Agricultur e / Residential / Forests/ Industrial Areas	S-	M-	M-	s-	M-	M-	Land Use will change due to land acquisition and urbanization. Agriculture area would contract
	Physiography/ Geology	Plain Flat area with gentle slope in East and	Plain Flat area with gentle slope in	Plain Flat area with gentle slope in East and	I	I	I	Ī	Î	I	

 Table 8.5: Cumulative Impact Matrix due to Urbanization

			South East	East and	South East							
				South								
	Ecology (Wildlife			East	TZ 11	т	Ŧ	T				V 11 0
					Kachhua	1	1	1	1	1	1	Kachhua Sanctuary
	Sanctuaries/	National			Sanctuary							and its buffer area would
	Parks / Liger	Reserves /	N ⊺	NT								be maintained
E	Bird Areas /	Wetlands)	None	None	T 7 '	M	M	м	M	M	м	
Services	Critically Poll	uted (air,			Varanası -	IVI-	IVI-	IV1-	IV1-	IVI-	N1-	moderately due to
0011000	water, soil &	ground		Varanasi	Mirzapur							increase in overall
	water quality)	based on	Varanasi -	-								polluton load due to
	CPCB's CEP.	I Index	Mirzapur	Mirzapur								urbanization
	GHG Emissi	ons				M +	M+	M+	S-	S-	S-	Overall improvement is expected though CHG
												emissions may increase
												due to urbanization
Natural	Water &	Soil	Good	Good	Good	S-	Ι	Ι	S-	М-	S-	Top soil will be lost due
Processes	Nutrient Cycle	Quality										to planned development
		Ground	Good to	Good to	Good to	M-	I	I	M-	M-	M-	Ground water Quality
		Water	moderate	moderat	moderate							will be moderately
		Quality	moderate	e	moderate							impacted during
		Quality	<u> </u>	Ū.	C :: 11	м	T	T	м	M	м	construction period
		S C	Good	C 1		191-	1	1	111-	191-	141-	expected due to effluent
		Surface		Good to	Polluted							discharge
		Water		moderat	Stretches							
	Microclimate	Air Quality	Coodto	е	Of Ganga	M_	T	T	M+		M_	Long term impacts are
	Wheroenmate	7111 Quanty	Good to		Critical	141-	1	1	141	141-	141-	expected because of
			moderate									emissions increase
												(vehicular traffic) in
		Niciao		Critical		м	м	T	T	т	т	urban areas
		Pollution	Critical		Critical	141-	141-			1	1	
			(except	Critical								
Social	Community	Wator	50 in	Nolos /	Capra	S-	T		S-	M-	M-	S-Restricted to corridor
Condition	Recourse	water Bodios	50 III	Thatas/	Binor and	0-	1	1	0-	171-	141-	
Condition	Resources	Doules	number	Canal	NIVEI alla		1	1			1	

S		(Pools /	(EIA	network	Nalas/							
		wells /	Reports)		canal							
		nalas /			network							
		canals)										
			5	Exist in	Exist in	S-	Ι	Ι	S+	S+	S+	S-Restricted to corridor;
		Uconitala		rural and	rural and							S+ due to expected
		позрнаіз		urban	urban							Hospitals
				areas	areas							Hospitals
			7	Exist in	Exist in	S-	Ι	Ι	S +	S+	S+	S-Restricted to corridor;
		Education		rural and	rural and							S+ due to expected
		al		urban	urban							increase in numbers of educational Institutions
				areas	areas							educational motifutions
		Demograp	507	Densely	Densely	S-	Ι	Ι	S-	S-	S-	Popuation pressure will
		hy (R&R)	Families	Populate	Populated							increase
			Displaced	d Area	Area							
Cultural	Religious /		15		Exist	S-	Ι	Ι	S-	Ι	I	Restricted to corridor
Aspects	Archaeological Sites											
_	(Temples, Mosques)											

Legends:

S: Significant Impact M: Medium Significance I: Insignificant

In addition to the new stations along the DFCCIL, the area along the national and state highways in the study area will induce urbanization leading to pressure on account of population and associated infrastructure development and pollution potential.

8.6 Mitigation Measures

Some of the mitigation measures, which are restricted to vicinity of the planned development, are given below.

- Provision of balancing culverts to prevent waterlogging and damage of embankment due to water logging
- Provision of adequate cross drainage structures especially along the agricultural fields
- Provision of longitudinal drains on slopes to facilitate drainage of water and preventing water logging on track
- Structures should be developed as per the NBC guidelines for the applicable seismic zone
- Provision of retaining walls to retain the raised embankments at the places required
- Slope stabilization: stone pitching with grass turf
- Site identified for setting up construction, labour camps and debris disposal should be 500 m away from forest area, settlement areas, educational institute and religious structures and 1 km away from any notified eco-sensitive zone
- Agricultural fertile land should be avoided for setting up construction, labour camps and debris disposal site
- Low lying area away from water body, settlements and forest area should be selected for debris disposal
- Barren land should preferable be selected
- Provision of training to workers to handle material and waste to minimize spillage an soil contamination
- Material, fuel and waste storage should be done on paved structures
- Soil should be excavated from borrow areas only after obtaining the required permission from MoEFCC
- Excavation depth in borrow area should not exceed 2 m
- Excavated earth should be stored in covered condition
- No excavation activity to be carried out during monsoon season
- Garland drains should be provided at borrow area to provided adequate drainage and prevent entry of water into borrow pit
- A berm shall be left from the boundary of adjoining field having a width equal to at least half the depth of proposed excavation
- Borrow pits along the DFC corridor should be min 5 m away from toe of embankment and along the water body should be min 15 m away from toe of the bank of water body
- Proper & immediate closure of borrow area to be done after excavation of the earth:
 - Agriculture land: leveling the area by filling earth material and laying back the top soil
 - Barren area: conversion into the pond after leveling and maintaining slope (1:2)
- Debris should be collected at a temporary storage site and segregated into reusable, recyclable and discarded material. Re-usable material at site should be re-used, recyclable material should be sold to the authorized vendors and discarded material should be transported in covered conditions to selected site for waste disposal
- Provision of longitudinal drains and chutes on high embankments for drainage and prevent soil erosion

- Slope stabilization of embankments: stone pitching with grass turf
- Soil erosion checking measures as the formation of sediment basins, slope drains, etc, will be carried out during construction phase
- Excavated top soil should be stored in covered place and should later be spread in the same area or should be used for compensatory plantation
- Construction vehicles, machinery and equipment will move, or be stationed in the designated area, to avoid compaction of soil.
- If operating from temporarily hired land, it will be ensured that the topsoil for agriculture remains preserved & not destroyed by storage, material handling or any other construction related activities.
- Restoration of the sites used for labour camps, plant site and debris disposal should be undertaken. Labour camp and plant site should be cleaned up fully at time of closure. Plantation should be carried out, if any vegetation was removed from the site at the time of setting up the camp/plant site.
- Debris disposal site should be leveled and planted with tolerant plant species
- Ballast, sleepers etc should be sourced from the agencies having valid environment clearance & NOC from PCB
- Adequate air pollution control measures should be taken while operating batching plants, pugmills and DG sets
- Water sprinkling should be carried out at construction site, labour camps, haul roads, selected plant site (where all machinery and vehicles will be parked)
- Storage & transportation of raw material and debris in covered condition
- Excavated top soil should be stored in covered place
- Exploring use of fly-ash mix cement and bricks for construction of structures like stations, culvert, bridges etc.
- Provision of wheel washing facility at exit point of the plant site
- All vehicles, equipment and machinery used for construction will be regularly maintained to ensure that the pollution emission levels conform to the SPCB norms.
- All the vehicles entering the plant site, carrying the material should carry valid PUC
- Site identified for setting up construction, labour camps and debris disposal should be 500 m away from forest area, settlement areas, educational institute and religious structures and 1 km away from any notified eco-sensitive zone
- Adequate parking facility should be provided at the site, raw material storage site and plant site to prevent idling of vehicles
- No equipment/machinery should be left running if not in use
- Material transportation should be done in non peak hours to prevent traffic congestion
- Vehicles should be given one specific route to reach the site and they should be fitted with GPS so that their movement can be tracked
- Adequate guiding signage should be provided at the site to guide the drivers and prevent idling of the vehicles
- DG sets, batching plant and pugmills should be provided with adequate stack height for dispersion of exhaust
- No open burning of fuel should be allowed at the site and at labour camps. LPG should be provided as fuel
- Only low sulphur diesel should be used as fuel

- Compensatory plantation should be carried out minimum in ratio of 1:2
- Storing fuel, paint, polish, varnishes in covered containers to minimize odour generation
- All plants and equipments used in construction shall strictly conform to the MoEFCC/CPCB noise standards.
- All vehicles and equipment used in construction will be fitted with exhaust silencers.
- Servicing of all construction vehicles and machinery will be done for exhaust silences and will be checked and if found defective will be replaced.
- All the construction sites within 150m of the nearest habitation, noisy construction work such as concrete mixing will be stopped during the night time between 10.00 pm to 6.00 am.
- No noisy construction activities will be permitted around educational institutions/health centers (silence zones) up to a distance of 100 m from the sensitive receptors.
- Noise level monitoring should be carried out at construction site, DG set location and labour camp every month
- DG sets and all the other machinery and equipments should be provided with silencers, acoustic enclosure, noise dampners, noise mufflers and should meet the standards prescribed by CPCB
- Noise barriers should be provided as proposed in each of environment assessment study
- Effective track and wheel management during operation phase will significantly reduce the vibration. Following measures can be taken up for managing track and wheels:
 - Rail grinding on a regular basis.
 - Wheel truing to re-contour the wheel, removal of wheel flats and out of roundness.
 - Implement vehicle reconditioning programs, particularly when components such as suspension system, brakes, wheels, and slip-slide detectors will be involved.
 - Install wheel-flat detector systems to identify vehicles which are most in need of wheel truing.
 - Install wheel geometry measurement devices (e.g. laser based systems installed at entrance of depot) with possibility of detecting out of soundness, difference of wheel diameter of wheels on the same axle, wheel wear. (Vibration reduces more than 10 dB)
 - Inclusion of Rail Resilient fasteners (rail and base plate pads) in track installation
- Water for construction purpose should preferably be taken from surface water bodies after obtaining required permission
- Wastewater generated from construction site should be collected and should be re-used for wheel washing, curing etc.
- Sewage generated from labour camps and toilets at site should be disposed off into septic tanks/soak pits
- Wastewater and sewage should be discharged into ground water or any surface water body.
- No mixing of wastewater and any existing water pipeline should be allowed
- Ponding of wastewater at site should not be allowed
- Plant site & labour camp should be located at min 100 m distance from water body
- Low lying area away from water body should be selected for waste disposal
- Ground water and surface water quality should be monitored at least once in six months
- Drinking water quality for construction labour should be monitored every month
- Oil & grease traps should be provided with the storm water drains in the vehicle and machinery marking area

- No canal/drain used by the public for any purpose should be blocked due to development of project
- Any well/tube well/ hand pump/pond etc, if abandoned should be replaced and relocated immediately
- Oil & grease trap should be provided with drains carrying water from washing of cars/wagon/station & track and should be disposed off into septic tank/soak pit
- Sewage generated at freight station should be disposed off into septic tank/soak pit
- Cleaning of all the existing cross drainage structures and natural drainage before onset of monsoon in order to keep all drainage unblocked.
- Earth, stones, wastes and spoils will be properly disposed off, to avoid blockage of any drainage channel.
- All necessary precautions will be taken to construct temporary or permanent structures to prevent inundation or ponding.
- The slopes of embankment leading to water bodies should be modified and re-channelized so that contaminants do not enter the water body.
- Temporary storm water drainage system should be provided at labour camp, construction camp, borrow area site and construction site
- Sedimentation basins and silt traps should be provided to collect run-off from site and trap the sediments from run-off
- Trees cutting should be limited to those identified during the survey
- Vegetation removal should be minimized
- Tree cutting should be carried out after obtaining permission from forest department
- Construction vehicles, machinery and equipment will move or be stationed in the designated area only (RoW or CoI, as applicable), to prevent compaction of vegetation outside the RoW.
- While operating on temporarily acquired land for traffic detours, storage, material handling or any other construction related or incidental activities, it will be ensured that the trampling of soil and damage to naturally occurring herbs and grasses will be avoided.
- Speed of construction vehicles should be maintained to prevent animal accidents during construction stage.
- State rules for hunting (wild life protection) will be adhered and rules for Bird catching (wild life protection) will be adhered
- Land acquisition should be carried out as per the resettlement action plan prepared for each section/sub-section
- Compensation as per RAP should be provided to each land holder and affected family before acquisition of land
- All the CPRs should be relocated immediately after dismantling keeping the cleanliness and hygiene in mind
- Way to school, hospital, temple, street should not be blocked, an alternate route should be suggested before blocking
- Minimizing the loss of CPRs by reducing the RoW requirement, if feasible
- Removal of trees, structures etc should be done as per the RAP only
- Consent of land owner should be obtained before excavation of earth from identified borrow area. Site should be restored to the condition agreed before excavation with land owner
- Construction camps/plant site should be located 500 m away from the residential areas

- Employment should be given preferably to local people to the extent possible
- Labour camps should be provided with proper bedding, drinking water facility, toilets, bathing facility, septic tanks, drainage system. Inspection of labour camp should be done every month to ensure proper functioning of these facilities
- Labour should be properly made aware for not burning wood or any other waste material. LPG should be provided as fuel for cooking
- Crèche facility should be provided, if female workers are employed
- All workers should be given material/equipment handling training and emergency situation handling training
- First aid facility should be provided at the site, plant site and labour camp. One ambulance should be kept at site to take the patient to nearest hospital, in case of accident
- A person trained in giving first-aid should be available all the times at construction and plant site
- Tie-ups should be made with local hospitals to handle emergency cases on priority if any
- Fire-fighting facility should be provided at construction site, labour camps and plant site and training for handling fire should be given to workers
- List of phone numbers of fire station, hospitals, ambulance should be available at site office
- Personal protective equipments like helmets, ear plugs, gum boots, safety jackets, masks, googles should be provided as required to all the workers at site
- Safety officers should be available at the site all the time to ensure that safety rules and precautions are being followed at site all the time
- Cautionary signage with adequate warning note in local language should be provided at the site of fuel storage area, substation area, DG set area, machinery parking area etc.
- Entry to the fuel storage area, machinery operating area should be restricted to only few trained person
- Traffic management officers should be provided at the site to manage the traffic and prevent accidents at site
- Adequate lightning should be provided at the site during night time
- No workers should be forced to work more than 8 hours in a day
- Child labour should be discouraged strictly
- All the air pollution, water pollution, noise pollution and soil pollution measures should be implemented
- Should be followed as proposed both during operation and construction phase

Additional measures which may be required to be taken along the other agencies or DFCCIL act to influence for the cause of environment protection shall be included in the final report.

8.7 Major Stakeholders for implementation of Mitigation Measures

A list of major stakeholders at national and state level has been prepared considering the above mentioned development proposals as given in **Table 8.6**

S.	Development		Stakeholders						
No ·	Proposals	Implementers	Monitors						
1	Railways	DFCCIL & Indian	State Pollution Control Boards, Forest						
		Railways, Forest	Department						
		Department							
2	National	Inland Waterways	State Pollution Control Boards, Forest						
	Waterways	Authority of India, Forest	Department						
	Development	Department							
3	Road	National Highways	Department of Environment, State Pollution						
	Development	Authority of India /	Control Boards, Forest Department						
		Central Public Works							
		Department / MoEF,							
		State Public Works							
		Department, Forest							
		Department							
4	Industrial Area	Ministry of Commerce &	State Pollution Control Boards, Forest						
	Development	Industry, State Industrial	Department						
		Development							
		Corporation, Forest							
		Department							
5	Urbanization	Ministry of Urban	State Pollution Control Boards, Forest						
		Developments / Indian	Department						
		Railways / DFCCIL/							
		Municipal Corporations /							
		Municipality / State							
		Urban Development							
		Authorities /							

Table 8.6: Identification, Classification and responsibilities of Stakeholders forImplementation of mitigation and monitoring measures

8.8 Conclusions and Next Steps

The emerging scenario indicates that at a cumulative level, majority VECs are getting impacted due to indirect development like road and associated infrastructure development and induced development like urbanization. Impact assessment has been done partly on quantitative as well as qualitative basis. Efforts are going on for strengthening the impact matrix using a combination of different interactive techniques, which will be described in draft final report. Further, all the five impact matrix tables (Table 8.1 to 8.6) will be combined to arrive at a holistic & cumulative view of the planned development.