the <disp|a§:-*>g&tag library

Display tag library v.1.0

Project Documentation

displaytag 01 January 2005 17:55

TABLE OF CONTENTS i

Table of Contents

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

TABLE OF CONTENTS

Overview

INtrOdUCHIONo 1
DEPENUENCIES . . . o .ot 2
Reference

DOWNIOAdo 4
INStall . 5
TlOS .« 7
Tag refereNCe . . . o 8
ConfiQUuIatioNo 16
EXPOIt filer . . 22
Tutorial

BaSIC USAQE . . ot 24
IMpPliCIt ODJECtS . . o o 26
Data SOUICESottt e e 27
DECOIAtOrS o 30
LiNKS . o 32
Syl . o 35
EX POt . . 37
LN . 39
Feedback

FAQ o o 42
RepOrting DUGS oo 46
Mailing ListSo 48
Developers

SOUrCE REPOSIIONY . . . oo 49
BUilding from SOUICESo 51
Directory Organizationt 52

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

11

1.1 INTRODUCTION 1

Introduction

Overview

The display tag library is an open source suite of custom tags that provide high-level web presentation
patterns which will work in an MVC model. The library provides a significant amount of functionality
while still being easy to use.

What can | do with it?

Actually the display tag library can just... display tables! Give it a list of objects and it will handle column
display, sorting, paging, cropping, grouping, exporting, smart linking and decoration of a table in a
customizable XHTML style.

The tables in the sample images below were generated from lists using the <display:table> tag:

1D Mame ~ Email Status
CITY PROJECT H!| 37649 Dolor Ut dolor-ut@veniam.com SED
Carthago | Arts g1| 65106 Duo Dolor duc-dolor@eu.com uT
Gladiators 93| 79175 Elit Et elit-et@sadipscing.com TAKIMATA
5¢| 10713 Et Dolores et-dolores@gubergren.com ELITR
Meapolis | Arts 4t) 17911 Et Misl et-nisl@dolore .com REBUM
24| a5278 Illum Amet ilurn-arnet@sed.com DOLORE

1t 44471 Illum Takimata illum-takimata@vel.com AMET
Gladiators | 31| jpgp1

Laoreet Eros laoreet-eros@ea.com MAGHA
- Z'| 43808 Larem Dolore lorem-dolore@kasd .com SED
Clympia | Army L 34021 Vero Consequat vero-consequat@diarn.corn SADIPSCING
Taxes QL= oTo oo = oo
Roma Army 3z2&.0 rebum magna ipsum voluptua

649,10 ea labore nostrud tempor
Arts 9&0.0 praesent eos lorem et

20 items found, displaying 1 to 8
[First/Prev] 1, 2, 3 [Mext/Last]

CITY +~ PROIECT HOURS TASK
Carthago Army 3g7.0 lorem et amet et
651.0 dignissim dolores vero at
Arts 654.0 eleifend no amet dolore
570.0 eos nulla suscipit diam
Gladiators 701.0 vero accusam nulla cum
420.0 rmagna amet invidunt ipsum
Taxes &675.0 eos sanctus sit amet
115.0 sed praesent adipiscing amet

Export aptions: 42] CSW | ¥ Excel | =ML

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

1.2 DEPENDENCIES 2

Dependencies

Dependencies

The following is a list of dependencies for this project. These dependencies are required to compile or
run the application. Most of the libraries listed here are actually needed only at build time or during tests
(mainly for framework integration tests) and you should not worry about them.

Required at runtime

Artifact ID Type Version URL/comments

commons-beanutils jar 1.6.1 http://jakarta.apache.org/commons/beanutils

commons-collections jar 2.1.1 http://jakarta.apache.org/commons/collections also 3.0 is supported.

commons-lang jar 2.0 http://jakarta.apache.org/commons/lang commons-lang 1.0 will not
work

commons-logging jar 1.04 http://jakarta.apache.org/commons/logging

Required for the EL version

Artifact ID Type Version URL/comments
jstl jar 1.0.2 http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/
standard jar 1.04 http://jakarta.apache.org/taglibs/

Optional (and needed for compiling)

Artifact ID Type Version URL/comments

itext jar 0.99 http://prdownloads.sourceforge.net/itext/ Needed at build time to
compile classes for the PDF export. Needed at runtime to enable PDF
export.

Only required to build or to run unit tests

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://jakarta.apache.org/commons/beanutils
http://jakarta.apache.org/commons/collections
http://jakarta.apache.org/commons/lang
http://jakarta.apache.org/commons/logging
http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/
http://jakarta.apache.org/taglibs/
http://prdownloads.sourceforge.net/itext/

1.2 DEPENDENCIES

Artifact ID Type Version URL/comments

portlet-api jar unknown http://jakarta.apache.org/jetspeed/site/install.htm| Required to build
jetspeed/websphere portal server support classes. Not needed at
runtime.

log4j jar 1.2.8 http://logging.apache.org/log4j/docs/index.html optional: you can use
any logging framework supported by commons-logging

maven-taglib-plugin plugin 1.2 http://maven-taglib.sourceforge.net maven plugin needed to generate
tag reference documentation page and to generate the 1.1 version of
the tid

servletapi jar 2.3 Servlet 2.3 support is required to build the library. At runtime only
servlet 2.2 (tomcat 3, websphere 4) is strictly needed, servlet 2.3
support (tomcat 4, websphere 5) is needed only for the EL version of
the taglib

httpunit jar 1.6 http://httpunit.sourceforge.net Needed to compile and run HttpUnit
tests.

jtidy jar 4aug2000r7-dev http://jtidy.sourceforge.net Needed to run HttpUnit tests.

nekohtml jar 0.9.1 Needed to run HttpUnit tests.

is jar 15R4.1 Needed to run HttpUnit tests.

jasper-compiler jar 4.0.4 Needed to run HttpUnit tests.

jasper-runtime jar 4.0.4 Needed to run HttpUnit tests.

xerces jar 2.4.0 Needed to run HttpUnit tests.

xml-apis jar 1.0.b2 Needed to run HttpUnit tests.

tools jar 13 http://java.sun.com/j2se/1.4.2/download.htm| Needed to run HttpUnit
tests. This is the tools.jar from sun jdk. Jar in not in maven repository
but is set to JAVA_HOME!/../lib/tools.jar in project.properties

Struts jar 1.2.4 http://struts.apache.org/ Required to build Struts i18n adapter.
Required at runtime only if you use Struts (if you wish to use it you
should already have Struts in your project)

Spring jar 11.1 http://imww.springframework.org/ Required to build Spring i18n
adapter. Required at runtime only if you use Spring (if you wish to use
it you should already have Spring in your project)

commons-digester jar 14.1 http://jakarta.apache.org/commons/digester Struts dependency
needed to run Struts integration tests.

webwork jar 2.15 http://www.opensymphony.org/ Required to build Webwork i18n
adapter. Required at runtime only if you use Webwork (if you wish to
use it you should already have Webwork in your project)

xwork jar 1.0.3 http://www.opensymphony.org/ Required to build Webwork i18n
adapter. Required at runtime only if you use Webwork (if you wish to
use it you should already have Webwork in your project)

oscore jar 224 http://www.opensymphony.org/ Required to build Webwork i18n
adapter. Required at runtime only if you use Webwork (if you wish to
use it you should already have Webwork in your project)

ognl jar 2.6.5 http://www.ognl.org/ Required to build Webwork i18n adapter.

Required at runtime only if you use Webwork (if you wish to use it you
should already have Webwork in your project)

©2002 DISPLAYTAG

« ALL RIGHTS RESERVED

http://jakarta.apache.org/jetspeed/site/install.html
http://logging.apache.org/log4j/docs/index.html
http://maven-taglib.sourceforge.net
http://httpunit.sourceforge.net
http://jtidy.sourceforge.net
http://java.sun.com/j2se/1.4.2/download.html
http://struts.apache.org/
http://www.springframework.org/
http://jakarta.apache.org/commons/digester
http://www.opensymphony.org/
http://www.opensymphony.org/
http://www.opensymphony.org/
http://www.ognl.org/

2.1

2.1 DOWNLOAD 4

Download

Download

releases

You can download source and binary distributions from the SourceForge Server .

development snapshot

The latest snapshot build (usually uploaded in sync with this website) can be downloaded directly from
here . Get this one only if you are a developer ot you absolutely need a feature/fix added before the latest
release (see changes for the full change log).

source code from CVS

You can also obtain the source from the SourceForge CVS Setver, see Source Repository .

Files

The "bin" versions include the following:

* displaytag.jar - the jar file that contains the taglib classes, you need to drop this file into your web
application WEB-INF/Iib directory.

* displaytag.tld - the tld file that contains the tag library descriptor, you need to drop this file into your
web application WEB-INF directory.

* displaytag.war - the documentation and the example applications that appear on this web site,
optionally drop this into your web container deployment directory.

The "stc" versions includes the complete source code to the tag library, the various example pages, and
the documentation.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://sourceforge.net/project/showfiles.php?group_id=73068

2.2

2.2 INSTALL 5

Install

Installation Guide

This package comes with pre-built binaries located in the dist directory. Those distribution files are:

file description
displaytag.war documentation and examples
displaytag.jar the taglib jar

displaytag.tld the taglib tld file

To quickly view the documentation and examples showing the features and functionality of the display
taglib, just deploy the displaytag.war file to your application server (the details of how differ from server
to server) or servlet container.

If you would like to make use of the display taglib in your own application, do the following:
STEP 1 : Drop the displaytag-{version} jar file in your application EB- | NF/ | i b directory

STEP 2 : Make sure that following libraries are in your WEB- | NF/ | i b directory (or made available via the
classpath to your application server). Refer to the dependencies document for the correct version of these
libraries. You can download a copy of everything from jakarta or you can grab them from the example
webapp in the bin distribution.

* commons-logging.jar

* commons-lang.jar

* commons-collections.jar

* commons-beanutils.jar

* log4j.jar
STEP 3 : Needed only for [SP 1.1 containers . Drop the displaytag-{taglibversion}.tld file in your application
WVEB- | NF/ directory. Refer to the tlds page for the available tlds.

STEP 4 : Needed only for |SP 1.1 containers. Define a taglib element like the following in your
/WEB-INF/web.xml file

<taglib>

<taglib-uri>http://displaytag.sf.net</taglib-uri>

<taglib-1ocati on>/ VEEB- | NF/ di spl ayt ag-{taglibversion}.tld</taglib-1ocation>
</taglib>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://jakarta.apache.org

2.2 INSTALL 6

STEP 5 : Optional. Depending on your architecture, you may need to configure a filter to make export
work. See the export filter page for the details about how to do it and when you could need it.

DONE : Define the tag extension in each JSP page that uses the display taglib. The uri directives must
match what you defined in the web.xml file above OR the URI defined in one of the tlds in the jar file.
With JSP 1.2 containers, the jat file is automatically scanned and you don't need to define an entry in your
web.xml file. The prefix identifies the tags in the tag library within the JSP page.

<U@taglib uri="http://displaytag.sf.net" prefix="display" %

The declaration, if you are using a JSP XML syntax, looks like:

<jsp:root version="1.2" xmns:jsp="http://java. sun. conl JSP/ Page"
xm ns: di spl ay="urn:jsptld: http://displaytag. sf.net">

For more help with general taglib use, please see: http://jakarta.apache.org/taglibs/tutorial.html

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://jakarta.apache.org/taglibs/tutorial.html

2.3

2.3 TLDS

Tlds

Displaytag comes with 3 different tlds at the moment. Look at this table to understand which is the right

one for you.

tld

URI

description

di spl aytag-11.tld

di spl aytag-12.tld

di spl aytag-el -12.tld

http://displaytag.sf.net

http://displaytag.sf.net

http://displaytag.sf.net/el

Jsp 1.1 version of the tld, you will need to use
this one if you plan to install your application
on container only supporting j2ee 1.2 (Tomcat
3, Websphere 4, WebLogic 6...).

Jsp 1.2 version of the tld: requires j2ee 1.3
(Tomcat 4, WebSphere 5, WebLogic 7...).
Use this version if you are not looking for j2ee
1.2 compatibility and don't need EL support.

EL version of the tag library. It offers the
same features as the standard 1.2 version,
plus Expression Language Support. It will
require a couple of addictional libraries, see
the dependencies page. Don't use this one
if you are looking for EL support on jsp 2.0
containers (Tomcat 5). In Jsp 2.0
compatible servers expressions are evaluated
directly by the container, so you can use the
standard 1.2 tld and still have EL support (the
EL tld will not work, since expressions wil be
evaluated twice).

©2002 DISPLAYTAG

« ALL RIGHTS RESERVED

2.4 TAG REFERENCE 8

Tag reference

Display *: Tag Library

The display tag library is an open source suite of custom tags that provide high level web presentation

patterns which will work in a MVC model, and provide a significant amount of functionality while still
being simple and straight-forward to use. The primary tag in the library is the Table tag. This is version
1.0.

* caption Simple tag which mimics the html caption tag .

* column Displays a property of a row object inside a table .

* footer Tag wich should be nested into a table tag to provide a custom table footer .
* sctProperty Sets the indicated property on the enclosing Table tag .

* table Displays a list in an html table, formatting each item in the list according to the Column tags
nested inside of this tag .

Reguired attributes are marked with a * .

table

Displays a list in an html table, formatting each item in the list according to the Column tags nested inside
of this tag. Use the list attribute to indicate the Collection of data, in some scope, that the tag should
operate on. Supports the export of the list data to alternative formats such as CSV, Excel, and XML. The
contents of the list can be sorted, and the list can be broken into individual pages for display. If you use
this tag in Struts, or in some other framework where the page is included via a jsp:include, you should use
the requestURI attribute to indicate where tag generated links should point.

Can contain: JSP

Example

<di spl ay: t abl e name="soneLi st" export="true" id="row' requestURl ="M/Action. do">
<di spl ay: col uim sortable="true" title="1D"> <c:out value="${row.id}"/>

</ di spl ay: col um>
<di spl ay: col umm property="email" autolink="true"/>
<di spl ay: col uim property="description" title="Coments"/>

</ di spl ay: t abl e>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.4 TAG REFERENCE

Attributes

Name

Description

Type

cellpadding

cellspacing
class

decorator

defaultorder

defaultsort

excludedParams

export

frame
htmild

id

length

list

name

offset
pagesize

requestURI

requestURIcontext

©2002 DISPLAYTAG

html pass through attribute. Better using
"padding" css attribute in style or class

html pass through attribute
html pass through attribute

Fully qualified class name for a
TableDecorator. Use a TableDecorator to
provide custom operations against the whole
list, such as computing totals. Must extend
org.displaytag.decorator.TableDecorator.

The default order for the sorted column. Valid
values are "ascending” (default) or
"descending"

The index of the column that will be used by
default for sorting (starting from 1)

Whitespace separated list containg the name
of parameters which should NOT be
forwarded during paging or sorting. You can
use excludedParams="*" to match (exclude)
any parameter.

enable/disable export. Valid values are true or
false

html pass through attribute.
html "id" pass through attribute

See "uid". The id attribute can't be a runtime
expression in jsp 1.0 compliant containers,
while uid will allow it.

number of records to be shown

Reference to the object used as source for
the table. Can be an expression like
requestScope.object.property . You must
define either the name attribute or the list
attribute. Using "Name" is suggested.

reference to the object used as source for the
table. Can be an expression like
requestScope.object.property. In the EL
version of the taglibrary this must be an EL
expression which points to the source object.

index of the first record to be shown
number of records in a page

When the present, links for sorting, exports,
and paging are formed by adding any tag
generated parameters to the value of
requestURI attribute.

Enable/disable prepending of application
context to generated links. Default is true, you
can set it to false in order to generate
cross-context links.

« ALL RIGHTS RESERVED

String

String
String

String

int

String

bool ean

int
int

String

bool ean

2.4 TAG REFERENCE

Name

Description

Type

10

rules

sort

style
summary

uid

styleClass

align

background

bgcolor

height

hspace

vspace

width

border

scope

property

html pass through attribute.

Use 'page’ if you want to sort only visible
records, or 'list' if you want to sort the full list

html pass through attribute
html pass through attribute

Unique id used to identify this table. The
object representing the current row is also
added to the pageContext under this name
and the current row number is added using
the key uid_rowNum. Two tables in the same
page can't have the same uid (paging and
sorting will affect both). If no "htmlld" is
specified the same value will be used for the
html id of the generated table.

@deprecated: use "class"

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html pass through attribute.
Use css "border”

@deprecated in displaytag 1.0. Use
"pageScope.", "requestScope.",
"sessionScope.", "applicationScope." prefixes
in name. Not supported in the EL version of

the tag.

@deprecated in displaytag 1.0. Use
list.property in "name" attribute. Not
supported in the EL version of the tag.

Stri

Stri

Stri

Stri

Stri

Stri

Stri

Stri

ng

column

Displays a property of a row object inside a table. MUST be nested inside of a Table tag. The value

displayed will be the results of a decorator (if any); else the property named by the 'property’ attribute; or

©2002 DISPLAYTAG

« ALL RIGHTS RESERVED

2.4 TAG REFERENCE

if the 'property’ attribute is null, then the results of evaluating the JSP body of the tag.

Can contain: JSP

Attributes

Name Description Type

11

autolink Automatically hyperlink URLs and email bool ean
addresses that appear in the column.
Defaults to 'false'.

class html pass through attribute; use this instead String
of directly coding presentational atttributes.

decorator The fully qualified class name of aclassthat ~ String
should be used to "decorate" the underlying
object being displayed. The class should
implement
org.displaytag.decorator.ColumnDecorator. If
a decorator is specified for the entire table,
then this decorator will decorate that
decorator.

group The grouping level (starting at 1 and int
incrementing) of this column (indicates if
successive contain the same values, then
they should not be displayed). The level
indicates that if a lower level no longer
matches, then the matching for this higher
level should start over as well. If this attribute
is not included, then no grouping is
performed.

headerClass "class" html attribute added only for header String
cells.

href The base URL used to construct the dynamic ~ String
link. If this attribute is provided, then the data
that is shown for this column is wrapped
inside a <a href> tag with the url provided
through this attribute. Typically you would use
this attribute along with one of the struts-like
param attributes (param*) to create a
dynamic link so that each row creates a
different URL based on the data that is being
viewed. An empty href value will generate a
link to the current page, preserving
parameters just like for paging links.

maxLength If this attribute is provided, then the column's i nt
displayed is limited to this number of
characters. An elipse (...) is appended to the
end if this column is linked, and the user can
mouseover the elipse to get the full text. Be
careful on using this attribute for String which
can contain html tags or entities, or together
with the autolink attribute turned on:
displaytag will do its best trying to avoid
leaving unclosed tags or broken entities in the
output, but a complex or bad input could lead
to unattended results.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.4 TAG REFERENCE

Name

Description

Type

12

maxWords

media

nulls

paramld

paramName

paramProperty

property

sortable

©2002 DISPLAYTAG

If this attribute is provided, then the column's
displayed is limited to this number of words.
An elipse (...) is appended to the end if this
column is linked, and the user can mouseover
the elipse to get the full text. Be careful on
using this attribute for String which can
contain html tags or entities, or together with
the autolink attribute turned on: displaytag will
do its best trying to avoid leaving unclosed
tags or broken entities in the output, but a
complex or bad input could lead to
unattended results.

Use this attribute to keep a column from
being output during an export. The column
will only render for the named media type(s) -
it won't be added to the table if the current
request media is not supported. Can be any
space separated combination of 'html’, ‘csv',
xml', ‘all', or 'excel'. Defaults to 'all'. See the
export page in the example webapp for more
details.

By default, null values don't appear in the list.
By setting 'nulls' to ‘true’, then null values will
appear as "null" in the list (mostly useful for
debugging). Defaults to 'false’.

The name of the request parameter that will
be dynamically added to the generated href
URL. The corresponding value is defined by
the paramProperty and (optional)
paramName attributes, optionally scoped by
the paramScope attribute.

The name of a JSP bean that is a String
containing the value for the request
parameter named by paramid (if
paramProperty is not specified), or a JSP
bean whose property getter is called to return
a String (if paramProperty is specified). The
JSP bean is constrained to the bean scope
specified by the paramScope property, if it is
specified. If paramName is omitted, then it is
assumed that the current object being iterated
on is the target bean.

The name of a property of the current object
being iterated on, whose return value will be
used as the value of the parameter (named
by the paramld attribute) that will be
dynamically added to this href URL. If
paramName is also specified the property will
not be fetched from the object being iterated
on, but from the bean specified by
paramName. The support of paramProperty
in conjunction with paramName will be
probably removed in future: use
paramProperty only if you need a property in
the iterated object, elsewhere use only
paramName (you can select a property using
an expression name.property).

name of the property in the bean specified in
the parent table tag (via the "name" attribute)
mapped to this column

Set to 'true’ to make the column sortable.
Defaults to ‘false’.

« ALL RIGHTS RESERVED

int

String

bool ean

String

String

String

String

bool ean

2.4 TAG REFERENCE

Name

Description

13

Type

sortProperty

style
title

titleKey

url

width

styleClass
headerStyleClass
sort

align

background

bgcolor

height

nowrap

valign

paramScope

name of the property in the bean specified in
the parent table tag (via the "name" attribute)
which will be used to sort values in the
column. This can be used when the column
body is filled or a decorator is used and
column should sort on undeorated values.

html pass through attribute.
title of the column (text for the th cell)

Resource key used to lookup the title value.
Only works if "title" is not defined. Works
together with a configured
118nResourceProvider, specified via the
displaytag.properties file. By default, if JSTL
is available, the JSTL provider is used, which
makes this attribute work the same as
fmt:message's key property.

The base URL used to construct the dynamic
link. This attribute has the same functionality
as the href attribute, but it pre-pends the
contextPath.

@deprecated; html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated: use "class"
@deprecated: use "headerClass"
@deprecated: use "sortable"

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated html attribute. Use "style" or
"class" to set presentational attributes using
css.

@deprecated - use Expressions in
paramName. The scope within which to
search for the bean specified by the
paramName attribute. If not specified, all
scopes are searched. If paramName is not
provided, then the current object being
iterated on is assumed to be the target bean.

String

String

String

String

bool ean

String

String

©2002 DISPLAYTAG

« ALL RIGHTS RESERVED

2.4 TAG REFERENCE

setProperty

Sets the indicated property on the enclosing Table tag. MUST be nested within a Table tag. As an
alternative, you may create a property file that holds sitewide defaults; see the configuration
documentation or the DisplayPropertiesLoaderServlet javadoc for information.

Can contain: JSP

Example

<di spl ay: set Property nanme="pagi ng. banner. pl acement" val ue="bottont" />
or
<di spl ay: set Property nane="pagi ng. banner. pl acenment " >bot t onx/ di spl ay: set Property>

14

Attributes

Name Description Type

*name The name of the property to set on the String
enclosing Table tag.

value The value to which the property is set. You String
can also set the property value in the tag
body.

footer

Tag wich should be nested into a table tag to provide a custom table footer. The body of the tag is
outputted as is in the generated table in the tfoot section.

Can contain: JSP

Example

<di spl ay: t abl e name="soneLi st">
<di spl ay: col uim property="mail"/>
<di spl ay: col uim property="total "/>
<di spl ay: f oot er >
<tr>
<td>total :</td>
<td><c: out val ue="${sonething}" /></td>
<tr>
</ di spl ay: f oot er >

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.4 TAG REFERENCE

</ di spl ay: t abl e>

Attributes

caption

Simple tag which mimics the html caption tag. Use it inside a table tag to display a caption.

Can contain: JSP

Example

<di spl ay: t abl e nane="soneLi st">
<di spl ay: col uim property="mail"/>
<di spl ay: col uim property="total "/>
<di spl ay: caption>This is the table caption</display:caption>

</ di spl ay: t abl e>

15

Attributes

Name Description Type
class html pass through attribute. String
dir html pass through attribute. String
id html pass through attribute. String
lang html pass through attribute. String
style html pass through attribute. String
title html pass through attribute. String

©2002 DISPLAYTAG

« ALL RIGHTS RESERVED

2.5

2.5 CONFIGURATION 16

Configuration

Configuration properties

This table lists all the configurable properties for the tag libraries. The default properties are defined in
the Tabl eTag. properti es file included in the library jar.

There are 2 ways to override default property settings:

* For the whole web application, create a custom properties file named "displaytag.properties" and
place it in the application classpath. Displaytag will use the locale of the request object to determine
the locale of the property file to use; if the key required does not exist in the specified file, the key will
be loaded from a more general property file.

* For a single table instance, using the <display:setProperty> tag

Include in your custom properties file only the properties you need to change. If a property is not defined
in the user file, the default from the TableTag.properties included in the jar is used.

118n

Some properties contain messages you may wish to display according to the user Locale. To do that first
add a default di spl ayt ag. properti es file where you set all the locale independent entries and
default messages. Then you can add localized properties file (for example

di spl aytag_I T. properties)

Generic

Can be set using
Property Default Valid Values Description file/setProperty

basic.show.header true true, false Indicates if you want the yeslyes
header to appear at the
top of the table, the
header contains the
column names, and any
additional action banners
that might be required
(like paging, export, etc...)

basic.empty.showtable false true, false Indicates if you want the yeslyes
table to show up also if
the list is empty

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.5 CONFIGURATION

Property

Default

Valid Values

Can be set using

Description file/setProperty

17

basic.msg.empty_list

basic.msg.empty_list_row

sort.amount

export.banner

export.banner.sepchar

paging.banner.placement

paging.banner.item_name

paging.banner.items_name

Nothing found to display

<tr class="empty"><td
colspan="{0}">Nothing
found to display.</td></tr>

page

<div class="exportlinks">
Export options: {0} </div>

top

item

items

paging.banner.no_items_fourtspan

©2002 DISPLAYTAG

class="pagebanner"> No
{0} found.

Any string

Any string

page, list

Any string in a message
format with 1 placeholder

Any string

top, bottom, both

Any string

Any string

Any string in a message
format with 1 placeholder

« ALL RIGHTS RESERVED

The message that is
displayed if the list that

this table is associated

with is either null, or

empty. Used only if

basi c. enpty. show abl e
isfal se.

yeslyes

The message that is
displayed into the first
table row if the list that this
table is associated with is
either null, or empty. {0} is
replaced with the total
column number to
generate a correct
colspan. Used only if

basi c. enpty. show abl e
istrue.

yeslyes

Indicates if the full list
should be sorted before
paging or if the sorting
only affects items in the
current page. Default
behaviour is to sort only
items in the current page
(first paging, then sorting).

yes/no

Contains the string that is
displayed in the table
footer when the user
indicates that they want to
enable the export function.
The placeholder is
replaced with links to the
various export formats
that are support.

yeslyes

Used to separate the valid
export type (typically
would be a bar, a comma,
or a dash).

yeslyes

When the table tag has to
show the header for
paging through a long list,
this option indicates where
that header should be
shown in relation to the
table

yeslyes

What the various objects
in the list being displayed
should be referred to as
(singular)

yeslyes

What the various objects
in the list being displayed
should be referred to as
(plural)

yeslyes

What is shown in the
pagination header when
no objects are available in
the list to be displayed.
The single placeholder is
replaced with the name of
the items in the list (plural)

yeslyes

2.5 CONFIGURATION

Property Default

Valid Values

Description

Can be set using
file/setProperty

18

paging.banner.one_item_fourdpan
class="pagebanner"> One
{0} found.

paging.banner.all_items_fourkkpan
class="pagebanner"> {0}
{1} found, displaying all
{2}.

paging.banner.some_items_fespdn
class="pagebanner"> {0}
{1} found, displaying {2} to
{3}.

paging.banner.group_size 8

paging.banner.full
[First/
Prev]
{0}[Next/ Last
]

paging.banner first
[First/Prev] {0} [Next/ Last]

©2002 DISPLAYTAG

Any string in a message
format with 1 placeholder

Any string in a message

format with 3 placeholders

Any string

Any reasonable number

« ALL RIGHTS RESERVED

What is shown in the
pagination header when
one object is available in
the list to be displayed.
The single placeholder is
replaced with the name of
the items in the list
(singular)

What is shown in the
pagination header when
all the objects in the list
are being shown. {0} and
{2} are replaced with the
number of objects in the
list, {1} is replaced with
the name of the items
{plural}

What is shown in the

pagination header when a

partial list of the objects in
the list are being shown.
Parameters:

« {0}: total number of
objects in the list

¢ {1}: name of the items

(plural)

{2}: start index of the

objects being shown

« {3} end index of the

objects being shown

{4}: current page

« {5}: total number of
pages

The number of pages to
show in the header that
this person can instantly
jump to

What is shown in the

pagination bar when there

are more pages and the
selected page is not the
first or the last one.
Parameters:

« {0}: numbered pages
list
{1}: link to the first
page

« {2}: link to the previous

page

{3}: link to the next

page

{4}: link to the last

page

{5}: current page

« {6}: total number of
pages

What is shown in the
pagination bar when the
first page is being shown.
Placeholders are the
same as for

pagi ng. banner. ful |l .

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

2.5 CONFIGURATION

Property

Default

Valid Values

Description

Can be set using
file/setProperty

19

paging.banner.last

paging.banner.onepage

[

First/
Prev]
{0} [Next/Last]

<span

class="pagelinks">{0}

paging.banner.page.selected{0}

paging.banner. page.link

<a href="{1}" title="Go to

page {0}">{0}

paging.banner.page.separatar

factory.requestHelper

org.displaytag.util. DefaultReqlestsrpae-actaryalid

RequestHelperFactory
implementation

What is shown in the
pagination bar when the
last page is being shown.
Placeholders are the
same as for

pagi ng. banner. ful | .

What is shown in the
pagination bar when only
one page is returned.
Placeholders are the
same as for

pagi ng. banner. full .

selected page. {0} is
replaced with the page
number, {1} with the page
url.

link to a page. {0} is
replaced with the page
number, {1} with the page
url.

separator between pages

RequestHelperFactory to
be used. You can replace
the default one if you
need to generate links
with a different format (for
example in portal
applications).

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

yes/no

Exporting

Displaytag supports exporting to excel, csv, and xml formats. Some configurable properties are specific

for one of these format. Replace " {export name} " in the property name with "excel",

Some of the properties won't work in any export format.

n

Can be set using

csv" or "xml".

Property Default Valid Values Description file/setProperty
export.types csv excel xml pdf whitespace separated list ~ Holds the list of configured yes/no
of configured export types export types.
export. {export name} true true, false Should the tag present the yeslyes
option to export data in
this specific format.
export. {export Any valid class which Fully qualified class name yes/no
name}.class implements the for the class which will be
or g. di spl ayt ag. expor t .UuSeddot ¥km@arting.
interface
export. {export <span class="export Any string The label on the link that yeslyes

name}.label

©2002 DISPLAYTAG

{export name} "> {export
name}

« ALL RIGHTS RESERVED

the user clicks on to
export the data in a
specific format.

2.5 CONFIGURATION

Property Default

Valid Values

Description

Can be set using
file/setProperty

20

export. {export false
name}.include_header

export. {export none
name}.filename

export.amount list

export.decorated true

true, false

any valid file name

page, list

true, false

If set to true, the first line
of the export will contain
column titles as displayed
on the HTML page. The
header by default is not
included in when
exporting.

When saving exported
files the user will be
prompted to use this file
name.

Indicates how much data
should be sent down to
the user when they ask for
a data export. By default,
it sends the entire list. But,
you can instruct the table
tag to only send down the
data that is currently being
shown on the page

Should the data be
"decorated" as it is
exported. The default
value is true, but you
might want to turn off any
decoration that is for
example HTML specific
when exporting the data.

yeslyes

yeslyes

yeslyes

yeslyes

Css

Property Default

Valid Values

Description

Can be set using
file/setProperty

css.tr.even even

css.tr.odd odd

css.th.sorted sorted

css.th.ascending orderl

css.th.descending order2

css.table none

css.th.sortable none

any valid css class name

any valid css class name

any valid css class name

any valid css class name

any valid css class name

any valid css class name

any valid css class name

css class automatically
added to even rows

css class automatically
added to odd rows

css class automatically
added to the header of
sorted columns

css class automatically
added to the header of a
column sorted is
ascending order

css class automatically
added to the header of a
column sorted is
descending order

css class automatically
added to the main table
tag

css class automatically
added to any sortable
column

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

yeslyes

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.5 CONFIGURATION

©2002 DISPLAYTAG

ALL RIGHTS RESERVED

21

2.6

2.6 EXPORT FILTER 22

Export filter

Export filter? What's that?

When displaytag exports data in any non-html format, it needs to change the content type returned to the
browser and reset any other content generated by the surrounding page.

Sometimes this can't be done: if content has already been sent back to the user, the response can't be
reset and you get an error. This could happen because:

* Too many chars have been already written to the response, so that the response buffer was full and
response has been automatically flushed.

* Something (tags? java snippets?) before the di spl ay: t abl e tag has explicitely flushed the response
(response. flushBuffer()).

* Your page is dinamically included into another page. This happens for example using Struts tiles.

Another problem is related to exporting binary files. The output of binary data is not supported in jsps: it
may work on some application server, but it may end up with errors in others. Because of this restriction
an "external help" may be required. Cvs, xml and excel formats don't requite a binary output, but if you
want to try a pdf export or other custom binary formats you will have to face some problems.

The solution

The first attempt can be using a larger page buffer in your jsp pages, for example:

<% page buffer = "16kb" %

However, this can work only if you are in the first situation listed above.

In j2ee 1.3/jsp 1.2 containers you can take advantage of filters to solve the problem. Displaytag ships
with a filter which works together with the table tag during export, disallowing the response to be flushed
when an export has been requested.

Installing the export filter

Configure the Filter in your web.xml:

<filter>
<filter-name>ResponseOverrideFilter</filter-name>
<filter-class>org.displaytag.filter.ResponseOverrideFilter</filter-class>
</filter>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

2.6 EXPORT FILTER

And add mappings for the pages that you will intercept, for example:

<filter-mppi ng>
<filter-name>ResponseOverrideFilter</filter-name>
<url-pattern>*.do</url-pattern>

</filter-mappi ng>

<filter-mappi ng>
<filter-name>ResponseOverrideFilter</filter-name>
<url-pattern>*.jsp</url-pattern>

</filter-mappi ng>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

23

3.1 BASIC USAGE 24

31 Basic usage

Simplest case, no columns

<% request.setAttribute("test", new TestList(10, false)); %

<di spl ay: tabl e nane="test" />

Amount Project Task City
587.0 Arts et qubergren ut et Qlyrmpia
7Z.0 Gladiators duo sit erat justo MNeapolis
277.0 Gladiators justo ternpor consetetur consetetur Roma
595.0 Gladiators magna erat tempor justo Roma
a53.0 Gladiators wvoluptua nonumy et sadipscing Qlyrmpia
7.0 Taxes et est termpor eirmod Roma

The simplest possible usage of the table tag is to point the table tag at a java.util.List implementation and
do nothing else. The table tag will iterate through the list and display a column for each property
contained in the objects.

Typically, the only time that you would want to use the tag in this simple way would be during
development as a sanity check. For production, you should always define at least a single column.

Basic, columns

<% request.setAttribute("test", new TestList(10, false)); %

<di spl ay: tabl e nane="test">

<di spl ay: col uim property="id" title="I1D" />

<di spl ay: col uim property="nanme" />

<di spl ay: col uim property="email" />

<di spl ay: col um property="status" />

<di spl ay: col uim property="description" title="Coments"/>
</ di spl ay: t abl e>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.1 BASIC USAGE

ID Mame Email Status Comments
42109 Diam Ipsum diam-ipsurm@eirmod.com STET sed amet...
41756 Elitr Sed elitr-sed@eirmod.com ERAT no Larem...
75830 Ipsum Sit ipsum-sit@eirmod.com DIAM duo takimata...
72151 Terpor Sadipscing tempor-sadipscing@sea.com IFSUM dolores clita...
91649 Ipsum Aliguyam ipsum-aliqguyam@sit.com IPSUM duo ut..,
47277 Et Lorem et-Lorern@duo.com ET sed sanctus...
15618 Ea Sanctus ea-sanctus@dolor.com TEMPOR accusam ipsum...
2a0z21 Ipsum Dolar ipsurmn-dolor@magna.com MAGHA sed takimata...
32369 Dolores Est dolores-est@consetetur.com AT erat invidunt,..
53096 Ut Labaore ut-labore@sadipscing.com SADIPSCING est dolare...

25

This example starts to show you how to use the table tag. You point the table tag at a datasource (a List),
then define a number of columns with properties that map to accessor methods (getXXX) for each
object in the List.

Note that you have one column tag for every column that you want to appear in the table. And, the
column specifies what property is shown in that particular row.

You can define the content of a column by adding a pr oper t y attribute to the column tag or adding a
content to the tag.

* <display:column property="email" />

» <display:column title="email">email@jit.com</display:column>

There are two ways to define the content of a column. Of course, in the tag body you can use scriptlets
or other custom tags. Using the pr oper t y attribute to define the content of a column is usually faster
and works better with sorting. If you add a pr oper t y attribute the tag body is ignored.

Adding content in the column body you can easily concatenate or "decorate" fields available in objects in
the list. See the implicit objects chapter for more details.

The proper ty attribute specifies what get XXX method is called on each item in the list. So for the
second column, get Nane is called. By default the property name is used as the header of the column
unless you explicitly give the column a title.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.2 IMPLICIT OBJECTS 26

s2 Implicit objects

Implicit objects created by table

<di spl ay: tabl e nane="test" id="testit">

<di spl ay: col uim property="id" title="ID" />

<di spl ay: col uim property="nanme" />

<di splay: columm title="static val ue">static</display: col um>

<di spl ay: col umm title="row nunber
(testit_rowNum"><%pageContext.getAttribute("testit_rowNunt)%</display: col um>

<di splay: colum title="((ListObject)testit).getMney()">

<% ((Li st Obj ect) pageContext.getAttribute("testit")).get Money() %

</ di spl ay: col um>

</ di spl ay: t abl e>

If you add and i d attribute the table tag makes the object corresponding to the given row available in the
page context so you could use it inside scriptlet code or some other tag. Another implicit object exposed
by the table tag is the row number, named i d_r owNum .

These objects are saved as attributes in the page scope (you can access it using

pageCont ext. get Attri bute("id")). They are also defined as nested variables (accessible using
<% i d%), but only if the value of the id atribute is not a runtime expression. The preferred way for
fetching the value is to always use pageContext.getAttribute().

If you do not specify the i d attribute no object is added to the pageContext by the table tag

This is a simple snippet which shows the use of the implicit objects created by the table tag with JSTL.

<di splay table id="row' name="nylist">
<di spl ay: colum title="row nunber" >
<c:out val ue="${row_rowNun}"/>
</ di spl ay: col um>
<di spl ay: colum title="name" >
<c:out value="${row. first_nanme}"/>
<c:out value="${row | ast_nane}"/>
</ di spl ay: col um>
</ di spl ay: t abl e>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.3

3.3 DATA SOURCES 27

Data sources

Data sources

Expressions

Up until this point, we have simply had a List object available to us under the name "list" in the request
scope that has driven the display of the tables shown. We have been setting up that bean with the
following scriptlet, but presumably you would be doing something similar in your Action class rather then
raw on this jsp page.

<% request.setAttribute("test", new TestList(10)); %

This table is called with the following attributes:

<di spl ay: tabl e nane="test">

You can also acquire a handle to the list you want to display by specifying not only a bean name, but also
a bean property (a getter method), and the table tag will call that property to fetch the list to display.

Actually there are two "flavors" of displaytag: an EL version, which requires j2ee 1.3 and a jsp 1.1 (j2ee
1.2 compatible) version

In the EL version you can obviously use an EL expression, like name="${pageScope.name.property}"

In the non-EL version you can define the "name" attribute using a really similar sintax, just without the

${}:
You can define the scope of the bean adding one of the following suffix:
* pageScope
* requestScope (default)
* sessionScope
* applicationScope

You can also access javabean style properties, mapped properties or indexed properties in the bean, also
nested. The syntax for accessing a javabean property is . property . You can read a mapped property
specifying it between () and an indexed property using [] .

So the following:

sessi onScope. | i st.value.attribute(nanme).itenf1]

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.3 DATA SOURCES 28

is equivalent to:

session.getAttribute("list").getValue().getAttribute("nane").getltem(1)

Supported data

The table tag actually supports the following kind of objects:

L]

L]

a Collection

an Enumeration

a Map (values are displayed in row)

a Dictionary (values are displayed in row)
an array

an Iterator

any Object with an iterator() method

... any other object will be displayed on a single row

From adb?

Displaytag will never support retrieving data from a db directly. Displaytag is here to help you in

displaying data, not to retrieve them.

Anyway, there are a couple of easy methods to get records from a db and display them using displaytag:

1) Using jstl:

just use the sql:query tag and pass the result to the table tag in this way

<sqgl : query var="resul ts">
select * fromtable
</ sql : query>

<di spl ay: tabl e name="%${resul ts.rows}" />
(or

<di spl ay: t abl e nane="pageScope.results.rows" />
if not using the EL version)

2) Using dynabeans

s€e

http:/ /jakarta.apache.org/commons/beanutils/api/org/apache/commons/beanutils/RowSetDynaClass.html

<%
Connection con = ...; // just open a connection

Statement stnt = con.createStatenment();
Result Set rs = stnt.executeQuery("SELECT * fromtable");

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://jakarta.apache.org/commons/beanutils/api/org/apache/commons/beanutils/RowSetDynaClass.html

3.3 DATA SOURCES

RowSet DynaCdl ass resultSet = new RowSet DynaC ass(rs,
stnt.close();
con. cl ose();
request.setAttribute("results", resultSet);
%

<di spl ay: t abl e nane="request Scope. results.rows" />

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

fal se);

29

3.4

3.4 DECORATORS 30

Decorators

Decorators

A "decorator" is a design pattern whete one object provides a layer of functionality by wrapping or
"decorating" another object.

Table decorators

<di spl ay: tabl e name="test" decorator="org. di spl aytag. sanpl e. Wapper" >
<di spl ay: col uim property="id" title="I1D" />
<di spl ay: col uim property="emil" />
<di spl ay: col uim property="status" />
<di spl ay: col uim property="date" />
<di spl ay: col uim property="noney" />
</ di spl ay: t abl e>

Let's assume you have list of business objects that you want to display, and the objects contain properties
that don't return native Strings, and you want control over how they get displayed in the list (for example,
Dates, money, numbers, etc...). I would be bad form to put this type of formatting code inside your
business objects, so instead create a Decorator that formats the data according to your needs.

Notice the following 4 key things (and refer to the TableDecorator javadoc for some of the other details).

* The Wrapper class must be a subclass of TableDecorator. There is various bootstrapping and API
methods that are called inside the TableDecorator class and your class must subclass it for things to
work properly (you will get a JspException if your class does not subclass it).

* Be smart and create your formatters just once in the constructor method - performance will be a lot
better...

* Notice how the getDate() and getMoney() methods overload the return value of your business object
contained in the List. They use the Tabl eDecor at or . get Cur r ent RowCbj ect () method to get
a handle to the underlying business object, and then format it accordingly.

* We do not have to overload each of the other business object properties (like getID, getEmail, etc...).
The decorator class is called first, but if it doesn't implement the method for the property called, then
the underlying business class is called.

The way this works is that a single decorator object is created right before the table tag starts iterating
through your List, before it starts processing a particular row, it gives the object for that row to the
decorator, then as the vatious properties getXXX() methods - the decorator will be called first and if the

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.4 DECORATORS 31

decorator doesn't implement the given property, the method will be called on the original object in your
List.

Column Decorators

You can also specify decorators that work on individual columns, this would allow you to come up with
data specific formatters, and just reuse them rather then coming up with a custom decorator for each
table that you want to show a formatted date for.

<di spl ay: tabl e name="test">

<di spl ay: col uim property="id" title="ID" />

<di spl ay: col um property="email" />

<di spl ay: col uim property="status" />

<di spl ay: col uim property="date" decorator="org. di spl ayt ag. sanpl e. LongDat eW apper"
/>
</ di spl ay: t abl e>

Table decorators, column decorators or code in the column body?

As a rule of thumb, a decorator is faster than using scriptlet or custom tags in the column body when
using paging. When the column body is filled and full list is sorted, all the records need to be "prepared”
by the table tag iterating on the whole list. If the column body is used the content will be evaluated for
any row, also for the non displayed ones; using pr operty , on the other hand, will cause the decorator
only to be called for displayed rows.

A table decorator have the power to add extra properties to your objects: for example you can add a
get Ful | Addr ess() method to your table decorator and then use property="ful | Address" ina
column. A table decorator can also provide custom html code added at the beginning/end of rowss and
table.

A column decorator is rather limited in its funcionality: it simply format an available value, and has
actually no access to the page context or other properties. However, it is the simplest and most reusable
block if you simply need to format dates, number or custom strings.

Leaving decorators out and filling the column body is the simplest solution if you don't have to worty too
much about paging and performance and it is optimal in a small, non paged, table. During sorting,
though, if the column body is used, the result will be always sorted as a String.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.5

3.5 LINKS 32

Generating links

Smart linking of column data

If you have email addresses or web URL:s in the data that you are displaying in columns of your table,
then you can set the aut ol i nk="true" attribute in your display:column tag, and that will tell the
display:table to automatically display those pieces of data as hyperlinks, you will not have to take any
action to convert that data.

* Email addresses will be wrapped with a <a hr ef =" mai | t 0: Xxxx" >xxx</ a> tag, where "xxx" is
the email address that was detected.

* Web URLs will be wrapped with a <a hr ef =" xxx" >xxx</ a> tag, where "xxx" is the URL that
was detected (it can be any valid URL type, http://, https://, ftp://, etc...)

If your column data has additional text, only the data that appears to be an email address or a URL will be

linked (not the entire column).

Turning on autolink does carry a performance penalty, as each string has to be scanned for patterns and
updated if it matches on an address or URL.

Dynamic links

There are two ways to create dynamic links that should appear in a column. The first method is a
"struts-like" approach which works well if the link you want to create is based on just a single property of
the object being displayed (like a primary key value). The second approach makes use of decorators as
described on the previous example. A decorator should be used when the dynamic link being created
relies on multiple pieces of information, relies on the index of the object in the list, relies on some other
data around it, or you want to change the text that is linked (ie you want it to say "edit", instead of
showing the primary key of the object). Below I show how to use both examples.

Struts-like approach

The column tag provides 5 struts-like attributes that can be set to create a dynamic linke (href, paramID,
paramName, paramProperty, paramScope). See the display:column documentation, and the struts
documentation for a complete description of their usage, but basically:

href
the base URL used to construct the dynamic link

paramld

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.5 LINKS 33

the name of the parameter that gets added to the URL specified above
paramName

name of the bean that contains the data we want to tack on the the URL (typically null, indicating
the current object in the List)

paramProperty
property to call on the object specified above to return the value that gets tacked onto the URL.
paramScope

specific scope where the databean lives, typically null

Of these params, you typically would not use paramName and paramScope. Leaving each as null
indicates that you want to use the object corresponding to the current row being processed.

<di spl ay: t abl e nanme="sessi onScope. detail s">
<di spl ay: col uim property="id" title="ID"'" href="details.jsp" param d="id" />
<di spl ay: col uim property="email" href="details.jsp" param d="acti on"
par amnNanme="t est par ant’ par anScope="request" />
<di spl ay: col uim property="status" href="details.jsp" param d="id"
paranProperty="id" />
</ di spl ay: t abl e>

Using a decorator

The previous example page introduced the decorator to format dates, money, etc... It can also be used to
create dynamic links on the fly so that you can either click on a particular column value and "drill down"
for more information, or you can create a column of text labels which are hyperlinks that perform some
action on the object in that row.

These dynamic links can be created based on some primary key of the object, or they can make use of the
object List index.

Below is a table that has two columns that have hyperlinks created on the fly, the first makes use of the
object's "ID" field to show additional details about that object, while the second makes use of the object's
row index value to do basically the same thing.

Here you can see the details of the getLink1() and getLink2() methods in the sample TableDecorator

public String getLinkl()
{
Li st Cbj ect | Obj ect= (ListObject)getCurrent Rowlbject();
int |l1ndex= getlListlndex();
return "& t;a href=\"details.jsp?i ndex=" + |Index + "\">" +
| Object.getld() + "&t;/a>";
}

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.5 LINKS 34

public String getLink2()

{
Li st Cbj ect | Obj ect= (ListObject)getCurrent Rowlbject();
int [1d=10Object.getld();
return "& t;a href=\"details.jsp?id=" + |1d
+ "&anp; action=viem">Viewd t;/a> | '
+ "&t;a href=\"details.jsp?id=" + 1Id
+ "&anp; action=edit\">Edit&t;/a> | "
+ "&t;a href=\"details.jsp?id=" +11Id
+ "&anp; action=del ete\">Del ete& t;/a>";
}

<di spl ay: t abl e name="sessi onScope. detai | s" decor at or="or g. di spl ayt ag. sanpl e. W apper"

>
<di spl ay: col uim property="1linkl" title="ID" />
<di spl ay: col uim property="emil" />
<di spl ay: col utm property="1ink2" title="Actions" />

</ di spl ay: t abl e>

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.6

3.6 STYLE 35

Style

You actually have a lot of flexibility in how the table is displayed, but of course you should probably stay
close to the defaults in most cases. You adjust the look of the table via two methods:

1. pass through table and column attributes

2. style sheets

Html attributes

You can assign to the <display:table> tag any standard html strict attribute (es. style, class, cellspacing,
cellpadding), and it will be included in the rendered table.

Likewise, you can assign to the <display:column> tag any standard html attribute and it will be included
in any <td> tag of the rendered table. You can also specity a class to be used only for the column header
(<th>) using the header O ass attribute.

Html transitional attributes are also supported in version 1.0 but they will be removed soon, so you are
encoraged to avoid any html presentational attribute (such as border, background, bgcolor, width,
height...): there ate replaced by an appropriate use of css rules. See the tag reference page for the full list
of supported/ deprecated attributes.

Style Sheets

The <display:table> tag produces well formed html tables with <thead> and <tbody> sections. Css
classes are also automatically added to rows/cells when needed.

You can easily customize the generated table simply specifing appropriate css rules in your stylesheet,
based on these classes/selectors.

All the automatically added css classes can be customized in displaytag.properties. You can also add a css
class to any generated display:table if needed. This is the list of css classes added by default:

class assigned to

odd assigned to the tr tag of all odd numbered data rows

even assigned to the tr tag of all even numbered data rows

sorted assigned to the th tag of the sorted column

orderl assigned to the th tag of the sorted column if sort order is ascending

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.6 STYLE

36

class assigned to
order2 assigned to the th tag of the sorted column if sort order is descending
sortable assigned to the th tag of a sortable column

©2002 DISPLAYTAG

ALL RIGHTS RESERVED

3.7

3.7 EXPORT 37

Exporting data

When you set the Table Tag's export attribute to "true", a footer will appear below the table which will
allow you to export the data being shown in various formats.

Displaytag includes a few ready made export views which allow you to export data in CSV, excel, and XML
format. A simple PDF export view is also available. The following table lists the predefined export
options included in displaytag distribution.

Media Export View Class Description

CsVv org.displaytag.export.CsvView Export to comma separated list

Excel org.displaytag.export.ExcelView Export to excel - ascii format, tab separated
XML org.displaytag.export.XmlView Simple xml output

PDF org.displaytag.export.PdfView Sample PDF export view. This is not enabled

by default in the distribution but can be
enabled by setting export . pdf =t rue in
displaytag.properties and including the
required IText dependency (see displaytag
dependencies). Since you probably want to
tweak the layout of your pdf output, this is
probably more useful as a base reference for
creating your own PDF export view.

Configuring export and export views

The export . types parameter contains the list of registered export views. For each export type you can
configure other parameters: see the export. exportnanme.* parameters in configuration .

You can enable/disable a specific expott type using the export. exportnane. enabl ed parameter.

If you don't want some column to show duting export (ot you only want them to show during export)
you can use the column medi a attribute (see tag reference for more details).

Adding a new Export view

1. Write your own exportView class. You need to implement the
org. di spl ayt ag. export. Text Export Vi ewor
org. di spl ayt ag. export. Bi nar yExport Vi ewinterface. You can look at the sample binary
PDF export view or to the base text export view used by displaytag .

2. Add a di spl ayt ag. properti es file in your application classpath (if you already don't have one)

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.7 EXPORT 38

and add the name of your export media along with the default ones to the export type parameter:

export.types=csv excel xm [nynedia]

3. Always in di spl ayt ag. properti es , add the following properties:

export.[nmymedi a] =true
export.[mymedi a] . cl ass=ful | y. qual i fi ed. cl ass. nanme
export.[nynedia].label=Click here to try ny export

include header paraneter is forwarded to your export view
export. [nynedia].include_header=true

if set, file is downl oaded i nstead of opened in the browser w ndow
export.[nmymedi a] . fil ename=

4. Try it. You should see a new link with the text you added to export. mynedi a .| abel
Clicking on it will invoke your Export view. You should see the results in your browser.

Text/Binary export views

Common displaytag export options (CSV, Xml and Excel) output a simple text-based format. Other file
formats require binary content, like the sample PDF included with the distribution.

Exporting binary data from a JSP is a bit tricky, since JSPs are only designed to output characters: as a
starting point keep in mind that binary export is not assured to work on every application server , at least
without the help of an external filter (see export filter).

It may work without a filter if your application server allows JSPs to call

response. get Qut put St r ean() , but this method really shouldn't be used in JSPs. Using an the
export filter, especially in buffered mode, could solve the problem, since the output stream is requested
by the filter outside the JSP.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.8

3.8 118N 39

i18n - Internationalization

If you use displaytag in a multi-language application, you will probably need to translate html generated
by displaytag as well. Displaytag supports 118n for html snippets used in the paging and export banner
and for the title of column headers.

i18n for displaytag resources
Using the di spl ayt ag. properti es file you can set all the messages handled by displaytag.

Configuring:

pagi ng. banner. one_i tem f ound=One item f ound

Will make displaytag output One i t em f ound when only a row is displayed.

In order to support other languages you can add any number of additional files named
di spl ayt ag_LANGUAGE. properti es . For example, you can add a
di spl aytag_| T. properti es for italian users with the following content:

pagi ng. banner. one_i tem found=Un sol o el emento trovato

You don't need to copy all the propetties in any internationalized file (some of them ate also
configuration properties which don't need to be translated at all). Configure displaytag propetly in the
main di sSpl ayt ag. properti es file and then replicate only the strings you want to translate.

i18n for column title
There are a few different ways to define the content for a column header in the col umm tag:

1. specifyinga ti t| e attribute: the content of the title attribute will be used as is for the column header

2. specifying a ti t | ekKey attribute: the content of the titlekey will be used to lookup a resource in a
resource bundle and the value will be used in the column header. If the specified key can't be found

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.8 118N 40

Advanced

Displaytag will probably be used in an application where content is already internationalized using a
specific framework, which should provide a way to resolve the current locale and to lookup properties in
a resource bundle.

Displaytag provides a way to plug-in different adapters to use the same i18n support you are using in your
application.

Locale resolution

By default displaytag will use the locale specified in the request (i.e. the locale set in the user browser).
This can be fine for a basic use, but you could need a way to override this selection and to force a
different locale.

Here comes the problem: if you already use Jstl, Struts or other frameworks you will know that there is
no standard way to specify the locale to use: each framework works in a different way.

Displaytag provides an interface Local eResol ver with a few ready to use implementations which
match the behaviour of common frameworks. The locale resolver is specified in the
di spl ayt ag. properti es file using the | ocal e. r esol ver key.

If nothing is specified the locale from the request is used, as specified above. However, you are free to
configure here any custom implementation of the

org. di spl aytag. | ocal i zati on. Local eResol ver interface with a simple method

resol veLocal e(Ht t pSer vl et Request)

Displaytag provides by default these ready to use implementations:

class name behaviour

org.displaytag.localization.|18nJstlAdapter Mimic JSTL, looking for a locale specified in session with the
Confi g. FMI_LOCALE key.

org.displaytag.localization.|18nStrutsAdapter Struts adapter, will look for the locale specified by
G obal s. LOCALE_KEY

org.displaytag.localization.l18nWebworkAdapter Webwork2 adapter, will look for the locale specified by the fist
LocaleProvider action in the stack

org.displaytag.localization.|18nSpringAdapter Spring adapter, will use Request Cont ext Uti | s. get Local e() for
locale resolution (which will in turn delegate to the Spring locale
resolver)

Resources lookup

Other than resolving the currently used locale, your framework will probably provide a standard way to
store i18n resources. Just like for the locale resolution, displaytag will allow you to plug in different
implementations.

Displaytag provides an interface | 18nResour cePr ovi der with a few ready to use implementations
which match the behaviour of common frameworks. This is configured in di spl ayt ag. properties

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

3.8 118N

41

using the | ocal e. provi der key. By default the JSTL implementation is used.

The ready to use locale resolvers are (yes, these are the same classes used for locale resolution, since they

implement both interfaces):

class name

behaviour

org.displaytag.localization.|18nJstlAdapter

org.displaytag.localization.|18nStrutsAdapter

org.displaytag.localization.l18nWebworkAdapter

org.displaytag.localization.|18nSpringAdapter

JSTL implementation, works in the same way as fmt:message. Note
that this depends from the jakarta jstl implementation: it will also work
with Resin jstl support, but you will still need standard.jar in the
classpath.

Struts adapter, will use TagUt i | s. message()

Webwork?2 adapter, will look for the first TextProvider action in the
stack and will obtain a message for the given key.

Spring adapter, will look for the configured nessageSour ce and use
it to obtain a value for the given key.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

4.1 FAQ 42

Frequently Asked Questions

General

1. When I was trying to copy and paste the samples from the website I would get compile time errors
looking for TestList, ReportList, etc. This would happen even if I included the display tag binary
distribution jar file.

2. One thing that I really wanted to do was create tables that contained things other than text fields.
Drop Downs, CheckBoxes and Input Fields were stuff that I was looking for. On the examples page
there wasn't an example that showed how to do this.

3. What is the c tag library? In the examples there is a tag library called the c tag library which was used
in a lot of places (c:if, c:out, etc.).

4. Can I use a java variable as the value of the id attribute?

Displaytag and Struts

1. How do I use this tag with Struts? The links that it creates for sorts and exports all point back to the
JSP page, not my Action!

Rendering

1. How can I display static headers in a table, so that headers remain visible while user scrolls the table

body?
App Servers specific problems

1. After deployed the displaytag war in JRun 4 I geta j ava. | ang. NoCl assDef FoundErr or:
or g/ apache/ | og4j / Layout

2. The <example> clements in the di spl ayt ag-el . t1d and di spl aytag-12. t | d are invalid
according to JRun4. When adding displaytag.jar to a JRun4 web application I get the following
stacktrace: j run. j sp. conpi | er. JRunTagLi braryl nf o$l nval i dTLDEI enent Excepti on:
The tag exanple on line 244 is not a valid TLD el enent at
jrun.jsp.conpiler.JRunTagLi braryl nf o$TLDPar ser. st art El ement (JRunTagLi braryl nfo.java:

General

General
When I was trying to copy and paste the samples from the website I would get compile time errors
looking for TestList, ReportList, etc. This would happen even if I included the display tag binary
distribution jar file.

Within the display tag binary distribution the "org.displaytag.sample" class files are not included. So
if you are trying to use TestList, ReportList which are part of the org.displaytag.sample package

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

4.1 FAQ 43

you'll get a compile error telling you they can't find the classes. The solution I came up with was to
download the source file distribution and copy the org.display.sample source files into your build. If
you do this you probably need to copy over files from the or g. di spl ayt ag. decor at or and
org. di spl ayt ag. except i on packages since there are dependencies between them all.

One thing that I really wanted to do was create tables that contained things other than text fields.
Drop Downs, CheckBoxes and Input Fields were stuff that I was looking for. On the examples page
there wasn't an example that showed how to do this.

There is a really good example of how to use displaytag to create an editable row of data located at
http://demo.raibledesigns.com/appfuse/demos/users-edit.jsp . It contains the source code for how
to do it.

What is the c tag library? In the examples there is a tag library called the c tag library which was used
in a lot of places (c:if, c:out, etc.).

The c tag library is actually the JavaServer Pages Standard Tag Library (JSTL). To import it you use
the line<%@taglib uri="http://java.sun.comjsp/jstl/core" prefix="c" % .
You also have to download the library from sun and include the jstl.jar, standard.jar within your war,
in the appropriate places.

Can I use a java variable as the value of the id attribute?

Yes, from version 1.0rc2 displaytag will allow you to use a java variable as the value of the id
attribute. But you have to be aware that, while usually displaytag declares a variable named with the
value of the id attribute, this is not possible when using a runtime expression. You can however
fetch the value of the row object from the pagecontext, as showed in the following example.

<% String nyld = "row'>
<di spl ay: tabl e i d="<%nyl d%" ...>
<di spl ay: col um><%r ow</ di spl ay: col um> <-- will not work
<di spl ay: col um><%pageCont ext. get Attri bute("row')></di spl ay: col um> <-- works

In the EL version of the tag library you are also allowed to do:

<c:set var="nyld" value="row' />
<display:table id="${nyld}" ...>
<di spl ay: col um><c: out val ue="${row}" /></display: col um>

Note that pageCont ext . get Attri but e() is the preferred way for accessing the object in the
current row and the declared variable will probably be removed in future (it is already not used in
the EL version of the tag library).

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://demo.raibledesigns.com/appfuse/demos/users-edit.jsp

4.1 FAQ

Some containers don't allow the id attribute to be a runtime expression at all (this has been reported
in earlier versions of Tomcat 5 and ATG Dynamo 5), so an attribute with the name ui d has been
added. Simply use ui d instead of ui d in the table tag.

Displaytag and Struts

Displaytag and Struts
How do I use this tag with Struts? The links that it creates for sorts and exports all point back to the
JSP page, not my Action!

Use the requestURI attribute of the column tag. When the requestURI attribute is present, links for
sorting, exports, and paging are formed by adding any tag generated parameters to the value of
requestURI attribute. So if your page is served under / ManagelLat i n. do , you should have
request URI ="/ ManageLat i n. do" on your display:table.

nn

Using the requestURI attribute with an empty
know what the uri is because the table might be part of an included tile. The resulting URL will be a
link that is based upon the original requestURI + the appended display tag parameters.

attribute is another strategy. Sometimes you don't

Rendering

Rendering
How can I display static headers in a table, so that headers remain visible while user scrolls the table

body?

You can do that simply using css, adding an height and the over f | ow. scrol | property to the
t body element. Unfortunately this will work perfectly in Netscape/Mozilla, but not in Internet
Explorer.

A table with a scrollable body can be made in Internet Explorer using javascript or a more complex
css. Here you can find a good css example.

App Servers specific problems

App Servers specific problems
After deployed the displaytag war in JRun 4 I geta j ava. | ang. NoCl assDef FoundErr or:
or g/ apache/ | og4j / Layout

This is due to a known bug in JRun.

To make the sample webapp working you will need to:

* remove conmons- | oggi ng- *. j ar from di spl aytag. war/WEB-I NF/|i b
* movel 0g4j-1.2.8to $IJRUN servers/|lib/ (cteate this directory if it doesn't exist)

You can find more info related to this jrun bug on google: searching jrun
"otrg/apache/log4j/Layout"

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://www.imaputz.com/cssStuff/bigFourVersion.html
http://www.google.it/search?q=jrun+%22org%2Fapache%2Flog4j%2FLayout%22
http://www.google.it/search?q=jrun+%22org%2Fapache%2Flog4j%2FLayout%22

4.1 FAQ 45

The <example> elements in the di spl ayt ag-el . t1d and di spl ayt ag- 12. t| d are invalid

according to JRun4. When adding displaytag.jar to a JRun4 web application I get the following

stacktrace:

jrun.jsp.conpiler.JRunTagLi braryl nfo$l nval i dTLDEl enent Excepti on: The

tag exanple on line 244 is not a valid TLD el ement at

jrun.jsp.conpiler.JRunTagLi braryl nf o$TLDPar ser. st art El enent (JRunTagLi braryl nfo.java: 6

Again, this appeats to be a JRun fault.

The <example> elements are absolutely valid according to the sun dtd
http://java.sun. conf dtd/ web-j sptaglibrary_1_2. dtd but JRun doesn't accept them.
A bug report has already been submitted to Macromedia hoping they will fix this.

In the meanwhile, you have two available solutions to make displaytag work pacefully with JRun:

* If you don't need to use the EL version, simply delete the di spl aytag-el . tld and
di spl aytag-12. t | d files from displaytag.jar and use the 1.1 version. This one works without
problems.

* If you need the EL version, extract di spl ayt ag- el . t| d from the jar and remove all the
<example> tags. Replace the original tld in the jar with this modified one.

We are sorry for this extra step needed with JRun, but at the moment we decided to not to remove
the example tags in the main tld since they are needed for the generated documentation.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

4.2

4.2 REPORTING BUGS 46

Reporting bugs

Issue Tracking
Go to Displaytag bug and feature request tracker (JIRA) to see open bugs or to submit new requests.

Please note that the issue tracker on sourceforge is not used anymore and any remaining item will be
moved to the new tracker.

Bug reporting
Before submitting a bug to the JIRA above, please be sure you have done your homework. This includes:

1. Reading the FAQ to understand the correct behavior

2. Searching the JIRA for a comparable issue; you may not be the first person to find this bug

3. Searching the user list archives if you are not sure the behavior you are experiencing is a bug
Post help requests to the user mailing list.
Please do not post bug reports or patches directly to the user or development mailing lists ! Always

submit them to the JIRA before. This will help us track and review them. After submitting a bug, you are
free to discuss it in the developer mailing list (without attaching code or patches to mails).

Feature requests and patches for new features
As always, use the JIRA to submit feature requests (in the RFE category).

If you have modified your local version of the display tag library by adding a new feature and would like
to see in the main distribution, open a new RFE (Request For Enhancement) in the JIRA and attach the
patch to it (don't send it to the mailing list).

If you want to see your patch quickly applied by committers, you should be able to provide the following
items:
1. A CVS diff against the latest CVS version. No, a zip file with all modified sources is not OK.

2. One or more junit tests related to the new feature. Also, be sure to run all of the existing testcases to
verify that you are not breaking existing code. Look in the stc/test directory to understand how to
write simple JSP test cases.

3. Update the documentation (xdoc files and/or the sample application).

If all of these requirements are met, your patch will likely be accepted soon. If you only provide a zip with
the modified source files; keep in mind that before your addition can be committed to CVS, a developer
must complete all of the other tasks for you. This could take a long time.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://jira.codehaus.org/browse/DISPL
http://jira.codehaus.org/browse/DISPL

4.2 REPORTING BUGS

©2002 DISPLAYTAG

ALL RIGHTS RESERVED

a7

4.3

4.3 MAILING LISTS 48

Mailing Lists

Mailing Lists

These are the mailing lists that have been established for this project. For each list, there is a subscribe,
unsubscribe, and an archive link.

List Name Subscribe Unsubscribe Archive
Display tag library User Mailing Subscribe Unsubscribe Archive
list

Display tag library Developer Subscribe Unsubscribe Archive
Mailing list

Display tag library Cvs Mailing list Subscribe Unsubscribe Archive

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://lists.sourceforge.net/lists/listinfo/displaytag-user
http://lists.sourceforge.net/lists/listinfo/displaytag-user
http://sourceforge.net/mailarchive/forum.php?forum=displaytag-user
http://lists.sourceforge.net/lists/listinfo/displaytag-devel
http://lists.sourceforge.net/lists/listinfo/displaytag-devel
http://sourceforge.net/mailarchive/forum.php?forum=displaytag-devel
http://lists.sourceforge.net/lists/listinfo/displaytag-cvs
http://lists.sourceforge.net/lists/listinfo/displaytag-cvs
http://sourceforge.net/mailarchive/forum.php?forum=displaytag-cvs

51

5.1 SOURCE REPOSITORY 49

Source Repository

Web Access

http://cvs.sourceforge.net/ cgi-bin/viewcvs.cgi/displaytag/displaytag/

Anonymous Access with Maven

This project's CVS repository can be checked out through anonymous (pserver) CVS with the following
instruction on a single line.

maven scm checkout - proj ect
- Dmaven. scm et hod=cvs
- Dmaven. scm cvs. nodul e=di spl ayt ag
- Dmaven. scm cvs. r oot =: pserver: anonynous@vs. sour cef or ge. net:/cvsroot/di spl ayt ag
- Dmaven. scm checkout . dir=.

Anonymous CVS Access

This project's CVS repository can be checked out through anonymous (pserver) CVS with the following
instruction set. When prompted for a password for anonymous, simply press the Enter key.

cvs -d :pserver:anonymous@cvs.sourceforge.net:/cvsroot/displaytag login
cvs -z3 -d :pserver:anonymous@cvs.sourceforge.net:/cvsroot/displaytag co displaytag

Updates from within the module's directory do not need the -d parameter.

Developer Access with Maven

Only project developers can access the CVS tree via this method. Substitute username with the proper
value.

maven scm checkout - proj ect
- Dmaven. scm nmet hod=cvs
- Dmaven. scm cvs. nodul e=di spl ayt ag
- Dmaven. scm cvs. r oot =: ext : user name@vs. sour cef orge. net:/cvsroot/di spl ayt ag
- Dmaven. scm checkout . dir=.
- Dmaven. scm cvs. rsh=ssh

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/displaytag/displaytag/

5.1 SOURCE REPOSITORY 50

Remember to replace 'username' with your actual username on cvs.sourceforge.net.
Also change ssh in maven. scm cvs. r sh=ssh to the name of your ssh executable.

Developer CVS Access via SSH

Only project developers can access the CVS tree via this method. SSH1 must be installed on your client
machine. Substitute username with the proper value. Enter your site password when prompted.

export CVS_RSH=ssh
cvs -z3 -d :extusername(@cvs.sourceforge.net:/ cvsroot/displaytag co displaytag

Remember to replace 'username’ with your actual username on cvs.sourceforge.net.

CVS Access behind a firewall

For those developers who are stuck behind a corporate firewall, CVSGrab can use the viewcvs web
interface to checkout the source code.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://cvsgrab.sourceforge.net/

5.2

5.2 BUILDING FROM SOURCES 51

Building from sources

Building from Source

Getting the source

Refer to the download section for how to download a source release of a snapshot from CVS.

Installing Maven

Displaytag uses maven for build and site generation. First of all, you need to download and install maven
(you will need at least Maven 1.0) from maven.apache.org . Follow the instructions on the Maven site on
how to do this.

Run it!

It couldn't be more simple: go to the folder containing the (unzipped) soutce, type maven and watch the
show. For this you need a working internet connection since maven will first try to download all the
needed libraries (see dependencies) from a remote repository.

Running maven without arguments will execute the default goal, which will build the library, the sample
webapp, and the documentation site (this one). You can run maven -g to see the available goals. Running
maven jar will simply create the library jar without the sample site and documentation.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

http://maven.apache.org

5.3

5.3 DIRECTORY ORGANIZATION

Directory Organization

Overview

52

The display tag library uses Maven for build and documentation and tries to conform to general Maven
project layout. If you are used to working on a maven-driven project you should feel comfortable with it.

Here is a description of the file and folder organization. The strong names refer to project specific

setting/files.

Common Directory Layout

Directory or file name Content

Comment

LICENSE.txt The license for the project.

project.xml Maven project descriptor

project.properties A file defining project specific properties.

maven.xml Maven configuration for defining build goals

src/ Source code

srcl/java Java source code

src/webapp Example webapp source

src/tld tid

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

This file contains the license that applies to
the project.

This file contains the basic project
configuration for maven (project name,
developers, urls, dependencies, etc).

This file can be used to override maven
default properties for the core and properties
for the various plugins. It can also be used to
define any maven properties used by a
project. The properties defined in this file
should be applicable to most users of your
project, as opposed to custom properties for a
specific build/user which should be defined in
${ proj ect. hone}/ buil d. properties.

This file contains the default maven goals for
the project, plus added pre-post operations to
be performed.

This is the main directory for all the source
code, subdivided in subdirectory to separate
different "kind" of code.

This directory contains all the java source
code both for the library and the example
webapp.

This directory contains all the code (JSP,
images, web.xml configuration) for the
example webapp.

This directory contains the tag library
definition file (tld), which is added in the
library jar and in the examples war during the
build.

5.3 DIRECTORY ORGANIZATION

Directory or file name

Content

53

Comment

xdocs/

xdocs/navigation.xml

checkstyle.xml

Documentation files in XML format.

Navigation links for site.

Checkstyle configuration file

Maven projects use Jelly/JSL to transform
documentation files in XML into HTML.
Project documentation should be placed in
this directory. Maven converts all XML files in
this directory using JSL. Non-XML files (and
directories) are copied without modification to
permit the inclusion of "other" types of
documentation (including images). The
generated HTML files automatically inherit the
Maven look-and-feel by default.

Maven projects use Jelly stylesheets to
transform documentation files in XML into
HTML (XHTML for the most part). This file
includes the navigation links that are added to
each xdoc transformed in the xdocs
directory.

Configuration file containing checkstyle
settings used during generation of reports.

Maven-Generated Layout

Directory name

Content

Comment

target/

target/classes

target/generated-docs

target/docs

target/docs/index.html

target/docs/apidocs

©2002 DISPLAYTAG

Contains compiled classes and JARs.

Contains compiled classes.

Contains Maven generated xdocs.

Documentation files intended for the website
publication.

Starting point for browsing the
documentation.

API documentation.

« ALL RIGHTS RESERVED

The contents of the target/ directory should
be enough to use the project. This directory
contains the final JAR and WAR that are
generated.

The target/classes directory contains all
compiled classes. This directory is used when
packaging the final JAR for a project.

The target/generated-docs directory contains
all of the Maven-generated xdocs. All content
generated by Maven is first converted to xdoc
format, so the same stylesheet used to
transform the rest of the site can be used on
generated content. The contents of this
directory are transformed and stored in the
docs/ directory.

The docs/ directory contains only generated
documentation that is intended to be
published as the project's website. This
directory includes the Velocity/DVSL
generated HTML files, JavaDocs,
cross-referenced sources, and various
generated reports. Generally, all
documentation is stored in the xdocs/
directory and then "transformed" into this
directory. The specific documents that Maven
generates are described below.

Browsing the documentation locally should
yield the same results as browsing the
documentation on the project's home page.

Maven automatically generates JavaDocs for
projects using the JavaDoc utility. Placing the
API documentation under docs/apidocs/
makes it slightly easier for other
documentation files under docs/ to reference
API documentation and vice versa.

5.3 DIRECTORY ORGANIZATION

Directory name

Content

54

Comment

target/docs/xref

target/docs/mail-lists.html

target/docs/team-list.html

target/docs/dependencies.html

target/docs/changelog.html

target/docs/file-activity-report.html

target/docs/developer-activity-report.html

target/docs/jdepend-report.html

target/docs/checkstyle-report.html

Cross-referenced source code.

Mailing list documentation.

The list of project team members.

The list of dependencies.

The CVS change log.

The File Activity Report.

The Developer Activity Report.

Metric report.

Checkstyle report.

Maven automatically generates
cross-referenced source code that enables
easy browsing of an entire source tree.
Placing the cross-referenced sources under
docs/xref/ makes it slightly easier for other
documentation files under docs/ to reference
API documentation and vice versa.

Maven automatically generates a list of
mailing lists based on the information
provided in the project descriptor.

Maven automatically generates a list of
project team members based on the
information provided in the project descriptor.

Maven automatically generates a list of
dependencies based on the information
provided in the project descriptor.

Maven automatically generates a change log
from CVS log messages. This log is currently
limited to the past 30 days (but will be
configurable in the future).

Maven automatically generates a log from
your SCM listing file changes in the last 30
days.

Maven automatically generates a log from
your SCM listing changes per developer in
the last 30 days.

Maven automatically generates a report on
various source code metrics. This report can
provide further insight into a project.

Maven automatically generates a report on
the results of Checkstyle. This report provides
assurance that the coding conventions for
your project are being followed.

©2002 DISPLAYTAG « ALL RIGHTS RESERVED

